Adds full frame implementation to "Rotate", "Transform" and "Stabilize2D" nodes. To avoid sampling twice when concatenating scale and rotate operations, a `TransformOperation` is implemented with all the functionality. The nodes have no functional changes. Part of T88150. Reviewed By: jbakker Differential Revision: https://developer.blender.org/D12165
192 lines
7.0 KiB
C++
192 lines
7.0 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2011, Blender Foundation.
|
|
*/
|
|
|
|
#include "COM_RotateOperation.h"
|
|
#include "COM_ConstantOperation.h"
|
|
|
|
#include "BLI_math.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
RotateOperation::RotateOperation()
|
|
{
|
|
this->addInputSocket(DataType::Color);
|
|
this->addInputSocket(DataType::Value);
|
|
this->addOutputSocket(DataType::Color);
|
|
this->setResolutionInputSocketIndex(0);
|
|
this->m_imageSocket = nullptr;
|
|
this->m_degreeSocket = nullptr;
|
|
this->m_doDegree2RadConversion = false;
|
|
this->m_isDegreeSet = false;
|
|
sampler_ = PixelSampler::Bilinear;
|
|
}
|
|
|
|
void RotateOperation::get_area_rotation_bounds(const rcti &area,
|
|
const float center_x,
|
|
const float center_y,
|
|
const float sine,
|
|
const float cosine,
|
|
rcti &r_bounds)
|
|
{
|
|
const float dxmin = area.xmin - center_x;
|
|
const float dymin = area.ymin - center_y;
|
|
const float dxmax = area.xmax - center_x;
|
|
const float dymax = area.ymax - center_y;
|
|
|
|
const float x1 = center_x + (cosine * dxmin + sine * dymin);
|
|
const float x2 = center_x + (cosine * dxmax + sine * dymin);
|
|
const float x3 = center_x + (cosine * dxmin + sine * dymax);
|
|
const float x4 = center_x + (cosine * dxmax + sine * dymax);
|
|
const float y1 = center_y + (-sine * dxmin + cosine * dymin);
|
|
const float y2 = center_y + (-sine * dxmax + cosine * dymin);
|
|
const float y3 = center_y + (-sine * dxmin + cosine * dymax);
|
|
const float y4 = center_y + (-sine * dxmax + cosine * dymax);
|
|
const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4)));
|
|
const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4)));
|
|
const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4)));
|
|
const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4)));
|
|
|
|
r_bounds.xmin = floor(minx);
|
|
r_bounds.xmax = ceil(maxx);
|
|
r_bounds.ymin = floor(miny);
|
|
r_bounds.ymax = ceil(maxy);
|
|
}
|
|
|
|
void RotateOperation::init_data()
|
|
{
|
|
this->m_centerX = (getWidth() - 1) / 2.0;
|
|
this->m_centerY = (getHeight() - 1) / 2.0;
|
|
}
|
|
|
|
void RotateOperation::initExecution()
|
|
{
|
|
this->m_imageSocket = this->getInputSocketReader(0);
|
|
this->m_degreeSocket = this->getInputSocketReader(1);
|
|
}
|
|
|
|
void RotateOperation::deinitExecution()
|
|
{
|
|
this->m_imageSocket = nullptr;
|
|
this->m_degreeSocket = nullptr;
|
|
}
|
|
|
|
inline void RotateOperation::ensureDegree()
|
|
{
|
|
if (!this->m_isDegreeSet) {
|
|
float degree[4];
|
|
switch (execution_model_) {
|
|
case eExecutionModel::Tiled:
|
|
this->m_degreeSocket->readSampled(degree, 0, 0, PixelSampler::Nearest);
|
|
break;
|
|
case eExecutionModel::FullFrame:
|
|
NodeOperation *degree_op = getInputOperation(DEGREE_INPUT_INDEX);
|
|
const bool is_constant_degree = degree_op->get_flags().is_constant_operation;
|
|
degree[0] = is_constant_degree ?
