This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_VariableSizeBokehBlurOperation.cc
Jeroen Bakker e9616c82bd Cleanup: use constexpr for num channels.
Don't assume all compilers are smart. MSVC doesn't inline the call away like CLANG and GCC did.
2021-03-31 11:00:07 +02:00

388 lines
14 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_VariableSizeBokehBlurOperation.h"
#include "BLI_math.h"
#include "COM_OpenCLDevice.h"
#include "RE_pipeline.h"
namespace blender::compositor {
VariableSizeBokehBlurOperation::VariableSizeBokehBlurOperation()
{
this->addInputSocket(DataType::Color);
this->addInputSocket(DataType::Color, ResizeMode::None); // do not resize the bokeh image.
this->addInputSocket(DataType::Value); // radius
#ifdef COM_DEFOCUS_SEARCH
this->addInputSocket(DataType::Color,
ResizeMode::None); // inverse search radius optimization structure.
#endif
this->addOutputSocket(DataType::Color);
flags.complex = true;
flags.open_cl = true;
this->m_inputProgram = nullptr;
this->m_inputBokehProgram = nullptr;
this->m_inputSizeProgram = nullptr;
this->m_maxBlur = 32.0f;
this->m_threshold = 1.0f;
this->m_do_size_scale = false;
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = nullptr;
#endif
}
void VariableSizeBokehBlurOperation::initExecution()
{
this->m_inputProgram = getInputSocketReader(0);
this->m_inputBokehProgram = getInputSocketReader(1);
this->m_inputSizeProgram = getInputSocketReader(2);
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = getInputSocketReader(3);
#endif
QualityStepHelper::initExecution(COM_QH_INCREASE);
}
struct VariableSizeBokehBlurTileData {
MemoryBuffer *color;
MemoryBuffer *bokeh;
MemoryBuffer *size;
int maxBlurScalar;
};
void *VariableSizeBokehBlurOperation::initializeTileData(rcti *rect)
{
VariableSizeBokehBlurTileData *data = new VariableSizeBokehBlurTileData();
data->color = (MemoryBuffer *)this->m_inputProgram->initializeTileData(rect);
data->bokeh = (MemoryBuffer *)this->m_inputBokehProgram->initializeTileData(rect);
data->size = (MemoryBuffer *)this->m_inputSizeProgram->initializeTileData(rect);
rcti rect2;
this->determineDependingAreaOfInterest(
rect, (ReadBufferOperation *)this->m_inputSizeProgram, &rect2);
const float max_dim = MAX2(m_width, m_height);
const float scalar = this->m_do_size_scale ? (max_dim / 100.0f) : 1.0f;
data->maxBlurScalar = (int)(data->size->get_max_value(rect2) * scalar);
CLAMP(data->maxBlurScalar, 1.0f, this->m_maxBlur);
return data;
}
void VariableSizeBokehBlurOperation::deinitializeTileData(rcti * /*rect*/, void *data)
{
VariableSizeBokehBlurTileData *result = (VariableSizeBokehBlurTileData *)data;
delete result;
}
void VariableSizeBokehBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
VariableSizeBokehBlurTileData *tileData = (VariableSizeBokehBlurTileData *)data;
MemoryBuffer *inputProgramBuffer = tileData->color;
MemoryBuffer *inputBokehBuffer = tileData->bokeh;
MemoryBuffer *inputSizeBuffer = tileData->size;
float *inputSizeFloatBuffer = inputSizeBuffer->getBuffer();
float *inputProgramFloatBuffer = inputProgramBuffer->getBuffer();
float readColor[4];
float bokeh[4];
float tempSize[4];
float multiplier_accum[4];
float color_accum[4];
const float max_dim = MAX2(m_width, m_height);
const float scalar = this->m_do_size_scale ? (max_dim / 100.0f) : 1.0f;
int maxBlurScalar = tileData->maxBlurScalar;
BLI_assert(inputBokehBuffer->getWidth() == COM_BLUR_BOKEH_PIXELS);
BLI_assert(inputBokehBuffer->getHeight() == COM_BLUR_BOKEH_PIXELS);
#ifdef COM_DEFOCUS_SEARCH
float search[4];
this->m_inputSearchProgram->read(search,
x / InverseSearchRadiusOperation::DIVIDER,
y / InverseSearchRadiusOperation::DIVIDER,
nullptr);
int minx = search[0];
int miny = search[1];
int maxx = search[2];
int maxy = search[3];
#else
int minx = MAX2(x - maxBlurScalar, 0);
int miny = MAX2(y - maxBlurScalar, 0);
int maxx = MIN2(x + maxBlurScalar, (int)m_width);
int maxy = MIN2(y + maxBlurScalar, (int)m_height);
#endif
{
inputSizeBuffer->readNoCheck(tempSize, x, y);
inputProgramBuffer->readNoCheck(readColor, x, y);
copy_v4_v4(color_accum, readColor);
copy_v4_fl(multiplier_accum, 1.0f);
