This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_MixOperation.cc
Manuel Castilla b35efa932e Compositor: Full frame Mix node
Adds full frame implementation to this node operations.
No functional changes.
2.3x faster than tiled fallback on average.

Reviewed By: jbakker

Differential Revision: https://developer.blender.org/D11686
2021-07-19 22:05:39 +02:00

1410 lines
40 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_MixOperation.h"
#include "BLI_math.h"
namespace blender::compositor {
/* ******** Mix Base Operation ******** */
MixBaseOperation::MixBaseOperation()
{
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Color);
this->addInputSocket(DataType::Color);
this->addOutputSocket(DataType::Color);
this->m_inputValueOperation = nullptr;
this->m_inputColor1Operation = nullptr;
this->m_inputColor2Operation = nullptr;
this->setUseValueAlphaMultiply(false);
this->setUseClamp(false);
flags.can_be_constant = true;
}
void MixBaseOperation::initExecution()
{
this->m_inputValueOperation = this->getInputSocketReader(0);
this->m_inputColor1Operation = this->getInputSocketReader(1);
this->m_inputColor2Operation = this->getInputSocketReader(2);
}
void MixBaseOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = valuem * (inputColor1[0]) + value * (inputColor2[0]);
output[1] = valuem * (inputColor1[1]) + value * (inputColor2[1]);
output[2] = valuem * (inputColor1[2]) + value * (inputColor2[2]);
output[3] = inputColor1[3];
}
void MixBaseOperation::determineResolution(unsigned int resolution[2],
unsigned int preferredResolution[2])
{
NodeOperationInput *socket;
unsigned int tempPreferredResolution[2] = {0, 0};
unsigned int tempResolution[2];
socket = this->getInputSocket(1);
socket->determineResolution(tempResolution, tempPreferredResolution);
if ((tempResolution[0] != 0) && (tempResolution[1] != 0)) {
this->setResolutionInputSocketIndex(1);
}
else {
socket = this->getInputSocket(2);
socket->determineResolution(tempResolution, tempPreferredResolution);
if ((tempResolution[0] != 0) && (tempResolution[1] != 0)) {
this->setResolutionInputSocketIndex(2);
}
else {
this->setResolutionInputSocketIndex(0);
}
}
NodeOperation::determineResolution(resolution, preferredResolution);
}
void MixBaseOperation::deinitExecution()
{
this->m_inputValueOperation = nullptr;
this->m_inputColor1Operation = nullptr;
this->m_inputColor2Operation = nullptr;
}
void MixBaseOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_value = inputs[0];
const MemoryBuffer *input_color1 = inputs[1];
const MemoryBuffer *input_color2 = inputs[2];
const int width = BLI_rcti_size_x(&area);
PixelCursor p;
p.out_stride = output->elem_stride;
p.value_stride = input_value->elem_stride;
p.color1_stride = input_color1->elem_stride;
p.color2_stride = input_color2->elem_stride;
for (const int y : YRange(area)) {
p.out = output->get_elem(area.xmin, y);
p.row_end = p.out + width * output->elem_stride;
p.value = input_value->get_elem(area.xmin, y);
p.color1 = input_color1->get_elem(area.xmin, y);
p.color2 = input_color2->get_elem(area.xmin, y);
update_memory_buffer_row(p);
}
}
void MixBaseOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
p.out[3] = p.color1[3];
p.next();
}
}
/* ******** Mix Add Operation ******** */
void MixAddOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
output[0] = inputColor1[0] + value * inputColor2[0];
output[1] = inputColor1[1] + value * inputColor2[1];
output[2] = inputColor1[2] + value * inputColor2[2];
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixAddOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
p.out[0] = p.color1[0] + value * p.color2[0];
p.out[1] = p.color1[1] + value * p.color2[1];
p.out[2] = p.color1[2] + value * p.color2[2];
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Blend Operation ******** */
void MixBlendOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
