This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_GaussianAlphaXBlurOperation.cc

197 lines
5.8 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_GaussianAlphaXBlurOperation.h"
#include "BLI_math.h"
#include "MEM_guardedalloc.h"
#include "RE_pipeline.h"
namespace blender::compositor {
GaussianAlphaXBlurOperation::GaussianAlphaXBlurOperation() : BlurBaseOperation(DataType::Value)
{
this->m_gausstab = nullptr;
this->m_filtersize = 0;
this->m_falloff = -1; /* intentionally invalid, so we can detect uninitialized values */
}
void *GaussianAlphaXBlurOperation::initializeTileData(rcti * /*rect*/)
{
lockMutex();
if (!this->m_sizeavailable) {
updateGauss();
}
void *buffer = getInputOperation(0)->initializeTileData(nullptr);
unlockMutex();
return buffer;
}
void GaussianAlphaXBlurOperation::initExecution()
{
/* Until we support size input - comment this. */
// BlurBaseOperation::initExecution();
initMutex();
if (this->m_sizeavailable) {
float rad = max_ff(m_size * m_data.sizex, 0.0f);
m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize);
m_distbuf_inv = BlurBaseOperation::make_dist_fac_inverse(rad, m_filtersize, m_falloff);
}
}
void GaussianAlphaXBlurOperation::updateGauss()
{
if (this->m_gausstab == nullptr) {
updateSize();
float rad = max_ff(m_size * m_data.sizex, 0.0f);
m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize);
}
if (this->m_distbuf_inv == nullptr) {
updateSize();
float rad = max_ff(m_size * m_data.sizex, 0.0f);
rad = min_ff(rad, MAX_GAUSSTAB_RADIUS);
m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
m_distbuf_inv = BlurBaseOperation::make_dist_fac_inverse(rad, m_filtersize, m_falloff);
}
}
BLI_INLINE float finv_test(const float f, const bool test)
{
return (LIKELY(test == false)) ? f : 1.0f - f;
}
void GaussianAlphaXBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
const bool do_invert = this->m_do_subtract;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
const rcti &input_rect = inputBuffer->get_rect();
int bufferstartx = input_rect.xmin;
int bufferstarty = input_rect.ymin;
const rcti &rect = inputBuffer->get_rect();
int xmin = max_ii(x - m_filtersize, rect.xmin);
int xmax = min_ii(x + m_filtersize + 1, rect.xmax);
int ymin = max_ii(y, rect.ymin);
/* *** this is the main part which is different to 'GaussianXBlurOperation' *** */
int step = getStep();
int bufferindex = ((xmin - bufferstartx)) + ((ymin - bufferstarty) * bufferwidth);
/* gauss */
float alpha_accum = 0.0f;
float multiplier_accum = 0.0f;
/* dilate */
float value_max = finv_test(
buffer[(x) + (y * bufferwidth)],
do_invert); /* init with the current color to avoid unneeded lookups */
float distfacinv_max = 1.0f; /* 0 to 1 */
for (int nx = xmin; nx < xmax; nx += step) {
const int index = (nx - x) + this->m_filtersize;
float value = finv_test(buffer[bufferindex], do_invert);
float multiplier;
/* gauss */
{
multiplier = this->m_gausstab[index];
alpha_accum += value * multiplier;
multiplier_accum += multiplier;
}
/* dilate - find most extreme color */
if (value > value_max) {
multiplier = this->m_distbuf_inv[index];
value *= multiplier;
if (value > value_max) {
value_max = value;
distfacinv_max = multiplier;
}
}
bufferindex += step;
}
/* blend between the max value and gauss blue - gives nice feather */
const float value_blur = alpha_accum / multiplier_accum;
const float value_final = (value_max * distfacinv_max) + (value_blur * (1.0f - distfacinv_max));
output[0] = finv_test(value_final, do_invert);
}
void GaussianAlphaXBlurOperation::deinitExecution()
{
BlurBaseOperation::deinitExecution();
if (this->m_gausstab) {
MEM_freeN(this->m_gausstab);
this->m_gausstab = nullptr;
}
if (this->m_distbuf_inv) {
MEM_freeN(this->m_distbuf_inv);
this->m_distbuf_inv = nullptr;
}
deinitMutex();
}
bool GaussianAlphaXBlurOperation::determineDependingAreaOfInterest(
rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
#if 0 /* until we add size input */
rcti sizeInput;
sizeInput.xmin = 0;
sizeInput.ymin = 0;
sizeInput.xmax = 5;
sizeInput.ymax = 5;
NodeOperation *operation = this->getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&sizeInput, readOperation, output)) {
return true;
}
else
#endif
{
if (this->m_sizeavailable && this->m_gausstab != nullptr) {
newInput.xmax = input->xmax + this->m_filtersize + 1;
newInput.xmin = input->xmin - this->m_filtersize - 1;
newInput.ymax = input->ymax;
newInput.ymin = input->ymin;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
}
} // namespace blender::compositor