This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_matrix.cc
Campbell Barton f71cf99616 GPU: add 2D projection function
When projecting into screen space Z value isn't always needed.
Add 2D projection functions, renaming them to avoid accidents
happening again.

- Add GPU_matrix_project_2fv
- Add ED_view3d_project_v2
- Rename ED_view3d_project to ED_view3d_project_v3
- Use the 2D versions of these functions when the Z value isn't used.
2021-06-01 12:49:53 +10:00

801 lines
20 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2012 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*/
#include "gpu_context_private.hh"
#include "gpu_matrix_private.h"
#define SUPPRESS_GENERIC_MATRIX_API
#define USE_GPU_PY_MATRIX_API /* only so values are declared */
#include "GPU_matrix.h"
#undef USE_GPU_PY_MATRIX_API
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "MEM_guardedalloc.h"
using namespace blender::gpu;
#define MATRIX_STACK_DEPTH 32
using Mat4 = float[4][4];
using Mat3 = float[3][3];
struct MatrixStack {
Mat4 stack[MATRIX_STACK_DEPTH];
uint top;
};
struct GPUMatrixState {
MatrixStack model_view_stack;
MatrixStack projection_stack;
bool dirty;
/* TODO: cache of derived matrices (Normal, MVP, inverse MVP, etc)
* generate as needed for shaders, invalidate when original matrices change
*
* TODO: separate Model from View transform? Batches/objects have model,
* camera/eye has view & projection
*/
};
#define ModelViewStack Context::get()->matrix_state->model_view_stack
#define ModelView ModelViewStack.stack[ModelViewStack.top]
#define ProjectionStack Context::get()->matrix_state->projection_stack
#define Projection ProjectionStack.stack[ProjectionStack.top]
GPUMatrixState *GPU_matrix_state_create(void)
{
#define MATRIX_4X4_IDENTITY \
{ \
{1.0f, 0.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 1.0f, 0.0f}, \
{ \
0.0f, 0.0f, 0.0f, 1.0f \
} \
}
GPUMatrixState *state = (GPUMatrixState *)MEM_mallocN(sizeof(*state), __func__);
const MatrixStack identity_stack = {{MATRIX_4X4_IDENTITY}, 0};
state->model_view_stack = state->projection_stack = identity_stack;
state->dirty = true;
#undef MATRIX_4X4_IDENTITY
return state;
}
void GPU_matrix_state_discard(GPUMatrixState *state)
{
MEM_freeN(state);
}
static void gpu_matrix_state_active_set_dirty(bool value)
{
GPUMatrixState *state = Context::get()->matrix_state;
state->dirty = value;
}
void GPU_matrix_reset(void)
{
GPUMatrixState *state = Context::get()->matrix_state;
state->model_view_stack.top = 0;
state->projection_stack.top = 0;
unit_m4(ModelView);
unit_m4(Projection);
gpu_matrix_state_active_set_dirty(true);
}
#ifdef WITH_GPU_SAFETY
/* Check if matrix is numerically good */
static void checkmat(cosnt float *m)
{
const int n = 16;
for (int i = 0; i < n; i++) {
# if _MSC_VER
BLI_assert(_finite(m[i]));
# else
BLI_assert(!isinf(m[i]));
# endif
}
}
# define CHECKMAT(m) checkmat((const float *)m)
#else
# define CHECKMAT(m)
#endif
void GPU_matrix_push(void)
{
BLI_assert(ModelViewStack.top + 1 < MATRIX_STACK_DEPTH);
ModelViewStack.top++;
copy_m4_m4(ModelView, ModelViewStack.stack[ModelViewStack.top - 1]);
}
void GPU_matrix_pop(void)
{
BLI_assert(ModelViewStack.top > 0);
ModelViewStack.top--;
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_push_projection(void)
{
BLI_assert(ProjectionStack.top + 1 < MATRIX_STACK_DEPTH);
ProjectionStack.top++;
copy_m4_m4(Projection, ProjectionStack.stack[ProjectionStack.top - 1]);
}
void GPU_matrix_pop_projection(void)
{
BLI_assert(ProjectionStack.top > 0);
ProjectionStack.top--;
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_set(const float m[4][4])
{
copy_m4_m4(ModelView, m);
