This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_OpenCLKernels.cl
2021-03-05 16:56:14 +01:00

316 lines
11 KiB
Common Lisp

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
/// This file contains all opencl kernels for node-operation implementations
// Global SAMPLERS
const sampler_t SAMPLER_NEAREST = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
const sampler_t SAMPLER_NEAREST_CLAMP = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
__constant const int2 zero = {0,0};
// KERNEL --- BOKEH BLUR ---
__kernel void bokehBlurKernel(__read_only image2d_t boundingBox, __read_only image2d_t inputImage,
__read_only image2d_t bokehImage, __write_only image2d_t output,
int2 offsetInput, int2 offsetOutput, int radius, int step, int2 dimension, int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
float tempBoundingBox;
float4 color = {0.0f,0.0f,0.0f,0.0f};
float4 multiplyer = {0.0f,0.0f,0.0f,0.0f};
float4 bokeh;
const float radius2 = radius*2.0f;
const int2 realCoordinate = coords + offsetOutput;
int2 imageCoordinates = realCoordinate - offsetInput;
tempBoundingBox = read_imagef(boundingBox, SAMPLER_NEAREST, coords).s0;
if (tempBoundingBox > 0.0f && radius > 0 ) {
const int2 bokehImageDim = get_image_dim(bokehImage);
const int2 bokehImageCenter = bokehImageDim/2;
const int2 minXY = max(realCoordinate - radius, zero);
const int2 maxXY = min(realCoordinate + radius, dimension);
int nx, ny;
float2 uv;
int2 inputXy;
if (radius < 2) {
color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);
multiplyer = (float4)(1.0f, 1.0f, 1.0f, 1.0f);
}
for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny += step, inputXy.y += step) {
uv.y = ((realCoordinate.y-ny)/radius2)*bokehImageDim.y+bokehImageCenter.y;
for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx += step, inputXy.x += step) {
uv.x = ((realCoordinate.x-nx)/radius2)*bokehImageDim.x+bokehImageCenter.x;
bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
color += bokeh * read_imagef(inputImage, SAMPLER_NEAREST, inputXy);
multiplyer += bokeh;
}
}
color /= multiplyer;
}
else {
color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);
}
write_imagef(output, coords, color);
}
//KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR ---
__kernel void defocusKernel(__read_only image2d_t inputImage, __read_only image2d_t bokehImage,
__read_only image2d_t inputSize,
__write_only image2d_t output, int2 offsetInput, int2 offsetOutput,
int step, int maxBlurScalar, float threshold, float scalar, int2 dimension, int2 offset)
{
float4 color = {1.0f, 0.0f, 0.0f, 1.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
float4 readColor;
float4 tempColor;
float4 bokeh;
float size;
float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f};
float4 color_accum;
int minx = max(realCoordinate.s0 - maxBlurScalar, 0);
int miny = max(realCoordinate.s1 - maxBlurScalar, 0);
int maxx = min(realCoordinate.s0 + maxBlurScalar, dimension.s0);
int maxy = min(realCoordinate.s1 + maxBlurScalar, dimension.s1);
{
int2 inputCoordinate = realCoordinate - offsetInput;
float size_center = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar;
color_accum = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);
readColor = color_accum;
if (size_center > threshold) {
for (int ny = miny; ny < maxy; ny += step) {
inputCoordinate.s1 = ny - offsetInput.s1;
float dy = ny - realCoordinate.s1;
for (int nx = minx; nx < maxx; nx += step) {
float dx = nx - realCoordinate.s0;
if (dx != 0 || dy != 0) {
inputCoordinate.s0 = nx - offsetInput.s0;
size = min(read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar, size_center);
if (size > threshold) {
if (size >= fabs(dx) && size >= fabs(dy)) {
float2 uv = {256.0f + dx * 255.0f / size,
256.0f + dy * 255.0f / size};
bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
tempColor = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);
color_accum += bokeh * tempColor;
multiplier_accum += bokeh;
}
}
}
}
}
}
color = color_accum * (1.0f / multiplier_accum);
/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
if ((size_center > threshold) &&
(size_center < threshold * 2.0f))
{
/* factor from 0-1 */
float fac = (size_center - threshold) / threshold;
color = (readColor * (1.0f - fac)) + (color * fac);
}
write_imagef(output, coords, color);
}
}
