2778 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2778 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/*  curve.c 
 | 
						|
 * 
 | 
						|
 *  
 | 
						|
 * $Id$
 | 
						|
 *
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>  // floor
 | 
						|
#include <string.h>
 | 
						|
#include <stdlib.h>  
 | 
						|
 | 
						|
#ifdef HAVE_CONFIG_H
 | 
						|
#include <config.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
#include "BLI_blenlib.h"  
 | 
						|
#include "BLI_arithb.h"  
 | 
						|
 | 
						|
#include "DNA_object_types.h"  
 | 
						|
#include "DNA_curve_types.h"  
 | 
						|
#include "DNA_material_types.h"  
 | 
						|
 | 
						|
/* for dereferencing pointers */
 | 
						|
#include "DNA_ID.h"  
 | 
						|
#include "DNA_key_types.h"  
 | 
						|
#include "DNA_scene_types.h"  
 | 
						|
#include "DNA_vfont_types.h"  
 | 
						|
 | 
						|
#include "BKE_animsys.h"
 | 
						|
#include "BKE_anim.h"  
 | 
						|
#include "BKE_curve.h"  
 | 
						|
#include "BKE_displist.h"  
 | 
						|
#include "BKE_font.h" 
 | 
						|
#include "BKE_global.h" 
 | 
						|
#include "BKE_key.h"  
 | 
						|
#include "BKE_library.h"  
 | 
						|
#include "BKE_main.h"  
 | 
						|
#include "BKE_mesh.h" 
 | 
						|
#include "BKE_object.h"  
 | 
						|
#include "BKE_utildefines.h"  // VECCOPY
 | 
						|
 | 
						|
 | 
						|
/* globals */
 | 
						|
 | 
						|
/* local */
 | 
						|
int cu_isectLL(float *v1, float *v2, float *v3, float *v4, 
 | 
						|
			   short cox, short coy, 
 | 
						|
			   float *labda, float *mu, float *vec);
 | 
						|
 | 
						|
void unlink_curve(Curve *cu)
 | 
						|
{
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	for(a=0; a<cu->totcol; a++) {
 | 
						|
		if(cu->mat[a]) cu->mat[a]->id.us--;
 | 
						|
		cu->mat[a]= 0;
 | 
						|
	}
 | 
						|
	if(cu->vfont) cu->vfont->id.us--; 
 | 
						|
	cu->vfont= 0;
 | 
						|
	if(cu->key) cu->key->id.us--;
 | 
						|
	cu->key= 0;
 | 
						|
}
 | 
						|
 | 
						|
/* frees editcurve entirely */
 | 
						|
void BKE_free_editfont(Curve *cu)
 | 
						|
{
 | 
						|
	if(cu->editfont) {
 | 
						|
		EditFont *ef= cu->editfont;
 | 
						|
		
 | 
						|
		if(ef->oldstr) MEM_freeN(ef->oldstr);
 | 
						|
		if(ef->oldstrinfo) MEM_freeN(ef->oldstrinfo);
 | 
						|
		if(ef->textbuf) MEM_freeN(ef->textbuf);
 | 
						|
		if(ef->textbufinfo) MEM_freeN(ef->textbufinfo);
 | 
						|
		if(ef->copybuf) MEM_freeN(ef->copybuf);
 | 
						|
		if(ef->copybufinfo) MEM_freeN(ef->copybufinfo);
 | 
						|
		
 | 
						|
		MEM_freeN(ef);
 | 
						|
		cu->editfont= NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* don't free curve itself */
 | 
						|
void free_curve(Curve *cu)
 | 
						|
{
 | 
						|
	freeNurblist(&cu->nurb);
 | 
						|
	BLI_freelistN(&cu->bev);
 | 
						|
	freedisplist(&cu->disp);
 | 
						|
	BKE_free_editfont(cu);
 | 
						|
	
 | 
						|
	if(cu->editnurb) {
 | 
						|
		freeNurblist(cu->editnurb);
 | 
						|
		MEM_freeN(cu->editnurb);
 | 
						|
		cu->editnurb= NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	unlink_curve(cu);
 | 
						|
	BKE_free_animdata((ID *)cu);
 | 
						|
	
 | 
						|
	if(cu->mat) MEM_freeN(cu->mat);
 | 
						|
	if(cu->str) MEM_freeN(cu->str);
 | 
						|
	if(cu->strinfo) MEM_freeN(cu->strinfo);
 | 
						|
	if(cu->bb) MEM_freeN(cu->bb);
 | 
						|
	if(cu->path) free_path(cu->path);
 | 
						|
	if(cu->tb) MEM_freeN(cu->tb);
 | 
						|
}
 | 
						|
 | 
						|
Curve *add_curve(char *name, int type)
 | 
						|
{
 | 
						|
	Curve *cu;
 | 
						|
 | 
						|
	cu= alloc_libblock(&G.main->curve, ID_CU, name);
 | 
						|
	
 | 
						|
	cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
 | 
						|
	cu->flag= CU_FRONT+CU_BACK;
 | 
						|
	cu->pathlen= 100;
 | 
						|
	cu->resolu= cu->resolv= 12;
 | 
						|
	cu->width= 1.0;
 | 
						|
	cu->wordspace = 1.0;
 | 
						|
	cu->spacing= cu->linedist= 1.0;
 | 
						|
	cu->fsize= 1.0;
 | 
						|
	cu->ulheight = 0.05;	
 | 
						|
	cu->texflag= CU_AUTOSPACE;
 | 
						|
	
 | 
						|
	cu->bb= unit_boundbox();
 | 
						|
	
 | 
						|
	if(type==OB_FONT) {
 | 
						|
		cu->vfont= cu->vfontb= cu->vfonti= cu->vfontbi= get_builtin_font();
 | 
						|
		cu->vfont->id.us+=4;
 | 
						|
		cu->str= MEM_mallocN(12, "str");
 | 
						|
		strcpy(cu->str, "Text");
 | 
						|
		cu->pos= 4;
 | 
						|
		cu->strinfo= MEM_callocN(12*sizeof(CharInfo), "strinfo new");
 | 
						|
		cu->totbox= cu->actbox= 1;
 | 
						|
		cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "textbox");
 | 
						|
		cu->tb[0].w = cu->tb[0].h = 0.0;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return cu;
 | 
						|
}
 | 
						|
 | 
						|
Curve *copy_curve(Curve *cu)
 | 
						|
{
 | 
						|
	Curve *cun;
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	cun= copy_libblock(cu);
 | 
						|
	cun->nurb.first= cun->nurb.last= 0;
 | 
						|
	duplicateNurblist( &(cun->nurb), &(cu->nurb));
 | 
						|
 | 
						|
	cun->mat= MEM_dupallocN(cu->mat);
 | 
						|
	for(a=0; a<cun->totcol; a++) {
 | 
						|
		id_us_plus((ID *)cun->mat[a]);
 | 
						|
	}
 | 
						|
	
 | 
						|
	cun->str= MEM_dupallocN(cu->str);
 | 
						|
	cun->strinfo= MEM_dupallocN(cu->strinfo);	
 | 
						|
	cun->tb= MEM_dupallocN(cu->tb);
 | 
						|
	cun->bb= MEM_dupallocN(cu->bb);
 | 
						|
	
 | 
						|
	cun->key= copy_key(cu->key);
 | 
						|
	if(cun->key) cun->key->from= (ID *)cun;
 | 
						|
	
 | 
						|
	cun->disp.first= cun->disp.last= 0;
 | 
						|
	cun->bev.first= cun->bev.last= 0;
 | 
						|
	cun->path= 0;
 | 
						|
 | 
						|
	cun->editnurb= NULL;
 | 
						|
 | 
						|
#if 0	// XXX old animation system
 | 
						|
	/* single user ipo too */
 | 
						|
	if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
 | 
						|
#endif // XXX old animation system
 | 
						|
 | 
						|
	id_us_plus((ID *)cun->vfont);
 | 
						|
	id_us_plus((ID *)cun->vfontb);	
 | 
						|
	id_us_plus((ID *)cun->vfonti);
 | 
						|
	id_us_plus((ID *)cun->vfontbi);
 | 
						|
	
 | 
						|
	return cun;
 | 
						|
}
 | 
						|
 | 
						|
void make_local_curve(Curve *cu)
 | 
						|
{
 | 
						|
	Object *ob = 0;
 | 
						|
	Curve *cun;
 | 
						|
	int local=0, lib=0;
 | 
						|
	
 | 
						|
	/* - when there are only lib users: don't do
 | 
						|
	 * - when there are only local users: set flag
 | 
						|
	 * - mixed: do a copy
 | 
						|
	 */
 | 
						|
	
 | 
						|
	if(cu->id.lib==0) return;
 | 
						|
	
 | 
						|
	if(cu->vfont) cu->vfont->id.lib= 0;
 | 
						|
	
 | 
						|
	if(cu->id.us==1) {
 | 
						|
		cu->id.lib= 0;
 | 
						|
		cu->id.flag= LIB_LOCAL;
 | 
						|
		new_id(0, (ID *)cu, 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	
 | 
						|
	ob= G.main->object.first;
 | 
						|
	while(ob) {
 | 
						|
		if(ob->data==cu) {
 | 
						|
			if(ob->id.lib) lib= 1;
 | 
						|
			else local= 1;
 | 
						|
		}
 | 
						|
		ob= ob->id.next;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if(local && lib==0) {
 | 
						|
		cu->id.lib= 0;
 | 
						|
		cu->id.flag= LIB_LOCAL;
 | 
						|
		new_id(0, (ID *)cu, 0);
 | 
						|
	}
 | 
						|
	else if(local && lib) {
 | 
						|
		cun= copy_curve(cu);
 | 
						|
		cun->id.us= 0;
 | 
						|
		
 | 
						|
		ob= G.main->object.first;
 | 
						|
		while(ob) {
 | 
						|
			if(ob->data==cu) {
 | 
						|
				