CHECKMAT(ModelView3D);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_identity_projection_set(void)
{
unit_m4(Projection);
CHECKMAT(Projection3D);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_projection_set(const float m[4][4])
{
copy_m4_m4(Projection, m);
CHECKMAT(Projection3D);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_identity_set(void)
{
unit_m4(ModelView);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_translate_2f(float x, float y)
{
Mat4 m;
unit_m4(m);
m[3][0] = x;
m[3][1] = y;
GPU_matrix_mul(m);
}
void GPU_matrix_translate_2fv(const float vec[2])
{
GPU_matrix_translate_2f(vec[0], vec[1]);
}
void GPU_matrix_translate_3f(float x, float y, float z)
{
#if 1
translate_m4(ModelView, x, y, z);
CHECKMAT(ModelView);
#else /* above works well in early testing, below is generic version */
Mat4 m;
unit_m4(m);
m[3][0] = x;
m[3][1] = y;
m[3][2] = z;
GPU_matrix_mul(m);
#endif
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_translate_3fv(const float vec[3])
{
GPU_matrix_translate_3f(vec[0], vec[1], vec[2]);
}
void GPU_matrix_scale_1f(float factor)
{
Mat4 m;
scale_m4_fl(m, factor);
GPU_matrix_mul(m);
}
void GPU_matrix_scale_2f(float x, float y)
{
Mat4 m = {{0.0f}};
m[0][0] = x;
m[1][1] = y;
m[2][2] = 1.0f;
m[3][3] = 1.0f;
GPU_matrix_mul(m);
}
void GPU_matrix_scale_2fv(const float vec[2])
{
GPU_matrix_scale_2f(vec[0], vec[1]);
}
void GPU_matrix_scale_3f(float x, float y, float z)
{
Mat4 m = {{0.0f}};
m[0][0] = x;
m[1][1] = y;
m[2][2] = z;
m[3][3] = 1.0f;
GPU_matrix_mul(m);
}
void GPU_matrix_scale_3fv(const float vec[3])
{
GPU_matrix_scale_3f(vec[0], vec[1], vec[2]);
}
void GPU_matrix_mul(const float m[4][4])
{
mul_m4_m4_post(ModelView, m);
CHECKMAT(ModelView);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_rotate_2d(float deg)
{
/* essentially RotateAxis('Z')
* TODO: simpler math for 2D case
*/
rotate_m4(ModelView, 'Z', DEG2RADF(deg));
}
void GPU_matrix_rotate_3f(float deg, float x, float y, float z)
{
const float axis[3] = {x, y, z};
GPU_matrix_rotate_3fv(deg, axis);
}
void GPU_matrix_rotate_3fv(float deg, const float axis[3])
{
Mat4 m;
axis_angle_to_mat4(m, axis, DEG2RADF(deg));
GPU_matrix_mul(m);
}
void GPU_matrix_rotate_axis(float deg, char axis)
{
/* rotate_m4 works in place */
rotate_m4(ModelView, axis, DEG2RADF(deg));
CHECKMAT(ModelView);
gpu_matrix_state_active_set_dirty(true);
}
static void mat4_ortho_set(
float m[4][4], float left, float right, float bottom, float top, float near, float far)
{
m[0][0] = 2.0f / (right - left);
m[1][0] = 0.0f;
m[2][0] = 0.0f;
m[3][0] = -(right + left) / (right - left);
m[0][1] = 0.0f;
m[1][1] = 2.0f / (top - bottom);
m[2][1] = 0.0f;
m[3][1] = -(top + bottom) / (top - bottom);
m[0][2] = 0.0f;
m[1][2] = 0.0f;
m[2][2] = -2.0f / (far - near);
m[3][2] = -(far + near) / (far - near);
m[0][3] = 0.0f;
m[1][3] = 0.0f;
m[2][3] = 0.0f;
m[3][3] = 1.0f;
gpu_matrix_state_active_set_dirty(true);
}
static void mat4_frustum_set(
float m[4][4], float left, float right, float bottom, float top, float near, float far)
{
m[0][0] = 2.0f * near / (right - left);
m[1][0] = 0.0f;
m[2][0] = (right + left) / (right - left);
m[3][0] = 0.0f;
m[0][1] = 0.0f;
m[1][1] = 2.0f * near / (top - bottom);
m[2][1] = (top + bottom) / (top - bottom);
m[3][1] = 0.0f;
m[0][2] = 0.0f;
m[1][2] = 0.0f;
m[2][2] = -(far + near) / (far - near);
m[3][2] = -2.0f * far * near / (far - near);
m[0][3] = 0.0f;
m[1][3] = 0.0f;
m[2][3] = -1.0f;
m[3][3] = 0.0f;
gpu_matrix_state_active_set_dirty(true);
}
static void mat4_look_from_origin(float m[4][4], float lookdir[3], float camup[3])
{
/* This function is loosely based on Mesa implementation.