float value;
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = valuem * (inputColor1[0]) + value * (inputColor2[0]);
output[1] = valuem * (inputColor1[1]) + value * (inputColor2[1]);
output[2] = valuem * (inputColor1[2]) + value * (inputColor2[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixBlendOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
float value_m = 1.0f - value;
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Burn Operation ******** */
void MixColorBurnOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
float tmp;
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
tmp = valuem + value * inputColor2[0];
if (tmp <= 0.0f) {
output[0] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - inputColor1[0]) / tmp;
if (tmp < 0.0f) {
output[0] = 0.0f;
}
else if (tmp > 1.0f) {
output[0] = 1.0f;
}
else {
output[0] = tmp;
}
}
tmp = valuem + value * inputColor2[1];
if (tmp <= 0.0f) {
output[1] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - inputColor1[1]) / tmp;
if (tmp < 0.0f) {
output[1] = 0.0f;
}
else if (tmp > 1.0f) {
output[1] = 1.0f;
}
else {
output[1] = tmp;
}
}
tmp = valuem + value * inputColor2[2];
if (tmp <= 0.0f) {
output[2] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - inputColor1[2]) / tmp;
if (tmp < 0.0f) {
output[2] = 0.0f;
}
else if (tmp > 1.0f) {
output[2] = 1.0f;
}
else {
output[2] = tmp;
}
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixColorBurnOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
float tmp = value_m + value * p.color2[0];
if (tmp <= 0.0f) {
p.out[0] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - p.color1[0]) / tmp;
p.out[0] = CLAMPIS(tmp, 0.0f, 1.0f);
}
tmp = value_m + value * p.color2[1];
if (tmp <= 0.0f) {
p.out[1] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - p.color1[1]) / tmp;
p.out[1] = CLAMPIS(tmp, 0.0f, 1.0f);
}
tmp = value_m + value * p.color2[2];
if (tmp <= 0.0f) {
p.out[2] = 0.0f;
}
else {
tmp = 1.0f - (1.0f - p.color1[2]) / tmp;
p.out[2] = CLAMPIS(tmp, 0.0f, 1.0f);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Color Operation ******** */
void MixColorOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
float colH, colS, colV;
rgb_to_hsv(inputColor2[0], inputColor2[1], inputColor2[2], &colH, &colS, &colV);
if (colS != 0.0f) {
float rH, rS, rV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(inputColor1[0], inputColor1[1], inputColor1[2], &rH, &rS, &rV);
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
output[0] = (valuem * inputColor1[0]) + (value * tmpr);
output[1] = (valuem * inputColor1[1]) + (value * tmpg);
output[2] = (valuem * inputColor1[2]) + (value * tmpb);
}
else {
copy_v3_v3(output, inputColor1);
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixColorOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
float colH, colS, colV;
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
if (colS != 0.0f) {
float rH, rS, rV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
p.out[0] = (value_m * p.color1[0]) + (value * tmpr);
p.out[1] = (value_m * p.color1[1]) + (value * tmpg);
p.out[2] = (value_m * p.color1[2]) + (value * tmpb);
}
else {
copy_v3_v3(p.out, p.color1);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Darken Operation ******** */
void MixDarkenOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = min_ff(inputColor1[0], inputColor2[0]) * value + inputColor1[0] * valuem;
output[1] = min_ff(inputColor1[1], inputColor2[1]) * value + inputColor1[1] * valuem;
output[2] = min_ff(inputColor1[2], inputColor2[2]) * value + inputColor1[2] * valuem;
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixDarkenOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
float value_m = 1.0f - value;
p.out[0] = min_ff(p.color1[0], p.color2[0]) * value + p.color1[0] * value_m;
p.out[1] = min_ff(p.color1[1], p.color2[1]) * value + p.color1[1] * value_m;