float size_center = tempSize[0] * scalar;
const int addXStepValue = QualityStepHelper::getStep();
const int addYStepValue = addXStepValue;
const int addXStepColor = addXStepValue * COM_DATA_TYPE_COLOR_CHANNELS;
if (size_center > this->m_threshold) {
for (int ny = miny; ny < maxy; ny += addYStepValue) {
float dy = ny - y;
int offsetValueNy = ny * inputSizeBuffer->getWidth();
int offsetValueNxNy = offsetValueNy + (minx);
int offsetColorNxNy = offsetValueNxNy * COM_DATA_TYPE_COLOR_CHANNELS;
for (int nx = minx; nx < maxx; nx += addXStepValue) {
if (nx != x || ny != y) {
float size = MIN2(inputSizeFloatBuffer[offsetValueNxNy] * scalar, size_center);
if (size > this->m_threshold) {
float dx = nx - x;
if (size > fabsf(dx) && size > fabsf(dy)) {
float uv[2] = {
(float)(COM_BLUR_BOKEH_PIXELS / 2) +
(dx / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1),
(float)(COM_BLUR_BOKEH_PIXELS / 2) +
(dy / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1),
};
inputBokehBuffer->read(bokeh, uv[0], uv[1]);
madd_v4_v4v4(color_accum, bokeh, &inputProgramFloatBuffer[offsetColorNxNy]);
add_v4_v4(multiplier_accum, bokeh);
}
}
}
offsetColorNxNy += addXStepColor;
offsetValueNxNy += addXStepValue;
}
}
}
output[0] = color_accum[0] / multiplier_accum[0];
output[1] = color_accum[1] / multiplier_accum[1];
output[2] = color_accum[2] / multiplier_accum[2];
output[3] = color_accum[3] / multiplier_accum[3];
/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
if ((size_center > this->m_threshold) && (size_center < this->m_threshold * 2.0f)) {
/* factor from 0-1 */
float fac = (size_center - this->m_threshold) / this->m_threshold;
interp_v4_v4v4(output, readColor, output, fac);
}
}
}
void VariableSizeBokehBlurOperation::executeOpenCL(OpenCLDevice *device,
MemoryBuffer *outputMemoryBuffer,
cl_mem clOutputBuffer,
MemoryBuffer **inputMemoryBuffers,
std::list<cl_mem> *clMemToCleanUp,
std::list<cl_kernel> * /*clKernelsToCleanUp*/)
{
cl_kernel defocusKernel = device->COM_clCreateKernel("defocusKernel", nullptr);
cl_int step = this->getStep();
cl_int maxBlur;
cl_float threshold = this->m_threshold;
MemoryBuffer *sizeMemoryBuffer = this->m_inputSizeProgram->getInputMemoryBuffer(
inputMemoryBuffers);
const float max_dim = MAX2(m_width, m_height);
cl_float scalar = this->m_do_size_scale ? (max_dim / 100.0f) : 1.0f;
maxBlur = (cl_int)min_ff(sizeMemoryBuffer->get_max_value() * scalar, (float)this->m_maxBlur);
device->COM_clAttachMemoryBufferToKernelParameter(
defocusKernel, 0, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputProgram);
device->COM_clAttachMemoryBufferToKernelParameter(
defocusKernel, 1, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputBokehProgram);
device->COM_clAttachMemoryBufferToKernelParameter(
defocusKernel, 2, 4, clMemToCleanUp, inputMemoryBuffers, this->m_inputSizeProgram);
device->COM_clAttachOutputMemoryBufferToKernelParameter(defocusKernel, 3, clOutputBuffer);
device->COM_clAttachMemoryBufferOffsetToKernelParameter(defocusKernel, 5, outputMemoryBuffer);
clSetKernelArg(defocusKernel, 6, sizeof(cl_int), &step);
clSetKernelArg(defocusKernel, 7, sizeof(cl_int), &maxBlur);
clSetKernelArg(defocusKernel, 8, sizeof(cl_float), &threshold);
clSetKernelArg(defocusKernel, 9, sizeof(cl_float), &scalar);
device->COM_clAttachSizeToKernelParameter(defocusKernel, 10, this);
device->COM_clEnqueueRange(defocusKernel, outputMemoryBuffer, 11, this);
}
void VariableSizeBokehBlurOperation::deinitExecution()
{
this->m_inputProgram = nullptr;
this->m_inputBokehProgram = nullptr;
this->m_inputSizeProgram = nullptr;
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = nullptr;
#endif
}
bool VariableSizeBokehBlurOperation::determineDependingAreaOfInterest(
rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
rcti bokehInput;
const float max_dim = MAX2(m_width, m_height);
const float scalar = this->m_do_size_scale ? (max_dim / 100.0f) : 1.0f;
int maxBlurScalar = this->m_maxBlur * scalar;
newInput.xmax = input->xmax + maxBlurScalar + 2;
newInput.xmin = input->xmin - maxBlurScalar + 2;
newInput.ymax = input->ymax + maxBlurScalar - 2;
newInput.ymin = input->ymin - maxBlurScalar - 2;