 | 
						|
				if(ob->id.lib==0) {
 | 
						|
					ob->data= cun;
 | 
						|
					cun->id.us++;
 | 
						|
					cu->id.us--;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			ob= ob->id.next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
short curve_type(Curve *cu)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	if(cu->vfont) {
 | 
						|
		return OB_FONT;
 | 
						|
	}
 | 
						|
	for (nu= cu->nurb.first; nu; nu= nu->next) {
 | 
						|
		if(nu->pntsv>1) {
 | 
						|
			return OB_SURF;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return OB_CURVE;
 | 
						|
}
 | 
						|
 | 
						|
void test_curve_type(Object *ob)
 | 
						|
{	
 | 
						|
	ob->type = curve_type(ob->data);
 | 
						|
}
 | 
						|
 | 
						|
void tex_space_curve(Curve *cu)
 | 
						|
{
 | 
						|
	DispList *dl;
 | 
						|
	BoundBox *bb;
 | 
						|
	float *fp, min[3], max[3], loc[3], size[3];
 | 
						|
	int tot, doit= 0;
 | 
						|
	
 | 
						|
	if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
 | 
						|
	bb= cu->bb;
 | 
						|
	
 | 
						|
	INIT_MINMAX(min, max);
 | 
						|
 | 
						|
	dl= cu->disp.first;
 | 
						|
	while(dl) {
 | 
						|
		
 | 
						|
		if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
 | 
						|
		else tot= dl->nr*dl->parts;
 | 
						|
		
 | 
						|
		if(tot) doit= 1;
 | 
						|
		fp= dl->verts;
 | 
						|
		while(tot--) {
 | 
						|
			DO_MINMAX(fp, min, max);
 | 
						|
			fp += 3;
 | 
						|
		}
 | 
						|
		dl= dl->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if(!doit) {
 | 
						|
		min[0] = min[1] = min[2] = -1.0f;
 | 
						|
		max[0] = max[1] = max[2] = 1.0f;
 | 
						|
	}
 | 
						|
	
 | 
						|
	loc[0]= (min[0]+max[0])/2.0f;
 | 
						|
	loc[1]= (min[1]+max[1])/2.0f;
 | 
						|
	loc[2]= (min[2]+max[2])/2.0f;
 | 
						|
	
 | 
						|
	size[0]= (max[0]-min[0])/2.0f;
 | 
						|
	size[1]= (max[1]-min[1])/2.0f;
 | 
						|
	size[2]= (max[2]-min[2])/2.0f;
 | 
						|
 | 
						|
	boundbox_set_from_min_max(bb, min, max);
 | 
						|
 | 
						|
	if(cu->texflag & CU_AUTOSPACE) {
 | 
						|
		VECCOPY(cu->loc, loc);
 | 
						|
		VECCOPY(cu->size, size);
 | 
						|
		cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
 | 
						|
 | 
						|
		if(cu->size[0]==0.0) cu->size[0]= 1.0;
 | 
						|
		else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
 | 
						|
		else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
 | 
						|
	
 | 
						|
		if(cu->size[1]==0.0) cu->size[1]= 1.0;
 | 
						|
		else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
 | 
						|
		else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
 | 
						|
	
 | 
						|
		if(cu->size[2]==0.0) cu->size[2]= 1.0;
 | 
						|
		else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
 | 
						|
		else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
 | 
						|
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int count_curveverts(ListBase *nurb)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int tot=0;
 | 
						|
	
 | 
						|
	nu= nurb->first;
 | 
						|
	while(nu) {
 | 
						|
		if(nu->bezt) tot+= 3*nu->pntsu;
 | 
						|
		else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
 | 
						|
		
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
	return tot;
 | 
						|
}
 | 
						|
 | 
						|
int count_curveverts_without_handles(ListBase *nurb)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int tot=0;
 | 
						|
	
 | 
						|
	nu= nurb->first;
 | 
						|
	while(nu) {
 | 
						|
		if(nu->bezt) tot+= nu->pntsu;
 | 
						|
		else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
 | 
						|
		
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
	return tot;
 | 
						|
}
 | 
						|
 | 
						|
/* **************** NURBS ROUTINES ******************** */
 | 
						|
 | 
						|
void freeNurb(Nurb *nu)
 | 
						|
{
 | 
						|
 | 
						|
	if(nu==0) return;
 | 
						|
 | 
						|
	if(nu->bezt) MEM_freeN(nu->bezt);
 | 
						|
	nu->bezt= 0;
 | 
						|
	if(nu->bp) MEM_freeN(nu->bp);
 | 
						|
	nu->bp= 0;
 | 
						|
	if(nu->knotsu) MEM_freeN(nu->knotsu);
 | 
						|
	nu->knotsu= NULL;
 | 
						|
	if(nu->knotsv) MEM_freeN(nu->knotsv);
 | 
						|
	nu->knotsv= NULL;
 | 
						|
	/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
 | 
						|
 | 
						|
	MEM_freeN(nu);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void freeNurblist(ListBase *lb)
 | 
						|
{
 | 
						|
	Nurb *nu, *next;
 | 
						|
 | 
						|
	if(lb==0) return;
 | 
						|
 | 
						|
	nu= lb->first;
 | 
						|
	while(nu) {
 | 
						|
		next= nu->next;
 | 
						|
		freeNurb(nu);
 | 
						|
		nu= next;
 | 
						|
	}
 | 
						|
	lb->first= lb->last= 0;
 | 
						|
}
 | 
						|
 | 
						|
Nurb *duplicateNurb(Nurb *nu)
 | 
						|
{
 | 
						|
	Nurb *newnu;
 | 
						|
	int len;
 | 
						|
 | 
						|
	newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
 | 
						|
	if(newnu==0) return 0;
 | 
						|
	memcpy(newnu, nu, sizeof(Nurb));
 | 
						|
 | 
						|
	if(nu->bezt) {
 | 
						|
		newnu->bezt=
 | 
						|
			(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
 | 
						|
		memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		len= nu->pntsu*nu->pntsv;
 | 
						|
		newnu->bp=
 | 
						|
			(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
 | 
						|
		memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
 | 
						|
		
 | 
						|
		newnu->knotsu= newnu->knotsv= NULL;
 | 
						|
		
 | 
						|
		if(nu->knotsu) {
 | 
						|
			len= KNOTSU(nu);
 | 
						|
			if(len) {
 | 
						|
				newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
 | 
						|
				memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if(nu->pntsv>1 && nu->knotsv) {
 | 
						|
			len= KNOTSV(nu);
 | 
						|
			if(len) {
 | 
						|
				newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
 | 
						|
				memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newnu;
 | 
						|
}
 | 
						|
 | 
						|
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
 | 
						|
{
 | 
						|
	Nurb *nu, *nun;
 | 
						|
	
 | 
						|
	freeNurblist(lb1);
 | 
						|
	
 | 
						|
	nu= lb2->first;
 | 
						|
	while(nu) {
 | 
						|
		nun= duplicateNurb(nu);
 | 
						|
		BLI_addtail(lb1, nun);
 | 
						|
		
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void test2DNurb(Nurb *nu)
 | 
						|
{
 | 
						|
	BezTriple *bezt;
 | 
						|
	BPoint *bp;
 | 
						|
	int a;
 | 
						|
 | 
						|
	if( nu->type== CU_BEZIER+CU_2D ) {
 | 
						|
		a= nu->pntsu;
 | 
						|
		bezt= nu->bezt;
 | 
						|
		while(a--) {
 | 
						|
			bezt->vec[0][2]= 0.0; 
 | 
						|
			bezt->vec[1][2]= 0.0; 
 | 
						|
			bezt->vec[2][2]= 0.0;
 | 
						|
			bezt++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(nu->type & CU_2D) {
 | 
						|
		a= nu->pntsu*nu->pntsv;
 | 
						|
		bp= nu->bp;
 | 
						|
		while(a--) {
 | 
						|
			bp->vec[2]= 0.0;
 | 
						|
			bp++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void minmaxNurb(Nurb *nu, float *min, float *max)
 | 
						|
{
 | 
						|
	BezTriple *bezt;
 | 
						|
	BPoint *bp;
 | 
						|
	int a;
 | 
						|
 | 
						|
	if( (nu->type & 7)==CU_BEZIER ) {
 | 
						|
		a= nu->pntsu;
 | 
						|
		bezt= nu->bezt;
 | 
						|
		while(a--) {
 | 
						|
			DO_MINMAX(bezt->vec[0], min, max);
 | 
						|
			DO_MINMAX(bezt->vec[1], min, max);
 | 
						|
			DO_MINMAX(bezt->vec[2], min, max);
 | 
						|
			bezt++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		a= nu->pntsu*nu->pntsv;
 | 
						|
		bp= nu->bp;
 | 
						|
		while(a--) {
 | 
						|
			DO_MINMAX(bp->vec, min, max);
 | 
						|
			bp++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
 | 
						|
 | 
						|
 | 
						|
static void calcknots(float *knots, short aantal, short order, short type)
 | 
						|
/* knots: number of pnts NOT corrected for cyclic */
 | 
						|
/* type;	 0: uniform, 1: endpoints, 2: bezier */
 | 
						|
{
 | 
						|
	float k;
 | 
						|
	int a, t;
 | 
						|
 | 
						|
        t = aantal+order;
 | 
						|
	if(type==0) {
 | 
						|
 | 
						|
		for(a=0;a<t;a++) {
 | 
						|
			knots[a]= (float)a;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(type==1) {
 | 
						|
		k= 0.0;
 | 
						|
		for(a=1;a<=t;a++) {
 | 
						|
			knots[a-1]= k;
 | 
						|
			if(a>=order && a<=aantal) k+= 1.0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(type==2) {
 | 
						|
		/* Warning, the order MUST be 2 or 4, if this is not enforced, the displist will be corrupt */
 | 
						|
		if(order==4) {
 | 
						|
			k= 0.34;
 | 
						|
			for(a=0;a<t;a++) {
 | 
						|
				knots[a]= (float)floor(k);
 | 
						|
				k+= (1.0/3.0);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if(order==3) {
 | 
						|
			k= 0.6;
 | 
						|
			for(a=0;a<t;a++) {
 | 
						|
				if(a>=order && a<=aantal) k+= (0.5);
 | 
						|
				knots[a]= (float)floor(k);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			printf("bez nurb curve order is not 3 or 4, should never happen\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void makecyclicknots(float *knots, short pnts, short order)
 | 
						|
/* pnts, order: number of pnts NOT corrected for cyclic */
 | 
						|
{
 | 
						|
	int a, b, order2, c;
 | 
						|
 | 
						|
	if(knots==0) return;
 | 
						|
 | 
						|
	order2=order-1;
 | 
						|
 | 
						|
	/* do first long rows (order -1), remove identical knots at endpoints */
 | 
						|
	if(order>2) {
 | 
						|
		b= pnts+order2;
 | 
						|
		for(a=1; a<order2; a++) {
 | 
						|
			if(knots[b]!= knots[b-a]) break;
 | 
						|
		}
 | 
						|
		if(a==order2) knots[pnts+order-2]+= 1.0;
 | 
						|
	}
 | 
						|
 | 
						|
	b= order;
 | 
						|
        c=pnts + order + order2;
 | 
						|
	for(a=pnts+order2; a<c; a++) {
 | 
						|
		knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
 | 
						|
		b--;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void makeknots(Nurb *nu, short uv)
 | 
						|
{
 | 
						|
	if( (nu->type & 7)==CU_NURBS ) {
 | 
						|
		if(uv == 1) {
 | 
						|
			if(nu->knotsu) MEM_freeN(nu->knotsu);
 | 
						|
			if(check_valid_nurb_u(nu)) {
 | 
						|
				nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
 | 
						|
				if(nu->flagu & CU_CYCLIC) {
 | 
						|
					calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0);  /* cyclic should be uniform */
 | 
						|
					makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
 | 
						|
				} else {
 | 
						|
					calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu>>1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else nu->knotsu= NULL;
 | 
						|
		