p.out[2] = min_ff(p.color1[2], p.color2[2]) * value + p.color1[2] * value_m;
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Difference Operation ******** */
void MixDifferenceOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = valuem * inputColor1[0] + value * fabsf(inputColor1[0] - inputColor2[0]);
output[1] = valuem * inputColor1[1] + value * fabsf(inputColor1[1] - inputColor2[1]);
output[2] = valuem * inputColor1[2] + value * fabsf(inputColor1[2] - inputColor2[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixDifferenceOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
p.out[0] = value_m * p.color1[0] + value * fabsf(p.color1[0] - p.color2[0]);
p.out[1] = value_m * p.color1[1] + value * fabsf(p.color1[1] - p.color2[1]);
p.out[2] = value_m * p.color1[2] + value * fabsf(p.color1[2] - p.color2[2]);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Difference Operation ******** */
void MixDivideOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
if (inputColor2[0] != 0.0f) {
output[0] = valuem * (inputColor1[0]) + value * (inputColor1[0]) / inputColor2[0];
}
else {
output[0] = 0.0f;
}
if (inputColor2[1] != 0.0f) {
output[1] = valuem * (inputColor1[1]) + value * (inputColor1[1]) / inputColor2[1];
}
else {
output[1] = 0.0f;
}
if (inputColor2[2] != 0.0f) {
output[2] = valuem * (inputColor1[2]) + value * (inputColor1[2]) / inputColor2[2];
}
else {
output[2] = 0.0f;
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixDivideOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
if (p.color2[0] != 0.0f) {
p.out[0] = value_m * (p.color1[0]) + value * (p.color1[0]) / p.color2[0];
}
else {
p.out[0] = 0.0f;
}
if (p.color2[1] != 0.0f) {
p.out[1] = value_m * (p.color1[1]) + value * (p.color1[1]) / p.color2[1];
}
else {
p.out[1] = 0.0f;
}
if (p.color2[2] != 0.0f) {
p.out[2] = value_m * (p.color1[2]) + value * (p.color1[2]) / p.color2[2];
}
else {
p.out[2] = 0.0f;
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Dodge Operation ******** */
void MixDodgeOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
float tmp;
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
if (inputColor1[0] != 0.0f) {
tmp = 1.0f - value * inputColor2[0];
if (tmp <= 0.0f) {
output[0] = 1.0f;
}
else {
tmp = inputColor1[0] / tmp;
if (tmp > 1.0f) {
output[0] = 1.0f;
}
else {
output[0] = tmp;
}
}
}
else {
output[0] = 0.0f;
}
if (inputColor1[1] != 0.0f) {
tmp = 1.0f - value * inputColor2[1];
if (tmp <= 0.0f) {
output[1] = 1.0f;
}
else {
tmp = inputColor1[1] / tmp;
if (tmp > 1.0f) {
output[1] = 1.0f;
}
else {
output[1] = tmp;
}
}
}
else {
output[1] = 0.0f;
}
if (inputColor1[2] != 0.0f) {
tmp = 1.0f - value * inputColor2[2];
if (tmp <= 0.0f) {
output[2] = 1.0f;
}
else {
tmp = inputColor1[2] / tmp;
if (tmp > 1.0f) {
output[2] = 1.0f;
}
else {
output[2] = tmp;
}
}
}
else {
output[2] = 0.0f;
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixDodgeOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
float tmp;
if (p.color1[0] != 0.0f) {
tmp = 1.0f - value * p.color2[0];
if (tmp <= 0.0f) {
p.out[0] = 1.0f;
}
else {
p.out[0] = p.color1[0] / tmp;
CLAMP_MAX(p.out[0], 1.0f);
}
}
else {
p.out[0] = 0.0f;
}
if (p.color1[1] != 0.0f) {
tmp = 1.0f - value * p.color2[1];
if (tmp <= 0.0f) {
p.out[1] = 1.0f;
}
else {
p.out[1] = p.color1[1] / tmp;
CLAMP_MAX(p.out[1], 1.0f);
}
}
else {
p.out[1] = 0.0f;
}
if (p.color1[2] != 0.0f) {
tmp = 1.0f - value * p.color2[2];
if (tmp <= 0.0f) {
p.out[2] = 1.0f;
}
else {
p.out[2] = p.color1[2] / tmp;
CLAMP_MAX(p.out[2], 1.0f);
}
}
else {
p.out[2] = 0.0f;
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Glare Operation ******** */
void MixGlareOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
float value, input_weight, glare_weight;
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
value = inputValue[0];