bokehInput.xmax = COM_BLUR_BOKEH_PIXELS;
bokehInput.xmin = 0;
bokehInput.ymax = COM_BLUR_BOKEH_PIXELS;
bokehInput.ymin = 0;
NodeOperation *operation = getInputOperation(2);
if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output)) {
return true;
}
operation = getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&bokehInput, readOperation, output)) {
return true;
}
#ifdef COM_DEFOCUS_SEARCH
rcti searchInput;
searchInput.xmax = (input->xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
searchInput.xmin = (input->xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
searchInput.ymax = (input->ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
searchInput.ymin = (input->ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
operation = getInputOperation(3);
if (operation->determineDependingAreaOfInterest(&searchInput, readOperation, output)) {
return true;
}
#endif
operation = getInputOperation(0);
if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output)) {
return true;
}
return false;
}
#ifdef COM_DEFOCUS_SEARCH
// InverseSearchRadiusOperation
InverseSearchRadiusOperation::InverseSearchRadiusOperation()
{
this->addInputSocket(DataType::Value, ResizeMode::None); // radius
this->addOutputSocket(DataType::Color);
this->flags.complex = true;
this->m_inputRadius = nullptr;
}
void InverseSearchRadiusOperation::initExecution()
{
this->m_inputRadius = this->getInputSocketReader(0);
}
void *InverseSearchRadiusOperation::initializeTileData(rcti *rect)
{
MemoryBuffer *data = new MemoryBuffer(DataType::Color, rect);
float *buffer = data->getBuffer();
int x, y;
int width = this->m_inputRadius->getWidth();
int height = this->m_inputRadius->getHeight();
float temp[4];
int offset = 0;
for (y = rect->ymin; y < rect->ymax; y++) {
for (x = rect->xmin; x < rect->xmax; x++) {
int rx = x * DIVIDER;
int ry = y * DIVIDER;
buffer[offset] = MAX2(rx - m_maxBlur, 0);
buffer[offset + 1] = MAX2(ry - m_maxBlur, 0);
buffer[offset + 2] = MIN2(rx + DIVIDER + m_maxBlur, width);
buffer[offset + 3] = MIN2(ry + DIVIDER + m_maxBlur, height);
offset += 4;
}
}
// for (x = rect->xmin; x < rect->xmax ; x++) {
// for (y = rect->ymin; y < rect->ymax ; y++) {
// int rx = x * DIVIDER;
// int ry = y * DIVIDER;
// float radius = 0.0f;
// float maxx = x;
// float maxy = y;
// for (int x2 = 0 ; x2 < DIVIDER ; x2 ++) {
// for (int y2 = 0 ; y2 < DIVIDER ; y2 ++) {
// this->m_inputRadius->read(temp, rx+x2, ry+y2, PixelSampler::Nearest);
// if (radius < temp[0]) {
// radius = temp[0];
// maxx = x2;
// maxy = y2;
// }
// }
// }
// int impactRadius = ceil(radius / DIVIDER);
// for (int x2 = x - impactRadius ; x2 < x + impactRadius ; x2 ++) {
// for (int y2 = y - impactRadius ; y2 < y + impactRadius ; y2 ++) {
// data->read(temp, x2, y2);
// temp[0] = MIN2(temp[0], maxx);
// temp[1] = MIN2(temp[1], maxy);
// temp[2] = MAX2(temp[2], maxx);
// temp[3] = MAX2(temp[3], maxy);
// data->writePixel(x2, y2, temp);
// }
// }
// }
// }
return data;
}
void InverseSearchRadiusOperation::executePixelChunk(float output[4], int x, int y, void *data)
{
MemoryBuffer *buffer = (MemoryBuffer *)data;
buffer->readNoCheck(output, x, y);
}
void InverseSearchRadiusOperation::deinitializeTileData(rcti *rect, void *data)
{
if (data) {
MemoryBuffer *mb = (MemoryBuffer *)data;
delete mb;
}
}
void InverseSearchRadiusOperation::deinitExecution()
{
this->m_inputRadius = nullptr;
}
void InverseSearchRadiusOperation::determineResolution(unsigned int resolution[2],
unsigned int preferredResolution[2])
{
NodeOperation::determineResolution(resolution, preferredResolution);
resolution[0] = resolution[0] / DIVIDER;
resolution[1] = resolution[1] / DIVIDER;
}
bool InverseSearchRadiusOperation::determineDependingAreaOfInterest(
rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newRect;
newRect.ymin = input->ymin * DIVIDER - m_maxBlur;
newRect.ymax = input->ymax * DIVIDER + m_maxBlur;
newRect.xmin = input->xmin * DIVIDER - m_maxBlur;
newRect.xmax = input->xmax * DIVIDER + m_maxBlur;
return NodeOperation::determineDependingAreaOfInterest(&newRect, readOperation, output);
}
#endif
} // namespace blender::compositor