This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/lamps_lib.glsl
Clément Foucault 49ba9d02d8 Eevee: Fix shadow bleeding after farclip for cubemaps.
NOTE: We should not check for radial distance. But this is faster.
2017-09-11 01:13:55 +02:00

268 lines
7.1 KiB
GLSL

uniform sampler2DArray shadowTexture;
layout(std140) uniform shadow_block {
ShadowData shadows_data[MAX_SHADOW];
ShadowCubeData shadows_cube_data[MAX_SHADOW_CUBE];
ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};
layout(std140) uniform light_block {
LightData lights_data[MAX_LIGHT];
};
/* type */
#define POINT 0.0
#define SUN 1.0
#define SPOT 2.0
#define HEMI 3.0
#define AREA 4.0
/* ----------------------------------------------------------- */
/* ----------------------- Shadow tests ---------------------- */
/* ----------------------------------------------------------- */
float shadow_test_esm(float z, float dist, float exponent)
{
return saturate(exp(exponent * (z - dist)));
}
float shadow_test_pcf(float z, float dist)
{
return step(0, z - dist);
}
float shadow_test_vsm(vec2 moments, float dist, float bias, float bleed_bias)
{
float p = 0.0;
if (dist <= moments.x)
p = 1.0;
float variance = moments.y - (moments.x * moments.x);
variance = max(variance, bias / 10.0);
float d = moments.x - dist;
float p_max = variance / (variance + d * d);
/* Now reduce light-bleeding by removing the [0, x] tail and linearly rescaling (x, 1] */
p_max = clamp((p_max - bleed_bias) / (1.0 - bleed_bias), 0.0, 1.0);
return max(p, p_max);
}
/* ----------------------------------------------------------- */
/* ----------------------- Shadow types ---------------------- */
/* ----------------------------------------------------------- */
float shadow_cubemap(ShadowData sd, ShadowCubeData scd, float texid, vec3 W)
{
vec3 cubevec = W - scd.position.xyz;
float dist = length(cubevec);
/* If fragment is out of shadowmap range, do not occlude */
/* XXX : we check radial distance against a cubeface distance.
* We loose quite a bit of valid area. */
if (dist > sd.sh_far)
return 1.0;
cubevec /= dist;
#if defined(SHADOW_VSM)
vec2 moments = texture_octahedron(shadowTexture, vec4(cubevec, texid)).rg;
#else
float z = texture_octahedron(shadowTexture, vec4(cubevec, texid)).r;
#endif
#if defined(SHADOW_VSM)
return shadow_test_vsm(moments, dist, sd.sh_bias, sd.sh_bleed);
#elif defined(SHADOW_ESM)
return shadow_test_esm(z, dist - sd.sh_bias, sd.sh_exp);
#else
return shadow_test_pcf(z, dist - sd.sh_bias);
#endif
}
float evaluate_cascade(ShadowData sd, mat4 shadowmat, vec3 W, float range, float texid)
{
vec4 shpos = shadowmat * vec4(W, 1.0);
float dist = shpos.z * range;
/* If fragment is out of shadowmap range, do not occlude */
if (shpos.z > 1.0 || shpos.z < 0.0)
return 1.0;
#if defined(SHADOW_VSM)
vec2 moments = texture(shadowTexture, vec3(shpos.xy, texid)).rg;
#else
float z = texture(shadowTexture, vec3(shpos.xy, texid)).r;
#endif
#if defined(SHADOW_VSM)
return shadow_test_vsm(moments, dist, sd.sh_bias, sd.sh_bleed);
#elif defined(SHADOW_ESM)
return shadow_test_esm(z, dist - sd.sh_bias, sd.sh_exp);
#else
return shadow_test_pcf(z, dist - sd.sh_bias);
#endif
}
float shadow_cascade(ShadowData sd, ShadowCascadeData scd, float texid, vec3 W)
{
vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
vec4 weights = smoothstep(scd.split_end_distances, scd.split_start_distances.yzwx, view_z);
weights.yzw -= weights.xyz;
vec4 vis = vec4(1.0);
float range = abs(sd.sh_far - sd.sh_near); /* Same factor as in get_cascade_world_distance(). */
if (weights.x > 0.0) {
vis.x = evaluate_cascade(sd, scd.shadowmat[0], W, range, texid + 0);