/* Linear interpolation between 3 cases:
* value=-1:output=input value=0:output=input+glare value=1:output=glare
*/
if (value < 0.0f) {
input_weight = 1.0f;
glare_weight = 1.0f + value;
}
else {
input_weight = 1.0f - value;
glare_weight = 1.0f;
}
output[0] = input_weight * MAX2(inputColor1[0], 0.0f) + glare_weight * inputColor2[0];
output[1] = input_weight * MAX2(inputColor1[1], 0.0f) + glare_weight * inputColor2[1];
output[2] = input_weight * MAX2(inputColor1[2], 0.0f) + glare_weight * inputColor2[2];
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixGlareOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
const float value = p.value[0];
/* Linear interpolation between 3 cases:
* value=-1:output=input value=0:output=input+glare value=1:output=glare
*/
float input_weight;
float glare_weight;
if (value < 0.0f) {
input_weight = 1.0f;
glare_weight = 1.0f + value;
}
else {
input_weight = 1.0f - value;
glare_weight = 1.0f;
}
p.out[0] = input_weight * MAX2(p.color1[0], 0.0f) + glare_weight * p.color2[0];
p.out[1] = input_weight * MAX2(p.color1[1], 0.0f) + glare_weight * p.color2[1];
p.out[2] = input_weight * MAX2(p.color1[2], 0.0f) + glare_weight * p.color2[2];
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Hue Operation ******** */
void MixHueOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
float colH, colS, colV;
rgb_to_hsv(inputColor2[0], inputColor2[1], inputColor2[2], &colH, &colS, &colV);
if (colS != 0.0f) {
float rH, rS, rV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(inputColor1[0], inputColor1[1], inputColor1[2], &rH, &rS, &rV);
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
output[0] = valuem * (inputColor1[0]) + value * tmpr;
output[1] = valuem * (inputColor1[1]) + value * tmpg;
output[2] = valuem * (inputColor1[2]) + value * tmpb;
}
else {
copy_v3_v3(output, inputColor1);
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixHueOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
float colH, colS, colV;
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
if (colS != 0.0f) {
float rH, rS, rV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
p.out[0] = value_m * p.color1[0] + value * tmpr;
p.out[1] = value_m * p.color1[1] + value * tmpg;
p.out[2] = value_m * p.color1[2] + value * tmpb;
}
else {
copy_v3_v3(p.out, p.color1);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Lighten Operation ******** */
void MixLightenOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float tmp;
tmp = value * inputColor2[0];
if (tmp > inputColor1[0]) {
output[0] = tmp;
}
else {
output[0] = inputColor1[0];
}
tmp = value * inputColor2[1];
if (tmp > inputColor1[1]) {
output[1] = tmp;
}
else {
output[1] = inputColor1[1];
}
tmp = value * inputColor2[2];
if (tmp > inputColor1[2]) {
output[2] = tmp;
}
else {
output[2] = inputColor1[2];
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixLightenOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
float tmp = value * p.color2[0];
p.out[0] = MAX2(tmp, p.color1[0]);
tmp = value * p.color2[1];
p.out[1] = MAX2(tmp, p.color1[1]);
tmp = value * p.color2[2];
p.out[2] = MAX2(tmp, p.color1[2]);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Linear Light Operation ******** */
void MixLinearLightOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
if (inputColor2[0] > 0.5f) {
output[0] = inputColor1[0] + value * (2.0f * (inputColor2[0] - 0.5f));
}
else {
output[0] = inputColor1[0] + value * (2.0f * (inputColor2[0]) - 1.0f);
}
if (inputColor2[1] > 0.5f) {
output[1] = inputColor1[1] + value * (2.0f * (inputColor2[1] - 0.5f));
}
else {
output[1] = inputColor1[1] + value * (2.0f * (inputColor2[1]) - 1.0f);
}
if (inputColor2[2] > 0.5f) {
output[2] = inputColor1[2] + value * (2.0f * (inputColor2[2] - 0.5f));
}
else {
output[2] = inputColor1[2] + value * (2.0f * (inputColor2[2]) - 1.0f);