 | 
						|
		} else if(uv == 2) {
 | 
						|
			if(nu->knotsv) MEM_freeN(nu->knotsv);
 | 
						|
			if(check_valid_nurb_v(nu)) {
 | 
						|
				nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
 | 
						|
				if(nu->flagv & CU_CYCLIC) {
 | 
						|
					calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0);  /* cyclic should be uniform */
 | 
						|
					makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
 | 
						|
				} else {
 | 
						|
					calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv>>1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else nu->knotsv= NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
 | 
						|
{
 | 
						|
	float d, e;
 | 
						|
	int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
 | 
						|
 | 
						|
	orderpluspnts= order+pnts;
 | 
						|
        opp2 = orderpluspnts-1;
 | 
						|
 | 
						|
	/* this is for float inaccuracy */
 | 
						|
	if(t < knots[0]) t= knots[0];
 | 
						|
	else if(t > knots[opp2]) t= knots[opp2];
 | 
						|
 | 
						|
	/* this part is order '1' */
 | 
						|
        o2 = order + 1;
 | 
						|
	for(i=0;i<opp2;i++) {
 | 
						|
		if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
 | 
						|
			basis[i]= 1.0;
 | 
						|
			i1= i-o2;
 | 
						|
			if(i1<0) i1= 0;
 | 
						|
			i2= i;
 | 
						|
			i++;
 | 
						|
			while(i<opp2) {
 | 
						|
				basis[i]= 0.0;
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		else basis[i]= 0.0;
 | 
						|
	}
 | 
						|
	basis[i]= 0.0;
 | 
						|
	
 | 
						|
	/* this is order 2,3,... */
 | 
						|
	for(j=2; j<=order; j++) {
 | 
						|
 | 
						|
		if(i2+j>= orderpluspnts) i2= opp2-j;
 | 
						|
 | 
						|
		for(i= i1; i<=i2; i++) {
 | 
						|
			if(basis[i]!=0.0)
 | 
						|
				d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
 | 
						|
			else
 | 
						|
				d= 0.0;
 | 
						|
 | 
						|
			if(basis[i+1]!=0.0)
 | 
						|
				e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
 | 
						|
			else
 | 
						|
				e= 0.0;
 | 
						|
 | 
						|
			basis[i]= d+e;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*start= 1000;
 | 
						|
	*end= 0;
 | 
						|
 | 
						|
	for(i=i1; i<=i2; i++) {
 | 
						|
		if(basis[i]>0.0) {
 | 
						|
			*end= i;
 | 
						|
			if(*start==1000) *start= i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride) 
 | 
						|
/* coord_array  has to be 3*4*resolu*resolv in size, and zero-ed */
 | 
						|
{
 | 
						|
	BPoint *bp;
 | 
						|
	float *basisu, *basis, *basisv, *sum, *fp, *in;
 | 
						|
	float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
 | 
						|
	int i, j, iofs, jofs, cycl, len, resolu, resolv;
 | 
						|
	int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
 | 
						|
	
 | 
						|
	int totu = nu->pntsu*nu->resolu, totv = nu->pntsv*nu->resolv;
 | 
						|
	
 | 
						|
	if(nu->knotsu==NULL || nu->knotsv==NULL) return;
 | 
						|
	if(nu->orderu>nu->pntsu) return;
 | 
						|
	if(nu->orderv>nu->pntsv) return;
 | 
						|
	if(coord_array==NULL) return;
 | 
						|
	
 | 
						|
	/* allocate and initialize */
 | 
						|
	len = totu * totv;
 | 
						|
	if(len==0) return;
 | 
						|
	
 | 
						|
 | 
						|
	
 | 
						|
	sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
 | 
						|
	
 | 
						|
	len= totu*totv;
 | 
						|
	if(len==0) {
 | 
						|
		MEM_freeN(sum);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	bp= nu->bp;
 | 
						|
	i= nu->pntsu*nu->pntsv;
 | 
						|
	ratcomp=0;
 | 
						|
	while(i--) {
 | 
						|
		if(bp->vec[3]!=1.0) {
 | 
						|
			ratcomp= 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		bp++;
 | 
						|
	}
 | 
						|
	
 | 
						|
	fp= nu->knotsu;
 | 
						|
	ustart= fp[nu->orderu-1];
 | 
						|
	if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
 | 
						|
	else uend= fp[nu->pntsu];
 | 
						|
	ustep= (uend-ustart)/((nu->flagu & CU_CYCLIC) ? totu : totu - 1);
 | 
						|
	
 | 
						|
	basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
 | 
						|
 | 
						|
	fp= nu->knotsv;
 | 
						|
	vstart= fp[nu->orderv-1];
 | 
						|
	
 | 
						|
	if(nu->flagv & CU_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1];
 | 
						|
	else vend= fp[nu->pntsv];
 | 
						|
	vstep= (vend-vstart)/((nu->flagv & CU_CYCLIC) ? totv : totv - 1);
 | 
						|
	
 | 
						|
	len= KNOTSV(nu);
 | 
						|
	basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3");
 | 
						|
	jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4");
 | 
						|
	jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5");
 | 
						|
 | 
						|
	/* precalculation of basisv and jstart,jend */
 | 
						|
	if(nu->flagv & CU_CYCLIC) cycl= nu->orderv-1; 
 | 
						|
	else cycl= 0;
 | 
						|
	v= vstart;
 | 
						|
	basis= basisv;
 | 
						|
	resolv= totv;
 | 
						|
	while(resolv--) {
 | 
						|
		basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
 | 
						|
		basis+= KNOTSV(nu);
 | 
						|
		v+= vstep;
 | 
						|
	}
 | 
						|
 | 
						|
	if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1; 
 | 
						|
	else cycl= 0;
 | 
						|
	in= coord_array;
 | 
						|
	u= ustart;
 | 
						|
	resolu= totu;
 | 
						|
	while(resolu--) {
 | 
						|
 | 
						|
		basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
 | 
						|
 | 
						|
		basis= basisv;
 | 
						|
		resolv= totv;
 | 
						|
		while(resolv--) {
 | 
						|
 | 
						|
			jsta= jstart[resolv];
 | 
						|
			jen= jend[resolv];
 | 
						|
 | 
						|
			/* calculate sum */
 | 
						|
			sumdiv= 0.0;
 | 
						|
			fp= sum;
 | 
						|
 | 
						|
			for(j= jsta; j<=jen; j++) {
 | 
						|
 | 
						|
				if(j>=nu->pntsv) jofs= (j - nu->pntsv);
 | 
						|
				else jofs= j;
 | 
						|
				bp= nu->bp+ nu->pntsu*jofs+istart-1;
 | 
						|
 | 
						|
				for(i= istart; i<=iend; i++, fp++) {
 | 
						|
 | 
						|
					if(i>= nu->pntsu) {
 | 
						|
						iofs= i- nu->pntsu;
 | 
						|
						bp= nu->bp+ nu->pntsu*jofs+iofs;
 | 
						|
					}
 | 
						|
					else bp++;
 | 
						|
 | 
						|
					if(ratcomp) {
 | 
						|
						*fp= basisu[i]*basis[j]*bp->vec[3];
 | 
						|
						sumdiv+= *fp;
 | 
						|
					}
 | 
						|
					else *fp= basisu[i]*basis[j];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		
 | 
						|
			if(ratcomp) {
 | 
						|
				fp= sum;
 | 
						|
				for(j= jsta; j<=jen; j++) {
 | 
						|
					for(i= istart; i<=iend; i++, fp++) {
 | 
						|
						*fp/= sumdiv;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* one! (1.0) real point now */
 | 
						|
			fp= sum;
 | 
						|
			for(j= jsta; j<=jen; j++) {
 | 
						|
 | 
						|
				if(j>=nu->pntsv) jofs= (j - nu->pntsv);
 | 
						|
				else jofs= j;
 | 
						|
				bp= nu->bp+ nu->pntsu*jofs+istart-1;
 | 
						|
 | 
						|
				for(i= istart; i<=iend; i++, fp++) {
 | 
						|
 | 
						|
					if(i>= nu->pntsu) {
 | 
						|
						iofs= i- nu->pntsu;
 | 
						|
						bp= nu->bp+ nu->pntsu*jofs+iofs;
 | 
						|
					}
 | 
						|
					else bp++;
 | 
						|
 | 
						|
					if(*fp!=0.0) {
 | 
						|
						in[0]+= (*fp) * bp->vec[0];
 | 
						|
						in[1]+= (*fp) * bp->vec[1];
 | 
						|
						in[2]+= (*fp) * bp->vec[2];
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			in+=3;
 | 
						|
			basis+= KNOTSV(nu);
 | 
						|
		}
 | 
						|
		u+= ustep;
 | 
						|
		if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in)));
 | 
						|
	}
 | 
						|
 | 
						|
	/* free */
 | 
						|
	MEM_freeN(sum);
 | 
						|
	MEM_freeN(basisu);
 | 
						|
	MEM_freeN(basisv);
 | 
						|
	MEM_freeN(jstart);
 | 
						|
	MEM_freeN(jend);
 | 
						|
}
 | 
						|
 | 
						|
void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, int resolu)
 | 
						|
/* coord_array has to be 3*4*pntsu*resolu in size and zero-ed
 | 
						|
 * tilt_array and radius_array will be written to if valid */
 | 
						|
{
 | 
						|
	BPoint *bp;
 | 
						|
	float u, ustart, uend, ustep, sumdiv;
 | 
						|
	float *basisu, *sum, *fp;
 | 
						|
	float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array;
 | 
						|
	int i, len, istart, iend, cycl;
 | 
						|
 | 
						|
	if(nu->knotsu==NULL) return;
 | 
						|
	if(nu->orderu>nu->pntsu) return;
 | 
						|
	if(coord_array==0) return;
 | 
						|
 | 
						|
	/* allocate and initialize */
 | 
						|
	len= nu->pntsu;
 | 
						|
	if(len==0) return;
 | 
						|
	sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
 | 
						|
	