*
* SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
* Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice including the dates of first publication and
* either this permission notice or a reference to
* http://oss.sgi.com/projects/FreeB/
* shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of Silicon Graphics, Inc.
* shall not be used in advertising or otherwise to promote the sale, use or
* other dealings in this Software without prior written authorization from
* Silicon Graphics, Inc.
*/
float side[3];
normalize_v3(lookdir);
cross_v3_v3v3(side, lookdir, camup);
normalize_v3(side);
cross_v3_v3v3(camup, side, lookdir);
m[0][0] = side[0];
m[1][0] = side[1];
m[2][0] = side[2];
m[3][0] = 0.0f;
m[0][1] = camup[0];
m[1][1] = camup[1];
m[2][1] = camup[2];
m[3][1] = 0.0f;
m[0][2] = -lookdir[0];
m[1][2] = -lookdir[1];
m[2][2] = -lookdir[2];
m[3][2] = 0.0f;
m[0][3] = 0.0f;
m[1][3] = 0.0f;
m[2][3] = 0.0f;
m[3][3] = 1.0f;
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_ortho_set(float left, float right, float bottom, float top, float near, float far)
{
mat4_ortho_set(Projection, left, right, bottom, top, near, far);
CHECKMAT(Projection);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_ortho_set_z(float near, float far)
{
CHECKMAT(Projection);
Projection[2][2] = -2.0f / (far - near);
Projection[3][2] = -(far + near) / (far - near);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_ortho_2d_set(float left, float right, float bottom, float top)
{
Mat4 m;
mat4_ortho_set(m, left, right, bottom, top, -1.0f, 1.0f);
CHECKMAT(Projection2D);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_frustum_set(
float left, float right, float bottom, float top, float near, float far)
{
mat4_frustum_set(Projection, left, right, bottom, top, near, far);
CHECKMAT(Projection);
gpu_matrix_state_active_set_dirty(true);
}
void GPU_matrix_perspective_set(float fovy, float aspect, float near, float far)
{
float half_height = tanf(fovy * (float)(M_PI / 360.0)) * near;
float half_width = half_height * aspect;
GPU_matrix_frustum_set(-half_width, +half_width, -half_height, +half_height, near, far);
}
void GPU_matrix_look_at(float eyeX,
float eyeY,
float eyeZ,
float centerX,
float centerY,
float centerZ,
float upX,
float upY,
float upZ)
{
Mat4 cm;
float lookdir[3];
float camup[3] = {upX, upY, upZ};
lookdir[0] = centerX - eyeX;
lookdir[1] = centerY - eyeY;
lookdir[2] = centerZ - eyeZ;
mat4_look_from_origin(cm, lookdir, camup);
GPU_matrix_mul(cm);
GPU_matrix_translate_3f(-eyeX, -eyeY, -eyeZ);
}
void GPU_matrix_project_3fv(const float world[3],
const float model[4][4],
const float proj[4][4],
const int view[4],
float win[3])
{
float v[4];
mul_v4_m4v3(v, model, world);
mul_m4_v4(proj, v);
if (v[3] != 0.0f) {
mul_v3_fl(v, 1.0f / v[3]);
}
win[0] = view[0] + (view[2] * (v[0] + 1)) * 0.5f;
win[1] = view[1] + (view[3] * (v[1] + 1)) * 0.5f;
win[2] = (v[2] + 1) * 0.5f;
}
void GPU_matrix_project_2fv(const float world[3],
const float model[4][4],
const float proj[4][4],
const int view[4],
float win[2])
{
float v[4];
mul_v4_m4v3(v, model, world);
mul_m4_v4(proj, v);
if (v[3] != 0.0f) {
mul_v2_fl(v, 1.0f / v[3]);
}
win[0] = view[0] + (view[2] * (v[0] + 1)) * 0.5f;
win[1] = view[1] + (view[3] * (v[1] + 1)) * 0.5f;
}
/**
* The same result could be obtained as follows:
*
* \code{.c}
* float projinv[4][4];
* invert_m4_m4(projinv, projmat);
* co[0] = 2 * co[0] - 1;
* co[1] = 2 * co[1] - 1;
* co[2] = 2 * co[2] - 1;
* mul_project_m4_v3(projinv, co);
* \endcode
*
* But that solution loses much precision.