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixLinearLightOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
if (p.color2[0] > 0.5f) {
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0] - 0.5f));
}
else {
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0]) - 1.0f);
}
if (p.color2[1] > 0.5f) {
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1] - 0.5f));
}
else {
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1]) - 1.0f);
}
if (p.color2[2] > 0.5f) {
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2] - 0.5f));
}
else {
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2]) - 1.0f);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Multiply Operation ******** */
void MixMultiplyOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = inputColor1[0] * (valuem + value * inputColor2[0]);
output[1] = inputColor1[1] * (valuem + value * inputColor2[1]);
output[2] = inputColor1[2] * (valuem + value * inputColor2[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixMultiplyOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
p.out[0] = p.color1[0] * (value_m + value * p.color2[0]);
p.out[1] = p.color1[1] * (value_m + value * p.color2[1]);
p.out[2] = p.color1[2] * (value_m + value * p.color2[2]);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Overlay Operation ******** */
void MixOverlayOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
if (inputColor1[0] < 0.5f) {
output[0] = inputColor1[0] * (valuem + 2.0f * value * inputColor2[0]);
}
else {
output[0] = 1.0f - (valuem + 2.0f * value * (1.0f - inputColor2[0])) * (1.0f - inputColor1[0]);
}
if (inputColor1[1] < 0.5f) {
output[1] = inputColor1[1] * (valuem + 2.0f * value * inputColor2[1]);
}
else {
output[1] = 1.0f - (valuem + 2.0f * value * (1.0f - inputColor2[1])) * (1.0f - inputColor1[1]);
}
if (inputColor1[2] < 0.5f) {
output[2] = inputColor1[2] * (valuem + 2.0f * value * inputColor2[2]);
}
else {
output[2] = 1.0f - (valuem + 2.0f * value * (1.0f - inputColor2[2])) * (1.0f - inputColor1[2]);
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixOverlayOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
if (p.color1[0] < 0.5f) {
p.out[0] = p.color1[0] * (value_m + 2.0f * value * p.color2[0]);
}
else {
p.out[0] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
}
if (p.color1[1] < 0.5f) {
p.out[1] = p.color1[1] * (value_m + 2.0f * value * p.color2[1]);
}
else {
p.out[1] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
}
if (p.color1[2] < 0.5f) {
p.out[2] = p.color1[2] * (value_m + 2.0f * value * p.color2[2]);
}
else {
p.out[2] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Saturation Operation ******** */
void MixSaturationOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
float rH, rS, rV;
rgb_to_hsv(inputColor1[0], inputColor1[1], inputColor1[2], &rH, &rS, &rV);
if (rS != 0.0f) {
float colH, colS, colV;
rgb_to_hsv(inputColor2[0], inputColor2[1], inputColor2[2], &colH, &colS, &colV);
hsv_to_rgb(rH, (valuem * rS + value * colS), rV, &output[0], &output[1], &output[2]);
}
else {
copy_v3_v3(output, inputColor1);
}
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixSaturationOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
float rH, rS, rV;
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
if (rS != 0.0f) {
float colH, colS, colV;
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
hsv_to_rgb(rH, (value_m * rS + value * colS), rV, &p.out[0], &p.out[1], &p.out[2]);
}
else {
copy_v3_v3(p.out, p.color1);
}
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Screen Operation ******** */
void MixScreenOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
output[0] = 1.0f - (valuem + value * (1.0f - inputColor2[0])) * (1.0f - inputColor1[0]);
output[1] = 1.0f - (valuem + value * (1.0f - inputColor2[1])) * (1.0f - inputColor1[1]);