}
if (weights.y > 0.0) {
vis.y = evaluate_cascade(sd, scd.shadowmat[1], W, range, texid + 1);
}
if (weights.z > 0.0) {
vis.z = evaluate_cascade(sd, scd.shadowmat[2], W, range, texid + 2);
}
if (weights.w > 0.0) {
vis.w = evaluate_cascade(sd, scd.shadowmat[3], W, range, texid + 3);
}
float weight_sum = dot(vec4(1.0), weights);
if (weight_sum > 0.9999) {
float vis_sum = dot(vec4(1.0), vis * weights);
return vis_sum / weight_sum;
}
else {
float vis_sum = dot(vec4(1.0), vis * step(0.001, weights));
return mix(1.0, vis_sum, weight_sum);
}
}
/* ----------------------------------------------------------- */
/* --------------------- Light Functions --------------------- */
/* ----------------------------------------------------------- */
#define MAX_MULTI_SHADOW 4
float light_visibility(LightData ld, vec3 W, vec4 l_vector)
{
float vis = 1.0;
if (ld.l_type == SPOT) {
float z = dot(ld.l_forward, l_vector.xyz);
vec3 lL = l_vector.xyz / z;
float x = dot(ld.l_right, lL) / ld.l_sizex;
float y = dot(ld.l_up, lL) / ld.l_sizey;
float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);
float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
vis *= spotmask;
vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
}
else if (ld.l_type == AREA) {
vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
}
#if !defined(VOLUMETRICS) || defined(VOLUME_SHADOW)
/* shadowing */
if (ld.l_shadowid >= 0.0) {
ShadowData data = shadows_data[int(ld.l_shadowid)];
if (ld.l_type == SUN) {
/* TODO : MSM */
// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
vis *= shadow_cascade(
data, shadows_cascade_data[int(data.sh_data_start)],
data.sh_tex_start, W);
// }
}
else {
/* TODO : MSM */
// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
vis *= shadow_cubemap(
data, shadows_cube_data[int(data.sh_data_start)],
data.sh_tex_start, W);
// }
}
}
#endif
return vis;
}
float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
#ifdef USE_LTC
if (ld.l_type == SUN) {
/* TODO disk area light */
return direct_diffuse_sun(ld, N);
}
else if (ld.l_type == AREA) {
return direct_diffuse_rectangle(ld, N, V, l_vector);
}
else {
return direct_diffuse_sphere(ld, N, l_vector);
}
#else
if (ld.l_type == SUN) {
return direct_diffuse_sun(ld, N, V);
}
else {
return direct_diffuse_point(N, l_vector);
}
#endif
}
vec3 light_specular(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
#ifdef USE_LTC
if (ld.l_type == SUN) {
/* TODO disk area light */
return direct_ggx_sun(ld, N, V, roughness, f0);
}
else if (ld.l_type == AREA) {
return direct_ggx_rectangle(ld, N, V, l_vector, roughness, f0);
}
else {
return direct_ggx_sphere(ld, N, V, l_vector, roughness, f0);
}
#else
if (ld.l_type == SUN) {
return direct_ggx_sun(ld, N, V, roughness, f0);
}
else {
return direct_ggx_point(N, V, l_vector, roughness, f0);
}
#endif
}
#ifdef HAIR_SHADER
void light_hair_common(
LightData ld, vec3 N, vec3 V, vec4 l_vector, vec3 norm_view,
out float occlu_trans, out float occlu,
out vec3 norm_lamp, out vec3 view_vec)
{
const float transmission = 0.3; /* Uniform internal scattering factor */
vec3 lamp_vec;
if (ld.l_type == SUN || ld.l_type == AREA) {
lamp_vec = ld.l_forward;
}
else {
lamp_vec = -l_vector.xyz;
}
norm_lamp = cross(lamp_vec, N);
norm_lamp = normalize(cross(N, norm_lamp)); /* Normal facing lamp */
/* Rotate view vector onto the cross(tangent, light) plane */
view_vec = normalize(norm_lamp * dot(norm_view, V) + N * dot(N, V));
occlu = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
occlu_trans = transmission + (occlu * (1.0 - transmission)); /* Includes transmission component */
}
#endif