 | 
						|
	resolu= (resolu*SEGMENTSU(nu));
 | 
						|
	
 | 
						|
	if(resolu==0) {
 | 
						|
		MEM_freeN(sum);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	fp= nu->knotsu;
 | 
						|
	ustart= fp[nu->orderu-1];
 | 
						|
	if(nu->flagu & CU_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
 | 
						|
	else uend= fp[nu->pntsu];
 | 
						|
	ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_CYCLIC) ? 0 : 1));
 | 
						|
	
 | 
						|
	basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
 | 
						|
 | 
						|
	if(nu->flagu & CU_CYCLIC) cycl= nu->orderu-1; 
 | 
						|
	else cycl= 0;
 | 
						|
 | 
						|
	u= ustart;
 | 
						|
	while(resolu--) {
 | 
						|
 | 
						|
		basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
 | 
						|
		/* calc sum */
 | 
						|
		sumdiv= 0.0;
 | 
						|
		fp= sum;
 | 
						|
		bp= nu->bp+ istart-1;
 | 
						|
		for(i= istart; i<=iend; i++, fp++) {
 | 
						|
 | 
						|
			if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
 | 
						|
			else bp++;
 | 
						|
 | 
						|
			*fp= basisu[i]*bp->vec[3];
 | 
						|
			sumdiv+= *fp;
 | 
						|
		}
 | 
						|
		if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
 | 
						|
			/* is normalizing needed? */
 | 
						|
			fp= sum;
 | 
						|
			for(i= istart; i<=iend; i++, fp++) {
 | 
						|
				*fp/= sumdiv;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* one! (1.0) real point */
 | 
						|
		fp= sum;
 | 
						|
		bp= nu->bp+ istart-1;
 | 
						|
		for(i= istart; i<=iend; i++, fp++) {
 | 
						|
 | 
						|
			if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
 | 
						|
			else bp++;
 | 
						|
 | 
						|
			if(*fp!=0.0) {
 | 
						|
				
 | 
						|
				coord_fp[0]+= (*fp) * bp->vec[0];
 | 
						|
				coord_fp[1]+= (*fp) * bp->vec[1];
 | 
						|
				coord_fp[2]+= (*fp) * bp->vec[2];
 | 
						|
				
 | 
						|
				if (tilt_fp)
 | 
						|
					(*tilt_fp) += (*fp) * bp->alfa;
 | 
						|
				
 | 
						|
				if (radius_fp)
 | 
						|
					(*radius_fp) += (*fp) * bp->radius;
 | 
						|
				
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		coord_fp+= 3;
 | 
						|
		
 | 
						|
		if (tilt_fp) tilt_fp++;
 | 
						|
		if (radius_fp) radius_fp++;
 | 
						|
		
 | 
						|
		u+= ustep;
 | 
						|
	}
 | 
						|
 | 
						|
	/* free */
 | 
						|
	MEM_freeN(sum);
 | 
						|
	MEM_freeN(basisu);
 | 
						|
}
 | 
						|
 | 
						|
/* forward differencing method for bezier curve */
 | 
						|
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
 | 
						|
{
 | 
						|
	float rt0,rt1,rt2,rt3,f;
 | 
						|
	int a;
 | 
						|
 | 
						|
	f= (float)it;
 | 
						|
	rt0= q0;
 | 
						|
	rt1= 3.0f*(q1-q0)/f;
 | 
						|
	f*= f;
 | 
						|
	rt2= 3.0f*(q0-2.0f*q1+q2)/f;
 | 
						|
	f*= it;
 | 
						|
	rt3= (q3-q0+3.0f*(q1-q2))/f;
 | 
						|
 	
 | 
						|
  	q0= rt0;
 | 
						|
	q1= rt1+rt2+rt3;
 | 
						|
	q2= 2*rt2+6*rt3;
 | 
						|
	q3= 6*rt3;
 | 
						|
  
 | 
						|
  	for(a=0; a<=it; a++) {
 | 
						|
		*p= q0;
 | 
						|
		p+= stride;
 | 
						|
		q0+= q1;
 | 
						|
 		q1+= q2;
 | 
						|
 		q2+= q3;
 | 
						|
 	}
 | 
						|
}	
 | 
						|
 | 
						|
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
 | 
						|
 | 
						|
float *make_orco_surf(Object *ob)
 | 
						|
{
 | 
						|
	Curve *cu= ob->data;
 | 
						|
	Nurb *nu;
 | 
						|
	int a, b, tot=0;
 | 
						|
	int sizeu, sizev;
 | 
						|
	float *fp, *coord_array;
 | 
						|
	
 | 
						|
	/* first calculate the size of the datablock */
 | 
						|
	nu= cu->nurb.first;
 | 
						|
	while(nu) {
 | 
						|
		/* as we want to avoid the seam in a cyclic nurbs
 | 
						|
		texture wrapping, reserve extra orco data space to save these extra needed
 | 
						|
		vertex based UV coordinates for the meridian vertices.
 | 
						|
		Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
 | 
						|
		the renderface/vert construction.
 | 
						|
		
 | 
						|
		See also convertblender.c: init_render_surf()
 | 
						|
		*/
 | 
						|
		
 | 
						|
		sizeu = nu->pntsu*nu->resolu; 
 | 
						|
		sizev = nu->pntsv*nu->resolv;
 | 
						|
		if (nu->flagu & CU_CYCLIC) sizeu++;
 | 
						|
		if (nu->flagv & CU_CYCLIC) sizev++;
 | 
						|
 		if(nu->pntsv>1) tot+= sizeu * sizev;
 | 
						|
		
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
	/* makeNurbfaces wants zeros */
 | 
						|
	fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco");
 | 
						|
	
 | 
						|
	nu= cu->nurb.first;
 | 
						|
	while(nu) {
 | 
						|
		if(nu->pntsv>1) {
 | 
						|
			sizeu = nu->pntsu*nu->resolu; 
 | 
						|
			sizev = nu->pntsv*nu->resolv;
 | 
						|
			if (nu->flagu & CU_CYCLIC) sizeu++;
 | 
						|
			if (nu->flagv & CU_CYCLIC) sizev++;
 | 
						|
			
 | 
						|
			if(cu->flag & CU_UV_ORCO) {
 | 
						|
				for(b=0; b< sizeu; b++) {
 | 
						|
					for(a=0; a< sizev; a++) {
 | 
						|
						
 | 
						|
						if(sizev <2) fp[0]= 0.0f;
 | 
						|
						else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
 | 
						|
						
 | 
						|
						if(sizeu <2) fp[1]= 0.0f;
 | 
						|
						else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
 | 
						|
						
 | 
						|
						fp[2]= 0.0;
 | 
						|
						
 | 
						|
						fp+= 3;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float *_tdata= MEM_callocN((nu->pntsu*nu->resolu) * (nu->pntsv*nu->resolv) *3*sizeof(float), "temp data");
 | 
						|
				float *tdata= _tdata;
 | 
						|
				
 | 
						|
				makeNurbfaces(nu, tdata, 0);
 | 
						|
				
 | 
						|
				for(b=0; b<sizeu; b++) {
 | 
						|
					int use_b= b;
 | 
						|
					if (b==sizeu-1 && (nu->flagu & CU_CYCLIC))
 | 
						|
						use_b= 0;
 | 
						|
					
 | 
						|
					for(a=0; a<sizev; a++) {
 | 
						|
						int use_a= a;
 | 
						|
						if (a==sizev-1 && (nu->flagv & CU_CYCLIC))
 | 
						|
							use_a= 0;
 | 
						|
						
 | 
						|
						tdata = _tdata + 3 * (use_b * (nu->pntsv*nu->resolv) + use_a);
 | 
						|
						
 | 
						|
						fp[0]= (tdata[0]-cu->loc[0])/cu->size[0];
 | 
						|
						fp[1]= (tdata[1]-cu->loc[1])/cu->size[1];
 | 
						|
						fp[2]= (tdata[2]-cu->loc[2])/cu->size[2];
 | 
						|
						fp+= 3;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				
 | 
						|
				MEM_freeN(_tdata);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return coord_array;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
	/* NOTE: This routine is tied to the order of vertex
 | 
						|
	 * built by displist and as passed to the renderer.
 | 
						|
	 */
 | 
						|
float *make_orco_curve(Scene *scene, Object *ob)
 | 
						|
{
 | 
						|
	Curve *cu = ob->data;
 | 
						|
	DispList *dl;
 | 
						|
	int u, v, numVerts;
 | 
						|
	float *fp, *coord_array;
 | 
						|
	int remakeDisp = 0;
 | 
						|
 | 
						|
	if (!(cu->flag&CU_UV_ORCO) && cu->key && cu->key->refkey) {
 | 
						|
		cp_cu_key(cu, cu->key->refkey, 0, count_curveverts(&cu->nurb));
 | 
						|
		makeDispListCurveTypes(scene, ob, 1);
 | 
						|
		remakeDisp = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Assumes displist has been built */
 | 
						|
 | 
						|
	numVerts = 0;
 | 
						|
	for (dl=cu->disp.first; dl; dl=dl->next) {
 | 
						|
		if (dl->type==DL_INDEX3) {
 | 
						|
			numVerts += dl->nr;
 | 
						|
		} else if (dl->type==DL_SURF) {
 | 
						|
			/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
 | 
						|
			if (dl->flag & DL_CYCL_U) {
 | 
						|
				if (dl->flag & DL_CYCL_V)
 | 
						|
					numVerts += (dl->parts+1)*(dl->nr+1);
 | 
						|
				else
 | 
						|
					numVerts += dl->parts*(dl->nr+1);
 | 
						|
			}
 | 
						|
			else
 | 
						|
				numVerts += dl->parts*dl->nr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
 | 
						|
	for (dl=cu->disp.first; dl; dl=dl->next) {
 | 
						|
		if (dl->type==DL_INDEX3) {
 | 
						|
			for (u=0; u<dl->nr; u++, fp+=3) {
 | 
						|
				if (cu->flag & CU_UV_ORCO) {
 | 
						|
					fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
 | 
						|
					fp[1]= 0.0;
 | 
						|
					fp[2]= 0.0;
 | 
						|
				} else {
 | 
						|
					VECCOPY(fp, &dl->verts[u*3]);
 | 
						|
 | 
						|
					fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
 | 
						|
					fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
 | 
						|
					fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else if (dl->type==DL_SURF) {
 | 
						|
			int sizeu= dl->nr, sizev= dl->parts;
 | 
						|
			
