This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_ScreenLensDistortionOperation.cc

358 lines
11 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_ScreenLensDistortionOperation.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_utildefines.h"
#include "PIL_time.h"
namespace blender::compositor {
ScreenLensDistortionOperation::ScreenLensDistortionOperation()
{
this->addInputSocket(DataType::Color);
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Color);
this->flags.complex = true;
this->m_inputProgram = nullptr;
this->m_distortion = 0.0f;
this->m_dispersion = 0.0f;
this->m_distortion_const = false;
this->m_dispersion_const = false;
this->m_variables_ready = false;
}
void ScreenLensDistortionOperation::setDistortion(float distortion)
{
m_distortion = distortion;
m_distortion_const = true;
}
void ScreenLensDistortionOperation::setDispersion(float dispersion)
{
m_dispersion = dispersion;
m_dispersion_const = true;
}
void ScreenLensDistortionOperation::initExecution()
{
this->m_inputProgram = this->getInputSocketReader(0);
this->initMutex();
uint rng_seed = (uint)(PIL_check_seconds_timer_i() & UINT_MAX);
rng_seed ^= (uint)POINTER_AS_INT(m_inputProgram);
this->m_rng = BLI_rng_new(rng_seed);
this->m_cx = 0.5f * (float)getWidth();
this->m_cy = 0.5f * (float)getHeight();
/* if both are constant, init variables once */
if (m_distortion_const && m_dispersion_const) {
updateVariables(m_distortion, m_dispersion);
m_variables_ready = true;
}
}
void *ScreenLensDistortionOperation::initializeTileData(rcti * /*rect*/)
{
void *buffer = this->m_inputProgram->initializeTileData(nullptr);
/* get distortion/dispersion values once, by reading inputs at (0,0)
* XXX this assumes invariable values (no image inputs),
* we don't have a nice generic system for that yet
*/
if (!m_variables_ready) {
this->lockMutex();
if (!m_distortion_const) {
float result[4];
getInputSocketReader(1)->readSampled(result, 0, 0, PixelSampler::Nearest);
m_distortion = result[0];
}
if (!m_dispersion_const) {
float result[4];
getInputSocketReader(2)->readSampled(result, 0, 0, PixelSampler::Nearest);
m_dispersion = result[0];
}
updateVariables(m_distortion, m_dispersion);
m_variables_ready = true;
this->unlockMutex();
}
return buffer;
}
void ScreenLensDistortionOperation::get_uv(const float xy[2], float uv[2]) const
{
uv[0] = m_sc * ((xy[0] + 0.5f) - m_cx) / m_cx;
uv[1] = m_sc * ((xy[1] + 0.5f) - m_cy) / m_cy;
}
void ScreenLensDistortionOperation::distort_uv(const float uv[2], float t, float xy[2]) const
{
float d = 1.0f / (1.0f + sqrtf(t));
xy[0] = (uv[0] * d + 0.5f) * getWidth() - 0.5f;
xy[1] = (uv[1] * d + 0.5f) * getHeight() - 0.5f;
}
bool ScreenLensDistortionOperation::get_delta(float r_sq,
float k4,
const float uv[2],
float delta[2]) const
{
float t = 1.0f - k4 * r_sq;
if (t >= 0.0f) {
distort_uv(uv, t, delta);
return true;
}
return false;
}
void ScreenLensDistortionOperation::accumulate(MemoryBuffer *buffer,
int a,
int b,
float r_sq,
const float uv[2],
const float delta[3][2],
float sum[4],
int count[3]) const
{
float color[4];
float dsf = len_v2v2(delta[a], delta[b]) + 1.0f;
int ds = m_jitter ? (dsf < 4.0f ? 2 : (int)sqrtf(dsf)) : (int)dsf;
float sd = 1.0f / (float)ds;
float k4 = m_k4[a];
float dk4 = m_dk4[a];
for (float z = 0; z < ds; z++) {
float tz = (z + (m_jitter ? BLI_rng_get_float(m_rng) : 0.5f)) * sd;
float t = 1.0f - (k4 + tz * dk4) * r_sq;
float xy[2];
distort_uv(uv, t, xy);
buffer->readBilinear(color, xy[0], xy[1]);
sum[a] += (1.0f - tz) * color[a];
sum[b] += (tz)*color[b];
count[a]++;
count[b]++;
}
}
void ScreenLensDistortionOperation::executePixel(float output[4], int x, int y, void *data)
{
MemoryBuffer *buffer = (MemoryBuffer *)data;
float xy[2] = {(float)x, (float)y};
float uv[2];
get_uv(xy, uv);
float uv_dot = len_squared_v2(uv);
int count[3] = {0, 0, 0};
float delta[3][2];
float sum[4] = {0, 0, 0, 0};
bool valid_r = get_delta(uv_dot, m_k4[0], uv, delta[0]);
bool valid_g = get_delta(uv_dot, m_k4[1], uv, delta[1]);
bool valid_b = get_delta(uv_dot, m_k4[2], uv, delta[2]);
if (valid_r && valid_g && valid_b) {
accumulate(buffer, 0, 1, uv_dot, uv, delta, sum, count);
accumulate(buffer, 1, 2, uv_dot, uv, delta, sum, count);
if (count[0]) {
output[0] = 2.0f * sum[0] / (float)count[0];
}
if (count[1]) {
output[1] = 2.0f * sum[1] / (float)count[1];
}
if (count[2]) {
output[2] = 2.0f * sum[2] / (float)count[2];
}
/* set alpha */
output[3] = 1.0f;
}
else {
zero_v4(output);
}
}
void ScreenLensDistortionOperation::deinitExecution()
{
this->deinitMutex();
this->m_inputProgram = nullptr;
BLI_rng_free(this->m_rng);
}
void ScreenLensDistortionOperation::determineUV(float result[6], float x, float y) const
{
const float xy[2] = {x, y};
float uv[2];
get_uv(xy, uv);
float uv_dot = len_squared_v2(uv);
copy_v2_v2(result + 0, xy);
copy_v2_v2(result + 2, xy);
copy_v2_v2(result + 4, xy);
get_delta(uv_dot, m_k4[0], uv, result + 0);
get_delta(uv_dot, m_k4[1], uv, result + 2);
get_delta(uv_dot, m_k4[2], uv, result + 4);
}
bool ScreenLensDistortionOperation::determineDependingAreaOfInterest(
rcti * /*input*/, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInputValue;
newInputValue.xmin = 0;
newInputValue.ymin = 0;
newInputValue.xmax = 2;
newInputValue.ymax = 2;
NodeOperation *operation = getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&newInputValue, readOperation, output)) {
return true;
}
operation = getInputOperation(2);
if (operation->determineDependingAreaOfInterest(&newInputValue, readOperation, output)) {
return true;
}
/* XXX the original method of estimating the area-of-interest does not work
* it assumes a linear increase/decrease of mapped coordinates, which does not
* yield correct results for the area and leaves uninitialized buffer areas.