output[2] = 1.0f - (valuem + value * (1.0f - inputColor2[2])) * (1.0f - inputColor1[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixScreenOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
p.out[0] = 1.0f - (value_m + value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
p.out[1] = 1.0f - (value_m + value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
p.out[2] = 1.0f - (value_m + value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Soft Light Operation ******** */
void MixSoftLightOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
float scr, scg, scb;
/* first calculate non-fac based Screen mix */
scr = 1.0f - (1.0f - inputColor2[0]) * (1.0f - inputColor1[0]);
scg = 1.0f - (1.0f - inputColor2[1]) * (1.0f - inputColor1[1]);
scb = 1.0f - (1.0f - inputColor2[2]) * (1.0f - inputColor1[2]);
output[0] = valuem * (inputColor1[0]) +
value * (((1.0f - inputColor1[0]) * inputColor2[0] * (inputColor1[0])) +
(inputColor1[0] * scr));
output[1] = valuem * (inputColor1[1]) +
value * (((1.0f - inputColor1[1]) * inputColor2[1] * (inputColor1[1])) +
(inputColor1[1] * scg));
output[2] = valuem * (inputColor1[2]) +
value * (((1.0f - inputColor1[2]) * inputColor2[2] * (inputColor1[2])) +
(inputColor1[2] * scb));
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixSoftLightOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
const float value_m = 1.0f - value;
float scr, scg, scb;
/* First calculate non-fac based Screen mix. */
scr = 1.0f - (1.0f - p.color2[0]) * (1.0f - p.color1[0]);
scg = 1.0f - (1.0f - p.color2[1]) * (1.0f - p.color1[1]);
scb = 1.0f - (1.0f - p.color2[2]) * (1.0f - p.color1[2]);
p.out[0] = value_m * p.color1[0] +
value * ((1.0f - p.color1[0]) * p.color2[0] * p.color1[0] + p.color1[0] * scr);
p.out[1] = value_m * p.color1[1] +
value * ((1.0f - p.color1[1]) * p.color2[1] * p.color1[1] + p.color1[1] * scg);
p.out[2] = value_m * p.color1[2] +
value * ((1.0f - p.color1[2]) * p.color2[2] * p.color1[2] + p.color1[2] * scb);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Subtract Operation ******** */
void MixSubtractOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
output[0] = inputColor1[0] - value * (inputColor2[0]);
output[1] = inputColor1[1] - value * (inputColor2[1]);
output[2] = inputColor1[2] - value * (inputColor2[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixSubtractOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
p.out[0] = p.color1[0] - value * p.color2[0];
p.out[1] = p.color1[1] - value * p.color2[1];
p.out[2] = p.color1[2] - value * p.color2[2];
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
/* ******** Mix Value Operation ******** */
void MixValueOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputColor1[4];
float inputColor2[4];
float inputValue[4];
this->m_inputValueOperation->readSampled(inputValue, x, y, sampler);
this->m_inputColor1Operation->readSampled(inputColor1, x, y, sampler);
this->m_inputColor2Operation->readSampled(inputColor2, x, y, sampler);
float value = inputValue[0];
if (this->useValueAlphaMultiply()) {
value *= inputColor2[3];
}
float valuem = 1.0f - value;
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(inputColor1[0], inputColor1[1], inputColor1[2], &rH, &rS, &rV);
rgb_to_hsv(inputColor2[0], inputColor2[1], inputColor2[2], &colH, &colS, &colV);
hsv_to_rgb(rH, rS, (valuem * rV + value * colV), &output[0], &output[1], &output[2]);
output[3] = inputColor1[3];
clampIfNeeded(output);
}
void MixValueOperation::update_memory_buffer_row(PixelCursor &p)
{
while (p.out < p.row_end) {
float value = p.value[0];
if (this->useValueAlphaMultiply()) {
value *= p.color2[3];
}
float value_m = 1.0f - value;
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
hsv_to_rgb(rH, rS, (value_m * rV + value * colV), &p.out[0], &p.out[1], &p.out[2]);
p.out[3] = p.color1[3];
clampIfNeeded(p.out);
p.next();
}
}
} // namespace blender::compositor