 | 
						|
			/* exception as handled in convertblender.c too */
 | 
						|
			if (dl->flag & DL_CYCL_U) {
 | 
						|
				sizeu++;
 | 
						|
				if (dl->flag & DL_CYCL_V)
 | 
						|
					sizev++;
 | 
						|
			}
 | 
						|
			
 | 
						|
			for (u=0; u<sizev; u++) {
 | 
						|
				for (v=0; v<sizeu; v++,fp+=3) {
 | 
						|
					if (cu->flag & CU_UV_ORCO) {
 | 
						|
						fp[0]= 2.0f*u/(dl->parts-1) - 1.0f;
 | 
						|
						fp[1]= 2.0f*v/(dl->nr-1) - 1.0f;
 | 
						|
						fp[2]= 0.0;
 | 
						|
					} else {
 | 
						|
						float *vert;
 | 
						|
						int realv= v % dl->nr;
 | 
						|
						int realu= u % dl->parts;
 | 
						|
						
 | 
						|
						vert= dl->verts + 3*(dl->nr*realu + realv);
 | 
						|
						VECCOPY(fp, vert);
 | 
						|
 | 
						|
						fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
 | 
						|
						fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
 | 
						|
						fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (remakeDisp) {
 | 
						|
		makeDispListCurveTypes(scene, ob, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return coord_array;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ***************** BEVEL ****************** */
 | 
						|
 | 
						|
void makebevelcurve(Scene *scene, Object *ob, ListBase *disp)
 | 
						|
{
 | 
						|
	DispList *dl, *dlnew;
 | 
						|
	Curve *bevcu, *cu;
 | 
						|
	float *fp, facx, facy, angle, dangle;
 | 
						|
	int nr, a;
 | 
						|
 | 
						|
	cu= ob->data;
 | 
						|
	disp->first = disp->last = NULL;
 | 
						|
 | 
						|
	/* if a font object is being edited, then do nothing */
 | 
						|
// XXX	if( ob == obedit && ob->type == OB_FONT ) return;
 | 
						|
 | 
						|
	if(cu->bevobj && cu->bevobj!=ob) {
 | 
						|
		if(cu->bevobj->type==OB_CURVE) {
 | 
						|
			bevcu= cu->bevobj->data;
 | 
						|
			if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
 | 
						|
				facx= cu->bevobj->size[0];
 | 
						|
				facy= cu->bevobj->size[1];
 | 
						|
 | 
						|
				dl= bevcu->disp.first;
 | 
						|
				if(dl==0) {
 | 
						|
					makeDispListCurveTypes(scene, cu->bevobj, 0);
 | 
						|
					dl= bevcu->disp.first;
 | 
						|
				}
 | 
						|
				while(dl) {
 | 
						|
					if ELEM(dl->type, DL_POLY, DL_SEGM) {
 | 
						|
						dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");					
 | 
						|
						*dlnew= *dl;
 | 
						|
						dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
 | 
						|
						memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
 | 
						|
						
 | 
						|
						if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
 | 
						|
						
 | 
						|
						BLI_addtail(disp, dlnew);
 | 
						|
						fp= dlnew->verts;
 | 
						|
						nr= dlnew->parts*dlnew->nr;
 | 
						|
						while(nr--) {
 | 
						|
							fp[2]= fp[1]*facy;
 | 
						|
							fp[1]= -fp[0]*facx;
 | 
						|
							fp[0]= 0.0;
 | 
						|
							fp+= 3;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					dl= dl->next;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(cu->ext1==0.0 && cu->ext2==0.0) {
 | 
						|
		;
 | 
						|
	}
 | 
						|
	else if(cu->ext2==0.0) {
 | 
						|
		dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
 | 
						|
		dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type= DL_SEGM;
 | 
						|
		dl->parts= 1;
 | 
						|
		dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
 | 
						|
		dl->nr= 2;
 | 
						|
		
 | 
						|
		fp= dl->verts;
 | 
						|
		fp[0]= fp[1]= 0.0;
 | 
						|
		fp[2]= -cu->ext1;
 | 
						|
		fp[3]= fp[4]= 0.0;
 | 
						|
		fp[5]= cu->ext1;
 | 
						|
	}
 | 
						|
	else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f)	{ // we make a full round bevel in that case
 | 
						|
		
 | 
						|
		nr= 4+ 2*cu->bevresol;
 | 
						|
		   
 | 
						|
		dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | 
						|
		dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type= DL_POLY;
 | 
						|
		dl->parts= 1;
 | 
						|
		dl->flag= DL_BACK_CURVE;
 | 
						|
		dl->nr= nr;
 | 
						|
 | 
						|
		/* a circle */
 | 
						|
		fp= dl->verts;
 | 
						|
		dangle= (2.0f*M_PI/(nr));
 | 
						|
		angle= -(nr-1)*dangle;
 | 
						|
		
 | 
						|
		for(a=0; a<nr; a++) {
 | 
						|
			fp[0]= 0.0;
 | 
						|
			fp[1]= (float)(cos(angle)*(cu->ext2));
 | 
						|
			fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
 | 
						|
			angle+= dangle;
 | 
						|
			fp+= 3;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		short dnr;
 | 
						|
		
 | 
						|
		/* bevel now in three parts, for proper vertex normals */
 | 
						|
		/* part 1 */
 | 
						|
		dnr= nr= 2+ cu->bevresol;
 | 
						|
		if( (cu->flag & (CU_FRONT|CU_BACK))==0)
 | 
						|
			nr= 3+ 2*cu->bevresol;
 | 
						|
		   
 | 
						|
		dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | 
						|
		dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type= DL_SEGM;
 | 
						|
		dl->parts= 1;
 | 
						|
		dl->flag= DL_BACK_CURVE;
 | 
						|
		dl->nr= nr;
 | 
						|
 | 
						|
		/* half a circle */
 | 
						|
		fp= dl->verts;
 | 
						|
		dangle= (0.5*M_PI/(dnr-1));
 | 
						|
		angle= -(nr-1)*dangle;
 | 
						|
		
 | 
						|
		for(a=0; a<nr; a++) {
 | 
						|
			fp[0]= 0.0;
 | 
						|
			fp[1]= (float)(cos(angle)*(cu->ext2));
 | 
						|
			fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
 | 
						|
			angle+= dangle;
 | 
						|
			fp+= 3;
 | 
						|
		}
 | 
						|
		
 | 
						|
		/* part 2, sidefaces */
 | 
						|
		if(cu->ext1!=0.0) {
 | 
						|
			nr= 2;
 | 
						|
			
 | 
						|
			dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
 | 
						|
			dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
 | 
						|
			BLI_addtail(disp, dl);
 | 
						|
			dl->type= DL_SEGM;
 | 
						|
			dl->parts= 1;
 | 
						|
			dl->nr= nr;
 | 
						|
			
 | 
						|
			fp= dl->verts;
 | 
						|
			fp[1]= cu->ext2;
 | 
						|
			fp[2]= -cu->ext1;
 | 
						|
			fp[4]= cu->ext2;
 | 
						|
			fp[5]= cu->ext1;
 | 
						|
			
 | 
						|
			if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
 | 
						|
				dl= MEM_dupallocN(dl);
 | 
						|
				dl->verts= MEM_dupallocN(dl->verts);
 | 
						|
				BLI_addtail(disp, dl);
 | 
						|
				
 | 
						|
				fp= dl->verts;
 | 
						|
				fp[1]= -fp[1];
 | 
						|
				fp[2]= -fp[2];
 | 
						|
				fp[4]= -fp[4];
 | 
						|
				fp[5]= -fp[5];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		/* part 3 */
 | 
						|
		dnr= nr= 2+ cu->bevresol;
 | 
						|
		if( (cu->flag & (CU_FRONT|CU_BACK))==0)
 | 
						|
			nr= 3+ 2*cu->bevresol;
 | 
						|
		
 | 
						|
		dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
 | 
						|
		dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type= DL_SEGM;
 | 
						|
		dl->flag= DL_FRONT_CURVE;
 | 
						|
		dl->parts= 1;
 | 
						|
		dl->nr= nr;
 | 
						|
		
 | 
						|
		/* half a circle */
 | 
						|
		fp= dl->verts;
 | 
						|
		angle= 0.0;
 | 
						|
		dangle= (0.5*M_PI/(dnr-1));
 | 
						|
		