* So now just use the full image area, which may not be as efficient but works at least ...
*/
#if 1
rcti imageInput;
operation = getInputOperation(0);
imageInput.xmax = operation->getWidth();
imageInput.xmin = 0;
imageInput.ymax = operation->getHeight();
imageInput.ymin = 0;
if (operation->determineDependingAreaOfInterest(&imageInput, readOperation, output)) {
return true;
}
return false;
#else
rcti newInput;
const float margin = 2;
BLI_rcti_init_minmax(&newInput);
if (m_dispersion_const && m_distortion_const) {
/* update from fixed distortion/dispersion */
# define UPDATE_INPUT(x, y) \
{ \
float coords[6]; \
determineUV(coords, x, y); \
newInput.xmin = min_ffff(newInput.xmin, coords[0], coords[2], coords[4]); \
newInput.ymin = min_ffff(newInput.ymin, coords[1], coords[3], coords[5]); \
newInput.xmax = max_ffff(newInput.xmax, coords[0], coords[2], coords[4]); \
newInput.ymax = max_ffff(newInput.ymax, coords[1], coords[3], coords[5]); \
} \
(void)0
UPDATE_INPUT(input->xmin, input->xmax);
UPDATE_INPUT(input->xmin, input->ymax);
UPDATE_INPUT(input->xmax, input->ymax);
UPDATE_INPUT(input->xmax, input->ymin);
# undef UPDATE_INPUT
}
else {
/* use maximum dispersion 1.0 if not const */
float dispersion = m_dispersion_const ? m_dispersion : 1.0f;
# define UPDATE_INPUT(x, y, distortion) \
{ \
float coords[6]; \
updateVariables(distortion, dispersion); \
determineUV(coords, x, y); \
newInput.xmin = min_ffff(newInput.xmin, coords[0], coords[2], coords[4]); \
newInput.ymin = min_ffff(newInput.ymin, coords[1], coords[3], coords[5]); \
newInput.xmax = max_ffff(newInput.xmax, coords[0], coords[2], coords[4]); \
newInput.ymax = max_ffff(newInput.ymax, coords[1], coords[3], coords[5]); \
} \
(void)0
if (m_distortion_const) {
/* update from fixed distortion */
UPDATE_INPUT(input->xmin, input->xmax, m_distortion);
UPDATE_INPUT(input->xmin, input->ymax, m_distortion);
UPDATE_INPUT(input->xmax, input->ymax, m_distortion);
UPDATE_INPUT(input->xmax, input->ymin, m_distortion);
}
else {
/* update from min/max distortion (-1..1) */
UPDATE_INPUT(input->xmin, input->xmax, -1.0f);
UPDATE_INPUT(input->xmin, input->ymax, -1.0f);
UPDATE_INPUT(input->xmax, input->ymax, -1.0f);
UPDATE_INPUT(input->xmax, input->ymin, -1.0f);
UPDATE_INPUT(input->xmin, input->xmax, 1.0f);
UPDATE_INPUT(input->xmin, input->ymax, 1.0f);
UPDATE_INPUT(input->xmax, input->ymax, 1.0f);
UPDATE_INPUT(input->xmax, input->ymin, 1.0f);
# undef UPDATE_INPUT
}
}
newInput.xmin -= margin;
newInput.ymin -= margin;
newInput.xmax += margin;
newInput.ymax += margin;
operation = getInputOperation(0);
if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output)) {
return true;
}
return false;
#endif
}
void ScreenLensDistortionOperation::updateVariables(float distortion, float dispersion)
{
m_k[1] = max_ff(min_ff(distortion, 1.0f), -0.999f);
// smaller dispersion range for somewhat more control
float d = 0.25f * max_ff(min_ff(dispersion, 1.0f), 0.0f);
m_k[0] = max_ff(min_ff((m_k[1] + d), 1.0f), -0.999f);
m_k[2] = max_ff(min_ff((m_k[1] - d), 1.0f), -0.999f);
m_maxk = max_fff(m_k[0], m_k[1], m_k[2]);
m_sc = (m_fit && (m_maxk > 0.0f)) ? (1.0f / (1.0f + 2.0f * m_maxk)) : (1.0f / (1.0f + m_maxk));
m_dk4[0] = 4.0f * (m_k[1] - m_k[0]);
m_dk4[1] = 4.0f * (m_k[2] - m_k[1]);
m_dk4[2] = 0.0f; /* unused */
mul_v3_v3fl(m_k4, m_k, 4.0f);
}
} // namespace blender::compositor