* Therefore, get the same result without inverting the matrix.
*/
static void gpu_mul_invert_projmat_m4_unmapped_v3_with_precalc(
const struct GPUMatrixUnproject_Precalc *precalc, float co[3])
{
/* 'precalc->dims' is the result of 'projmat_dimensions(proj, ...)'. */
co[0] = precalc->dims.xmin + co[0] * (precalc->dims.xmax - precalc->dims.xmin);
co[1] = precalc->dims.ymin + co[1] * (precalc->dims.ymax - precalc->dims.ymin);
if (precalc->is_persp) {
co[2] = precalc->dims.zmax * precalc->dims.zmin /
(precalc->dims.zmax + co[2] * (precalc->dims.zmin - precalc->dims.zmax));
co[0] *= co[2];
co[1] *= co[2];
}
else {
co[2] = precalc->dims.zmin + co[2] * (precalc->dims.zmax - precalc->dims.zmin);
}
co[2] *= -1;
}
bool GPU_matrix_unproject_precalc(struct GPUMatrixUnproject_Precalc *precalc,
const float model[4][4],
const float proj[4][4],
const int view[4])
{
precalc->is_persp = proj[3][3] == 0.0f;
projmat_dimensions_db(proj,
&precalc->dims.xmin,
&precalc->dims.xmax,
&precalc->dims.ymin,
&precalc->dims.ymax,
&precalc->dims.zmin,
&precalc->dims.zmax);
if (isinf(precalc->dims.zmax)) {
/* We cannot retrieve the actual value of the clip_end.
* Use `FLT_MAX` to avoid NAN's. */
precalc->dims.zmax = FLT_MAX;
}
for (int i = 0; i < 4; i++) {
precalc->view[i] = (float)view[i];
}
if (!invert_m4_m4(precalc->model_inverted, model)) {
unit_m4(precalc->model_inverted);
return false;
}
return true;
}
void GPU_matrix_unproject_3fv_with_precalc(const struct GPUMatrixUnproject_Precalc *precalc,
const float win[3],
float r_world[3])
{
float in[3] = {
(win[0] - precalc->view[0]) / precalc->view[2],
(win[1] - precalc->view[1]) / precalc->view[3],
win[2],
};
gpu_mul_invert_projmat_m4_unmapped_v3_with_precalc(precalc, in);
mul_v3_m4v3(r_world, precalc->model_inverted, in);
}
bool GPU_matrix_unproject_3fv(const float win[3],
const float model[4][4],
const float proj[4][4],
const int view[4],
float r_world[3])
{
struct GPUMatrixUnproject_Precalc precalc;
if (!GPU_matrix_unproject_precalc(&precalc, model, proj, view)) {
zero_v3(r_world);
return false;
}
GPU_matrix_unproject_3fv_with_precalc(&precalc, win, r_world);
return true;
}
const float (*GPU_matrix_model_view_get(float m[4][4]))[4]
{
if (m) {
copy_m4_m4(m, ModelView);
return m;
}
return ModelView;
}
const float (*GPU_matrix_projection_get(float m[4][4]))[4]
{
if (m) {
copy_m4_m4(m, Projection);
return m;
}
return Projection;
}
const float (*GPU_matrix_model_view_projection_get(float m[4][4]))[4]
{
if (m == nullptr) {
static Mat4 temp;
m = temp;
}
mul_m4_m4m4(m, Projection, ModelView);
return m;
}
const float (*GPU_matrix_normal_get(float m[3][3]))[3]
{
if (m == nullptr) {
static Mat3 temp3;
m = temp3;
}
copy_m3_m4(m, (const float(*)[4])GPU_matrix_model_view_get(nullptr));
invert_m3(m);
transpose_m3(m);
return m;
}
const float (*GPU_matrix_normal_inverse_get(float m[3][3]))[3]
{
if (m == nullptr) {
static Mat3 temp3;
m = temp3;
}
GPU_matrix_normal_get(m);
invert_m3(m);
return m;
}
void GPU_matrix_bind(GPUShader *shader)
{
/* set uniform values to matrix stack values
* call this before a draw call if desired matrices are dirty
* call glUseProgram before this, as glUniform expects program to be bound
*/
int32_t MV = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODELVIEW);
int32_t P = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_PROJECTION);