 | 
						|
		for(a=0; a<nr; a++) {
 | 
						|
			fp[0]= 0.0;
 | 
						|
			fp[1]= (float)(cos(angle)*(cu->ext2));
 | 
						|
			fp[2]= (float)(sin(angle)*(cu->ext2)) + cu->ext1;
 | 
						|
			angle+= dangle;
 | 
						|
			fp+= 3;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
 | 
						|
{
 | 
						|
	/* return:
 | 
						|
		-1: colliniar
 | 
						|
		 0: no intersection of segments
 | 
						|
		 1: exact intersection of segments
 | 
						|
		 2: cross-intersection of segments
 | 
						|
	*/
 | 
						|
	float deler;
 | 
						|
 | 
						|
	deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
 | 
						|
	if(deler==0.0) return -1;
 | 
						|
 | 
						|
	*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
 | 
						|
	*labda= -(*labda/deler);
 | 
						|
 | 
						|
	deler= v3[coy]-v4[coy];
 | 
						|
	if(deler==0) {
 | 
						|
		deler=v3[cox]-v4[cox];
 | 
						|
		*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
 | 
						|
	} else {
 | 
						|
		*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
 | 
						|
	}
 | 
						|
	vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
 | 
						|
	vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
 | 
						|
 | 
						|
	if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
 | 
						|
		if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static short bevelinside(BevList *bl1,BevList *bl2)
 | 
						|
{
 | 
						|
	/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
 | 
						|
	/* returns '1' if correct hole  */
 | 
						|
	BevPoint *bevp, *prevbevp;
 | 
						|
	float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
 | 
						|
	int nr, links=0,rechts=0,mode;
 | 
						|
 | 
						|
	/* take first vertex of possible hole */
 | 
						|
 | 
						|
	bevp= (BevPoint *)(bl2+1);
 | 
						|
	hvec1[0]= bevp->x; 
 | 
						|
	hvec1[1]= bevp->y; 
 | 
						|
	hvec1[2]= 0.0;
 | 
						|
	VECCOPY(hvec2,hvec1);
 | 
						|
	hvec2[0]+=1000;
 | 
						|
 | 
						|
	/* test it with all edges of potential surounding poly */
 | 
						|
	/* count number of transitions left-right  */
 | 
						|
 | 
						|
	bevp= (BevPoint *)(bl1+1);
 | 
						|
	nr= bl1->nr;
 | 
						|
	prevbevp= bevp+(nr-1);
 | 
						|
 | 
						|
	while(nr--) {
 | 
						|
		min= prevbevp->y;
 | 
						|
		max= bevp->y;
 | 
						|
		if(max<min) {
 | 
						|
			min= max;
 | 
						|
			max= prevbevp->y;
 | 
						|
		}
 | 
						|
		if(min!=max) {
 | 
						|
			if(min<=hvec1[1] && max>=hvec1[1]) {
 | 
						|
				/* there's a transition, calc intersection point */
 | 
						|
				mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
 | 
						|
				/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
 | 
						|
			           only allow for one situation: we choose lab= 1.0
 | 
						|
				 */
 | 
						|
				if(mode>=0 && lab!=0.0) {
 | 
						|
					if(vec[0]<hvec1[0]) links++;
 | 
						|
					else rechts++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		prevbevp= bevp;
 | 
						|
		bevp++;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if( (links & 1) && (rechts & 1) ) return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct bevelsort {
 | 
						|
	float left;
 | 
						|
	BevList *bl;
 | 
						|
	int dir;
 | 
						|
};
 | 
						|
 | 
						|
static int vergxcobev(const void *a1, const void *a2)
 | 
						|
{
 | 
						|
	const struct bevelsort *x1=a1,*x2=a2;
 | 
						|
 | 
						|
	if( x1->left > x2->left ) return 1;
 | 
						|
	else if( x1->left < x2->left) return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* this function cannot be replaced with atan2, but why? */
 | 
						|
 | 
						|
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
 | 
						|
{
 | 
						|
	float t01, t02, x3, y3;
 | 
						|
 | 
						|
	t01= (float)sqrt(x1*x1+y1*y1);
 | 
						|
	t02= (float)sqrt(x2*x2+y2*y2);
 | 
						|
	if(t01==0.0) t01= 1.0;
 | 
						|
	if(t02==0.0) t02= 1.0;
 | 
						|
 | 
						|
	x1/=t01; 
 | 
						|
	y1/=t01;
 | 
						|
	x2/=t02; 
 | 
						|
	y2/=t02;
 | 
						|
 | 
						|
	t02= x1*x2+y1*y2;
 | 
						|
	if(fabs(t02)>=1.0) t02= .5*M_PI;
 | 
						|
	else t02= (saacos(t02))/2.0f;
 | 
						|
 | 
						|
	t02= (float)sin(t02);
 | 
						|
	if(t02==0.0) t02= 1.0;
 | 
						|
 | 
						|
	x3= x1-x2;
 | 
						|
	y3= y1-y2;
 | 
						|
	if(x3==0 && y3==0) {
 | 
						|
		x3= y1;
 | 
						|
		y3= -x1;
 | 
						|
	} else {
 | 
						|
		t01= (float)sqrt(x3*x3+y3*y3);
 | 
						|
		x3/=t01; 
 | 
						|
		y3/=t01;
 | 
						|
	}
 | 
						|
 | 
						|
	*sina= -y3/t02;
 | 
						|
	*cosa= x3/t02;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, int resolu)
 | 
						|
{
 | 
						|
	BezTriple *pprev, *next, *last;
 | 
						|
	float fac, dfac, t[4];
 | 
						|
	int a;
 | 
						|
	
 | 
						|
	last= nu->bezt+(nu->pntsu-1);
 | 
						|
	
 | 
						|
	/* returns a point */
 | 
						|
	if(prevbezt==nu->bezt) {
 | 
						|
		if(nu->flagu & CU_CYCLIC) pprev= last;
 | 
						|
		else pprev= prevbezt;
 | 
						|
	}
 | 
						|
	else pprev= prevbezt-1;
 | 
						|
	
 | 
						|
	/* next point */
 | 
						|
	if(bezt==last) {
 | 
						|
		if(nu->flagu & CU_CYCLIC) next= nu->bezt;
 | 
						|
		else next= bezt;
 | 
						|
	}
 | 
						|
	else next= bezt+1;
 | 
						|
	
 | 
						|
	fac= 0.0;
 | 
						|
	dfac= 1.0f/(float)resolu;
 | 
						|
	
 | 
						|
	for(a=0; a<resolu; a++, fac+= dfac) {
 | 
						|
		if (tilt_array) {
 | 
						|
			if (nu->tilt_interp==3) { /* May as well support for tilt also 2.47 ease interp */
 | 
						|
				tilt_array[a] = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
 | 
						|
			} else {
 | 
						|
				set_four_ipo(fac, t, nu->tilt_interp);
 | 
						|
				tilt_array[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		if (radius_array) {
 | 
						|
			if (nu->radius_interp==3) {
 | 
						|
				/* Support 2.47 ease interp
 | 
						|
				 * Note! - this only takes the 2 points into account,
 | 
						|
				 * giving much more localized results to changes in radius, sometimes you want that */
 | 
						|
				radius_array[a] = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
 | 
						|
			} else {
 | 
						|
				
 | 
						|
				/* reuse interpolation from tilt if we can */
 | 
						|
				if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) {
 | 
						|
					set_four_ipo(fac, t, nu->radius_interp);
 | 
						|
				}
 | 
						|
				radius_array[a]= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void makeBevelList(Object *ob)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 - convert all curves to polys, with indication of resol and flags for double-vertices
 | 
						|
	 - possibly; do a smart vertice removal (in case Nurb)
 | 
						|
	 - separate in individual blicks with BoundBox
 | 
						|
	 - AutoHole detection
 | 
						|
	*/
 | 
						|
	Curve *cu;
 | 
						|
	Nurb *nu;
 | 
						|
	BezTriple *bezt, *prevbezt;
 | 
						|
	BPoint *bp;
 | 
						|
	BevList *bl, *blnew, *blnext;
 | 
						|
	BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
 | 
						|
	float min, inp, x1, x2, y1, y2, vec[3], vec_prev[3], q[4], quat[4], quat_prev[4], cross[3];
 | 
						|
	float *coord_array, *tilt_array=NULL, *radius_array=NULL, *coord_fp, *tilt_fp=NULL, *radius_fp=NULL;
 | 
						|
	float *v1, *v2;
 | 
						|
	struct bevelsort *sortdata, *sd, *sd1;
 | 
						|
	int a, b, nr, poly, resolu, len=0;
 | 
						|
	int do_tilt, do_radius;
 | 
						|
	
 | 
						|
	/* this function needs an object, because of tflag and upflag */
 | 
						|
	cu= ob->data;
 | 
						|
 | 
						|
	/* do we need to calculate the radius for each point? */
 | 
						|
	/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
 | 
						|
	
 | 
						|
	/* STEP 1: MAKE POLYS  */
 | 
						|
 | 
						|
	BLI_freelistN(&(cu->bev));
 | 
						|
	if(cu->editnurb && ob->type!=OB_FONT) nu= cu->editnurb->first;
 | 
						|
	else nu= cu->nurb.first;
 | 
						|
	
 | 
						|
	while(nu) {
 | 
						|
		
 | 
						|
		/* check if we will calculate tilt data */
 | 
						|
		do_tilt = CU_DO_TILT(cu, nu);
 | 
						|
		do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
 | 
						|
		
 | 
						|
		/* check we are a single point? also check we are not a surface and that the orderu is sane,
 | 
						|
		 * enforced in the UI but can go wrong possibly */
 | 
						|
		if(!check_valid_nurb_u(nu)) {
 | 
						|
			bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1");
 | 
						|
			BLI_addtail(&(cu->bev), bl);
 | 
						|
			bl->nr= 0;
 | 
						|
		} else {
 | 
						|
			if(G.rendering && cu->resolu_ren!=0) 
 | 
						|
				resolu= cu->resolu_ren;
 | 
						|
			else
 | 
						|
				resolu= nu->resolu;
 | 
						|
			
 | 
						|
			if((nu->type & 7)==CU_POLY) {
 | 
						|
				len= nu->pntsu;
 | 
						|
				bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2");
 | 
						|
				BLI_addtail(&(cu->bev), bl);
 | 
						|
	
 | 
						|
				if(nu->flagu & CU_CYCLIC) bl->poly= 0;
 | 
						|
				else bl->poly= -1;
 | 
						|
				bl->nr= len;
 | 
						|
				bl->flag= 0;
 | 
						|
				bevp= (BevPoint *)(bl+1);
 | 
						|
				bp= nu->bp;
 | 
						|
	