|
|
static_cast<ConstantOperation *>(degree_op)->get_constant_elem()[0] :
|
|
0.0f;
|
|
break;
|
|
}
|
|
|
|
double rad;
|
|
if (this->m_doDegree2RadConversion) {
|
|
rad = DEG2RAD((double)degree[0]);
|
|
}
|
|
else {
|
|
rad = degree[0];
|
|
}
|
|
this->m_cosine = cos(rad);
|
|
this->m_sine = sin(rad);
|
|
|
|
this->m_isDegreeSet = true;
|
|
}
|
|
}
|
|
|
|
void RotateOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
|
|
{
|
|
ensureDegree();
|
|
const float dy = y - this->m_centerY;
|
|
const float dx = x - this->m_centerX;
|
|
const float nx = this->m_centerX + (this->m_cosine * dx + this->m_sine * dy);
|
|
const float ny = this->m_centerY + (-this->m_sine * dx + this->m_cosine * dy);
|
|
this->m_imageSocket->readSampled(output, nx, ny, sampler);
|
|
}
|
|
|
|
bool RotateOperation::determineDependingAreaOfInterest(rcti *input,
|
|
ReadBufferOperation *readOperation,
|
|
rcti *output)
|
|
{
|
|
ensureDegree();
|
|
rcti newInput;
|
|
|
|
const float dxmin = input->xmin - this->m_centerX;
|
|
const float dymin = input->ymin - this->m_centerY;
|
|
const float dxmax = input->xmax - this->m_centerX;
|
|
const float dymax = input->ymax - this->m_centerY;
|
|
|
|
const float x1 = this->m_centerX + (this->m_cosine * dxmin + this->m_sine * dymin);
|
|
const float x2 = this->m_centerX + (this->m_cosine * dxmax + this->m_sine * dymin);
|
|
const float x3 = this->m_centerX + (this->m_cosine * dxmin + this->m_sine * dymax);
|
|
const float x4 = this->m_centerX + (this->m_cosine * dxmax + this->m_sine * dymax);
|
|
const float y1 = this->m_centerY + (-this->m_sine * dxmin + this->m_cosine * dymin);
|
|
const float y2 = this->m_centerY + (-this->m_sine * dxmax + this->m_cosine * dymin);
|
|
const float y3 = this->m_centerY + (-this->m_sine * dxmin + this->m_cosine * dymax);
|
|
const float y4 = this->m_centerY + (-this->m_sine * dxmax + this->m_cosine * dymax);
|
|
const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4)));
|
|
const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4)));
|
|
const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4)));
|
|
const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4)));
|
|
|
|
newInput.xmax = ceil(maxx) + 1;
|
|
newInput.xmin = floor(minx) - 1;
|
|
newInput.ymax = ceil(maxy) + 1;
|
|
newInput.ymin = floor(miny) - 1;
|
|
|
|
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
|
|
}
|
|
|
|
void RotateOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
if (input_idx == DEGREE_INPUT_INDEX) {
|
|
/* Degrees input is always used as constant. */
|
|
r_input_area = COM_SINGLE_ELEM_AREA;
|
|
return;
|
|
}
|
|
|
|
ensureDegree();
|
|
get_area_rotation_bounds(output_area, m_centerX, m_centerY, m_sine, m_cosine, r_input_area);
|
|
expand_area_for_sampler(r_input_area, sampler_);
|
|
}
|
|
|
|
void RotateOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
ensureDegree();
|
|
const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX];
|
|
for (BuffersIterator<float> it = output->iterate_with({}, area); !it.is_end(); ++it) {
|
|
float x = it.x;
|
|
float y = it.y;
|
|
rotate_coords(x, y, m_centerX, m_centerY, m_sine, m_cosine);
|
|
input_img->read_elem_sampled(x, y, sampler_, it.out);
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|