// KERNEL --- DILATE ---
__kernel void dilateKernel(__read_only image2d_t inputImage, __write_only image2d_t output,
int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension,
int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
const int2 minXY = max(realCoordinate - scope, zero);
const int2 maxXY = min(realCoordinate + scope, dimension);
float value = 0.0f;
int nx, ny;
int2 inputXy;
for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
const float deltaY = (realCoordinate.y - ny);
for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
const float deltaX = (realCoordinate.x - nx);
const float measuredDistance = deltaX * deltaX + deltaY * deltaY;
if (measuredDistance <= distanceSquared) {
value = max(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
}
}
}
float4 color = {value,0.0f,0.0f,0.0f};
write_imagef(output, coords, color);
}
// KERNEL --- DILATE ---
__kernel void erodeKernel(__read_only image2d_t inputImage, __write_only image2d_t output,
int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension,
int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
const int2 minXY = max(realCoordinate - scope, zero);
const int2 maxXY = min(realCoordinate + scope, dimension);
float value = 1.0f;
int nx, ny;
int2 inputXy;
for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
const float deltaX = (realCoordinate.x - nx);
const float deltaY = (realCoordinate.y - ny);
const float measuredDistance = deltaX * deltaX+deltaY * deltaY;
if (measuredDistance <= distanceSquared) {
value = min(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
}
}
}
float4 color = {value,0.0f,0.0f,0.0f};
write_imagef(output, coords, color);
}
// KERNEL --- DIRECTIONAL BLUR ---
__kernel void directionalBlurKernel(__read_only image2d_t inputImage, __write_only image2d_t output,
int2 offsetOutput, int iterations, float scale, float rotation, float2 translate,
float2 center, int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
float4 col;
float2 ltxy = translate;
float lsc = scale;
float lrot = rotation;
col = read_imagef(inputImage, SAMPLER_NEAREST, realCoordinate);
/* blur the image */
for (int i = 0; i < iterations; ++i) {
const float cs = cos(lrot), ss = sin(lrot);
const float isc = 1.0f / (1.0f + lsc);
const float v = isc * (realCoordinate.s1 - center.s1) + ltxy.s1;
const float u = isc * (realCoordinate.s0 - center.s0) + ltxy.s0;
float2 uv = {
cs * u + ss * v + center.s0,
cs * v - ss * u + center.s1
};
col += read_imagef(inputImage, SAMPLER_NEAREST_CLAMP, uv);
/* double transformations */
ltxy += translate;
lrot += rotation;
lsc += scale;
}
col *= (1.0f/(iterations+1));
write_imagef(output, coords, col);
}
// KERNEL --- GAUSSIAN BLUR ---
__kernel void gaussianXBlurOperationKernel(__read_only image2d_t inputImage,
int2 offsetInput,
__write_only image2d_t output,
int2 offsetOutput,
int filter_size,
int2 dimension,
__global float *gausstab,
int2 offset)
{
float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
int2 inputCoordinate = realCoordinate - offsetInput;
float weight = 0.0f;
int xmin = max(realCoordinate.x - filter_size, 0) - offsetInput.x;
int xmax = min(realCoordinate.x + filter_size + 1, dimension.x) - offsetInput.x;
for (int nx = xmin, i = max(filter_size - realCoordinate.x, 0); nx < xmax; ++nx, ++i) {
float w = gausstab[i];
inputCoordinate.x = nx;
color += read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate) * w;
weight += w;
}
color *= (1.0f / weight);
write_imagef(output, coords, color);
}
__kernel void gaussianYBlurOperationKernel(__read_only image2d_t inputImage,
int2 offsetInput,
__write_only image2d_t output,
int2 offsetOutput,
int filter_size,
int2 dimension,
__global float *gausstab,
int2 offset)
{
float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 realCoordinate = coords + offsetOutput;
int2 inputCoordinate = realCoordinate - offsetInput;
float weight = 0.0f;
int ymin = max(realCoordinate.y - filter_size, 0) - offsetInput.y;
int ymax = min(realCoordinate.y + filter_size + 1, dimension.y) - offsetInput.y;
for (int ny = ymin, i = max(filter_size - realCoordinate.y, 0); ny < ymax; ++ny, ++i) {
float w = gausstab[i];
inputCoordinate.y = ny;
color += read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate) * w;
weight += w;
}
color *= (1.0f / weight);
write_imagef(output, coords, color);
}