 | 
						|
				while(len--) {
 | 
						|
					bevp->x= bp->vec[0];
 | 
						|
					bevp->y= bp->vec[1];
 | 
						|
					bevp->z= bp->vec[2];
 | 
						|
					bevp->alfa= bp->alfa;
 | 
						|
					bevp->radius= bp->radius;
 | 
						|
					bevp->f1= SELECT;
 | 
						|
					bevp++;
 | 
						|
					bp++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if((nu->type & 7)==CU_BEZIER) {
 | 
						|
	
 | 
						|
				len= resolu*(nu->pntsu+ (nu->flagu & CU_CYCLIC) -1)+1;	/* in case last point is not cyclic */
 | 
						|
				bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints");
 | 
						|
				BLI_addtail(&(cu->bev), bl);
 | 
						|
	
 | 
						|
				if(nu->flagu & CU_CYCLIC) bl->poly= 0;
 | 
						|
				else bl->poly= -1;
 | 
						|
				bevp= (BevPoint *)(bl+1);
 | 
						|
	
 | 
						|
				a= nu->pntsu-1;
 | 
						|
				bezt= nu->bezt;
 | 
						|
				if(nu->flagu & CU_CYCLIC) {
 | 
						|
					a++;
 | 
						|
					prevbezt= nu->bezt+(nu->pntsu-1);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					prevbezt= bezt;
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				
 | 
						|
				coord_array= coord_fp= MEM_mallocN(3*sizeof(float)*(resolu+1), "makeBevelCoords");
 | 
						|
				
 | 
						|
				if(do_tilt)
 | 
						|
					tilt_array= tilt_fp= MEM_callocN(sizeof(float)*(resolu+1), "makeBevelTilt");
 | 
						|
				
 | 
						|
				if (do_radius)
 | 
						|
					radius_array= radius_fp= MEM_callocN(sizeof(float)*(resolu+1), "nakeBevelRadius");
 | 
						|
				
 | 
						|
				while(a--) {
 | 
						|
					if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
 | 
						|
	
 | 
						|
						bevp->x= prevbezt->vec[1][0];
 | 
						|
						bevp->y= prevbezt->vec[1][1];
 | 
						|
						bevp->z= prevbezt->vec[1][2];
 | 
						|
						bevp->alfa= prevbezt->alfa;
 | 
						|
						bevp->radius= prevbezt->radius;
 | 
						|
						bevp->f1= SELECT;
 | 
						|
						bevp->f2= 0;
 | 
						|
						bevp++;
 | 
						|
						bl->nr++;
 | 
						|
						bl->flag= 1;
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						v1= prevbezt->vec[1];
 | 
						|
						v2= bezt->vec[0];
 | 
						|
						
 | 
						|
						/* always do all three, to prevent data hanging around */
 | 
						|
						forward_diff_bezier(v1[0], v1[3], v2[0], v2[3], coord_array, resolu, 3);
 | 
						|
						forward_diff_bezier(v1[1], v1[4], v2[1], v2[4], coord_array+1, resolu, 3);
 | 
						|
						forward_diff_bezier(v1[2], v1[5], v2[2], v2[5], coord_array+2, resolu, 3);
 | 
						|
						
 | 
						|
						if (do_tilt || do_radius)
 | 
						|
							alfa_bezpart(prevbezt, bezt, nu, tilt_array, radius_array, resolu);
 | 
						|
						
 | 
						|
						/* indicate with handlecodes double points */
 | 
						|
						if(prevbezt->h1==prevbezt->h2) {
 | 
						|
							if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= SELECT;
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= SELECT;
 | 
						|
							else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= SELECT;
 | 
						|
						}
 | 
						|
						
 | 
						|
						nr= resolu;
 | 
						|
						
 | 
						|
						coord_fp = coord_array;
 | 
						|
						tilt_fp = tilt_array;
 | 
						|
						radius_fp = radius_array;
 | 
						|
						
 | 
						|
						while(nr--) {
 | 
						|
							bevp->x= coord_fp[0]; 
 | 
						|
							bevp->y= coord_fp[1];
 | 
						|
							bevp->z= coord_fp[2];
 | 
						|
							coord_fp+=3;
 | 
						|
							
 | 
						|
							if (do_tilt) {
 | 
						|
								bevp->alfa= *tilt_fp;
 | 
						|
								tilt_fp++;
 | 
						|
							}
 | 
						|
							
 | 
						|
							if (do_radius) {
 | 
						|
								bevp->radius= *radius_fp;
 | 
						|
								radius_fp++;
 | 
						|
							}
 | 
						|
							bevp++;
 | 
						|
						}
 | 
						|
						bl->nr+= resolu;
 | 
						|
	
 | 
						|
					}
 | 
						|
					prevbezt= bezt;
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				
 | 
						|
				MEM_freeN(coord_array);
 | 
						|
				if (do_tilt)	MEM_freeN(tilt_array);
 | 
						|
				if (do_radius)	MEM_freeN(radius_array);
 | 
						|
				coord_array = tilt_array = radius_array = NULL;
 | 
						|
				
 | 
						|
				if((nu->flagu & CU_CYCLIC)==0) {	    /* not cyclic: endpoint */
 | 
						|
					bevp->x= prevbezt->vec[1][0];
 | 
						|
					bevp->y= prevbezt->vec[1][1];
 | 
						|
					bevp->z= prevbezt->vec[1][2];
 | 
						|
					bevp->alfa= prevbezt->alfa;
 | 
						|
					bevp->radius= prevbezt->radius;
 | 
						|
					bl->nr++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if((nu->type & 7)==CU_NURBS) {
 | 
						|
				if(nu->pntsv==1) {
 | 
						|
					len= (resolu*SEGMENTSU(nu));
 | 
						|
					
 | 
						|
					bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
 | 
						|
					BLI_addtail(&(cu->bev), bl);
 | 
						|
					bl->nr= len;
 | 
						|
					bl->flag= 0;
 | 
						|
					if(nu->flagu & CU_CYCLIC) bl->poly= 0;
 | 
						|
					else bl->poly= -1;
 | 
						|
					bevp= (BevPoint *)(bl+1);
 | 
						|
	
 | 
						|
					coord_array= coord_fp= MEM_callocN(3*sizeof(float)*len, "makeBevelCoords");    /* has to be zero-ed */
 | 
						|
					
 | 
						|
					if(do_tilt)
 | 
						|
						tilt_array= tilt_fp= MEM_callocN(sizeof(float)*len, "makeBevelTilt");
 | 
						|
					
 | 
						|
					if (do_radius)
 | 
						|
						radius_array= radius_fp= MEM_callocN(sizeof(float)*len, "nakeBevelRadius");
 | 
						|
					
 | 
						|
					makeNurbcurve(nu, coord_array, tilt_array, radius_array, resolu);
 | 
						|
					
 | 
						|
					while(len--) {
 | 
						|
						bevp->x= coord_fp[0]; 
 | 
						|
						bevp->y= coord_fp[1];
 | 
						|
						bevp->z= coord_fp[2];
 | 
						|
						coord_fp+=3;
 | 
						|
						
 | 
						|
						if (do_tilt) {
 | 
						|
							bevp->alfa= *tilt_fp;
 | 
						|
							tilt_fp++;
 | 
						|
						}
 | 
						|
						
 | 
						|
						if (do_radius) {
 | 
						|
							bevp->radius= *radius_fp;
 | 
						|
							radius_fp++;
 | 
						|
						}
 | 
						|
						
 | 
						|
						
 | 
						|
						bevp->f1= bevp->f2= 0;
 | 
						|
						bevp++;
 | 
						|
					}
 | 
						|
					MEM_freeN(coord_array);
 | 
						|
					if (do_tilt)	MEM_freeN(tilt_array);
 | 
						|
					if (do_radius)	MEM_freeN(radius_array);
 | 
						|
					coord_array = tilt_array = radius_array = NULL;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
 | 
						|
	bl= cu->bev.first;
 | 
						|
	while(bl) {
 | 
						|
		if (bl->nr) { /* null bevel items come from single points */
 | 
						|
			nr= bl->nr;
 | 
						|
			bevp1= (BevPoint *)(bl+1);
 | 
						|
			bevp0= bevp1+(nr-1);
 | 
						|
			nr--;
 | 
						|
			while(nr--) {
 | 
						|
				if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
 | 
						|
					if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
 | 
						|
						if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
 | 
						|
							bevp0->f2= SELECT;
 | 
						|
							bl->flag++;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				bevp0= bevp1;
 | 
						|
				bevp1++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bl= bl->next;
 | 
						|
	}
 | 
						|
	bl= cu->bev.first;
 | 
						|
	while(bl) {
 | 
						|
		blnext= bl->next;
 | 
						|
		if(bl->nr && bl->flag) {
 | 
						|
			nr= bl->nr- bl->flag+1;	/* +1 because vectorbezier sets flag too */
 | 
						|
			blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4");
 | 
						|
			memcpy(blnew, bl, sizeof(BevList));
 | 
						|
			blnew->nr= 0;
 | 
						|
			BLI_remlink(&(cu->bev), bl);
 | 
						|
			BLI_insertlinkbefore(&(cu->bev),blnext,blnew);	/* to make sure bevlijst is tuned with nurblist */
 | 
						|
			bevp0= (BevPoint *)(bl+1);
 | 
						|
			bevp1= (BevPoint *)(blnew+1);
 | 
						|
			nr= bl->nr;
 | 
						|
			while(nr--) {
 | 
						|
				if(bevp0->f2==0) {
 | 
						|
					memcpy(bevp1, bevp0, sizeof(BevPoint));
 | 
						|
					bevp1++;
 | 
						|
					blnew->nr++;
 | 
						|
				}
 | 
						|
				bevp0++;
 | 
						|
			}
 | 
						|
			MEM_freeN(bl);
 | 
						|
			blnew->flag= 0;
 | 
						|
		}
 | 
						|
		bl= blnext;
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 3: POLYS COUNT AND AUTOHOLE */
 | 
						|
	bl= cu->bev.first;
 | 
						|
	poly= 0;
 | 
						|
	while(bl) {
 | 
						|
		if(bl->nr && bl->poly>=0) {
 | 
						|
			poly++;
 | 
						|
			bl->poly= poly;
 | 
						|
			bl->hole= 0;
 | 
						|
		}
 | 
						|
		bl= bl->next;
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	/* find extreme left points, also test (turning) direction */
 | 
						|
	if(poly>0) {
 | 
						|
		sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
 | 
						|
		bl= cu->bev.first;
 | 
						|
		while(bl) {
 | 
						|
			if(bl->poly>0) {
 | 
						|
 | 
						|
				min= 300000.0;
 | 
						|
				bevp= (BevPoint *)(bl+1);
 | 
						|
				nr= bl->nr;
 | 
						|
				while(nr--) {
 | 
						|
					if(min>bevp->x) {
 | 
						|
						min= bevp->x;
 | 
						|
						bevp1= bevp;
 | 
						|
					}
 | 
						|
					bevp++;
 | 
						|
				}
 | 
						|
				sd->bl= bl;
 | 
						|
				sd->left= min;
 | 
						|
 | 
						|
				bevp= (BevPoint *)(bl+1);
 | 
						|
				if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
 | 
						|
				else bevp0= bevp1-1;
 | 
						|
				bevp= bevp+ (bl->nr-1);
 | 
						|
				if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
 | 
						|
				else bevp2= bevp1+1;
 | 
						|
 | 
						|
				inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
 | 
						|
				    +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);
 | 
						|
 | 
						|
				if(inp>0.0) sd->dir= 1;
 | 
						|
				else sd->dir= 0;
 | 
						|
 | 
						|
				sd++;
 | 
						|
			}
 | 
						|
 | 
						|
			bl= bl->next;
 | 
						|
		}
 | 
						|
		qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
 | 
						|
 | 
						|
		sd= sortdata+1;
 | 
						|
		for(a=1; a<poly; a++, sd++) {
 | 
						|
			bl= sd->bl;	    /* is bl a hole? */
 | 
						|
			sd1= sortdata+ (a-1);
 | 
						|
			for(b=a-1; b>=0; b--, sd1--) {	/* all polys to the left */
 | 
						|
				if(bevelinside(sd1->bl, bl)) {
 | 
						|
					bl->hole= 1- sd1->bl->hole;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* turning direction */
 | 
						|
		if((cu->flag & CU_3D)==0) {
 | 
						|
			sd= sortdata;
 | 
						|
			for(a=0; a<poly; a++, sd++) {
 | 
						|
				if(sd->bl->hole==sd->dir) {
 | 
						|
					bl= sd->bl;
 | 
						|
					bevp1= (BevPoint *)(bl+1);
 | 
						|
					bevp2= bevp1+ (bl->nr-1);
 | 
						|
					nr= bl->nr/2;
 | 
						|
					while(nr--) {
 | 
						|
						SWAP(BevPoint, *bevp1, *bevp2);
 | 
						|
						bevp1++;
 | 
						|
						bevp2--;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		MEM_freeN(sortdata);
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 4: COSINES */
 | 
						|
	bl= cu->bev.first;
 | 
						|
	while(bl) {
 | 
						|
	