int32_t MVP = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MVP);
int32_t N = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_NORMAL);
int32_t MV_inv = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_MODELVIEW_INV);
int32_t P_inv = GPU_shader_get_builtin_uniform(shader, GPU_UNIFORM_PROJECTION_INV);
if (MV != -1) {
GPU_shader_uniform_vector(
shader, MV, 16, 1, (const float *)GPU_matrix_model_view_get(nullptr));
}
if (P != -1) {
GPU_shader_uniform_vector(shader, P, 16, 1, (const float *)GPU_matrix_projection_get(nullptr));
}
if (MVP != -1) {
GPU_shader_uniform_vector(
shader, MVP, 16, 1, (const float *)GPU_matrix_model_view_projection_get(nullptr));
}
if (N != -1) {
GPU_shader_uniform_vector(shader, N, 9, 1, (const float *)GPU_matrix_normal_get(nullptr));
}
if (MV_inv != -1) {
Mat4 m;
GPU_matrix_model_view_get(m);
invert_m4(m);
GPU_shader_uniform_vector(shader, MV_inv, 16, 1, (const float *)m);
}
if (P_inv != -1) {
Mat4 m;
GPU_matrix_projection_get(m);
invert_m4(m);
GPU_shader_uniform_vector(shader, P_inv, 16, 1, (const float *)m);
}
gpu_matrix_state_active_set_dirty(false);
}
bool GPU_matrix_dirty_get(void)
{
GPUMatrixState *state = Context::get()->matrix_state;
return state->dirty;
}
/* -------------------------------------------------------------------- */
/** \name Python API Helpers
* \{ */
BLI_STATIC_ASSERT(GPU_PY_MATRIX_STACK_LEN + 1 == MATRIX_STACK_DEPTH, "define mismatch");
/* Return int since caller is may subtract. */
int GPU_matrix_stack_level_get_model_view(void)
{
GPUMatrixState *state = Context::get()->matrix_state;
return (int)state->model_view_stack.top;
}
int GPU_matrix_stack_level_get_projection(void)
{
GPUMatrixState *state = Context::get()->matrix_state;
return (int)state->projection_stack.top;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Polygon Offset Hack
*
* Workaround the fact that polygon-offset is implementation dependent.
* We modify the projection matrix \a winmat in order to change the final depth a tiny amount.
* \{ */
float GPU_polygon_offset_calc(const float (*winmat)[4], float viewdist, float dist)
{
/* Seems like we have a factor of 2 more offset than 2.79 for some reason. Correct for this. */
dist *= 0.5f;
if (winmat[3][3] > 0.5f) {
#if 1
return 0.00001f * dist * viewdist; // ortho tweaking
#else
static float depth_fac = 0.0f;
if (depth_fac == 0.0f) {
/* Hard-code for 24 bit precision. */
int depthbits = 24;
depth_fac = 1.0f / (float)((1 << depthbits) - 1);
}
ofs = (-1.0 / winmat[2][2]) * dist * depth_fac;
UNUSED_VARS(viewdist);
#endif
}
/* This adjustment effectively results in reducing the Z value by 0.25%.
*
* winmat[4][3] actually evaluates to `-2 * far * near / (far - near)`,
* is very close to -0.2 with default clip range,
* and is used as the coefficient multiplied by `w / z`,
* thus controlling the z dependent part of the depth value.
*/
return winmat[3][2] * -0.0025f * dist;
}
/**
* \note \a viewdist is only for ortho at the moment.
*/
void GPU_polygon_offset(float viewdist, float dist)
{
static float winmat[4][4], offset = 0.0f;
if (dist != 0.0f) {
/* hack below is to mimic polygon offset */
GPU_matrix_projection_get(winmat);
/* dist is from camera to center point */
float ofs = GPU_polygon_offset_calc(winmat, viewdist, dist);
winmat[3][2] -= ofs;
offset += ofs;
}
else {
winmat[3][2] += offset;
offset = 0.0;
}
GPU_matrix_projection_set(winmat);
}
/** \} */