 | 
						|
		if(bl->nr < 2) {
 | 
						|
			/* do nothing */
 | 
						|
		}
 | 
						|
		else if(bl->nr==2) {	/* 2 pnt, treat separate */
 | 
						|
			bevp2= (BevPoint *)(bl+1);
 | 
						|
			bevp1= bevp2+1;
 | 
						|
 | 
						|
			x1= bevp1->x- bevp2->x;
 | 
						|
			y1= bevp1->y- bevp2->y;
 | 
						|
 | 
						|
			calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
 | 
						|
			bevp2->sina= bevp1->sina;
 | 
						|
			bevp2->cosa= bevp1->cosa;
 | 
						|
 | 
						|
			if(cu->flag & CU_3D) {	/* 3D */
 | 
						|
				float quat[4], q[4];
 | 
						|
			
 | 
						|
				VecSubf(vec, &bevp1->x, &bevp2->x);
 | 
						|
				
 | 
						|
				vectoquat(vec, 5, 1, quat);
 | 
						|
				
 | 
						|
				AxisAngleToQuat(q, vec, bevp1->alfa);
 | 
						|
				QuatMul(quat, q, quat);
 | 
						|
				
 | 
						|
				QuatToMat3(quat, bevp1->mat);
 | 
						|
				Mat3CpyMat3(bevp2->mat, bevp1->mat);
 | 
						|
			}
 | 
						|
 | 
						|
		}	/* this has to be >2 points */
 | 
						|
		else if(cu->flag & CU_NO_TWIST && cu->flag & CU_3D && bl->poly != -1) {
 | 
						|
 | 
						|
			/* Special case, cyclic curve with no twist. tricky... */
 | 
						|
 | 
						|
			float quat[4], q[4], cross[3];
 | 
						|
 | 
						|
			/* correcting a cyclic curve is more complicated, need to be corrected from both ends */
 | 
						|
			float *quat_tmp1, *quat_tmp2; /* store a quat in the matrix temporarily */
 | 
						|
			int iter_dir;
 | 
						|
			BevPoint *bevp_start= (BevPoint *)(bl+1);
 | 
						|
 | 
						|
			/* loop over the points twice, once up, once back, accumulate the quat rotations
 | 
						|
			 * in both directions, then blend them in the 3rd loop and apply the tilt */
 | 
						|
			for(iter_dir = 0; iter_dir < 2; iter_dir++) {
 | 
						|
 | 
						|
				bevp2= (BevPoint *)(bl+1);
 | 
						|
				bevp1= bevp2+(bl->nr-1);
 | 
						|
				bevp0= bevp1-1;
 | 
						|
 | 
						|
				nr= bl->nr;
 | 
						|
				while(nr--) {
 | 
						|
	
 | 
						|
					/* Normalizes */
 | 
						|
					VecBisect3(vec, &bevp0->x, &bevp1->x, &bevp2->x);
 | 
						|
 | 
						|
					if(bl->nr==nr+1) { /* first time */
 | 
						|
						vectoquat(vec, 5, 1, quat);
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						float angle = NormalizedVecAngle2(vec_prev, vec);
 | 
						|
					
 | 
						|
						if(angle > 0.0f) { /* otherwise we can keep as is */
 | 
						|
							Crossf(cross, vec_prev, vec);
 | 
						|
							AxisAngleToQuat(q, cross, angle);
 | 
						|
							QuatMul(quat, q, quat_prev);
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							QUATCOPY(quat, quat_prev);
 | 
						|
						}
 | 
						|
					}
 | 
						|
					QUATCOPY(quat_prev, quat); /* quat_prev can't have the tilt applied */
 | 
						|
					VECCOPY(vec_prev, vec);
 | 
						|
 | 
						|
					if(iter_dir==0) { /* up, first time */
 | 
						|
						quat_tmp1= (float *)bevp1->mat;
 | 
						|
 | 
						|
						bevp0= bevp1;
 | 
						|
						bevp1= bevp2;
 | 
						|
						bevp2++;
 | 
						|
					}
 | 
						|
					else { /* down second time */
 | 
						|
						quat_tmp1= ((float *)bevp1->mat)+4;
 | 
						|
 | 
						|
						bevp2= bevp1;
 | 
						|
						bevp1= bevp0;
 | 
						|
						bevp0--;
 | 
						|
 | 
						|
						/* wrap around */
 | 
						|
						if (bevp0 < bevp_start)
 | 
						|
							bevp0= bevp_start+(bl->nr-1);
 | 
						|
					}
 | 
						|
 | 
						|
					QUATCOPY(quat_tmp1, quat);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* Now interpolate the 2 quats and apply tilt */
 | 
						|
 | 
						|
			bevp2= (BevPoint *)(bl+1);
 | 
						|
			bevp1= bevp2+(bl->nr-1);
 | 
						|
			bevp0= bevp1-1;
 | 
						|
 | 
						|
			nr= bl->nr;
 | 
						|
			while(nr--) {
 | 
						|
 | 
						|
				VecBisect3(vec, &bevp0->x, &bevp1->x, &bevp2->x);
 | 
						|
 | 
						|
				quat_tmp1= (float *)bevp1->mat;
 | 
						|
				quat_tmp2= quat_tmp1+4;
 | 
						|
 | 
						|
				/* blend the 2 rotations gathered from both directions */
 | 
						|
				QuatInterpol(quat, quat_tmp1, quat_tmp2, 1.0 - (((float)nr)/bl->nr));
 | 
						|
 | 
						|
				AxisAngleToQuat(q, vec, bevp1->alfa);
 | 
						|
				QuatMul(quat, q, quat);
 | 
						|
				QuatToMat3(quat, bevp1->mat);
 | 
						|
				
 | 
						|
				/* generic */
 | 
						|
				x1= bevp1->x- bevp0->x;
 | 
						|
				x2= bevp1->x- bevp2->x;
 | 
						|
				y1= bevp1->y- bevp0->y;
 | 
						|
				y2= bevp1->y- bevp2->y;
 | 
						|
			
 | 
						|
				calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
 | 
						|
				
 | 
						|
				bevp0= bevp1;
 | 
						|
				bevp1= bevp2;
 | 
						|
				bevp2++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Any curve with 3 or more points */
 | 
						|
 | 
						|
			bevp2= (BevPoint *)(bl+1);
 | 
						|
			bevp1= bevp2+(bl->nr-1);
 | 
						|
			bevp0= bevp1-1;
 | 
						|
 | 
						|
			nr= bl->nr;
 | 
						|
			while(nr--) {
 | 
						|
 | 
						|
				if(cu->flag & CU_3D) {	/* 3D */
 | 
						|
 | 
						|
					/* Normalizes */
 | 
						|
					VecBisect3(vec, &bevp0->x, &bevp1->x, &bevp2->x);
 | 
						|
 | 
						|
					if(bl->nr==nr+1 || !(cu->flag & CU_NO_TWIST)) { /* first time */
 | 
						|
						vectoquat(vec, 5, 1, quat);
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						float angle = NormalizedVecAngle2(vec_prev, vec);
 | 
						|
 | 
						|
						if(angle > 0.0f) { /* otherwise we can keep as is */
 | 
						|
							Crossf(cross, vec_prev, vec);
 | 
						|
							AxisAngleToQuat(q, cross, angle);
 | 
						|
							QuatMul(quat, q, quat_prev);
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							QUATCOPY(quat, quat_prev);
 | 
						|
						}
 | 
						|
					}
 | 
						|
					QUATCOPY(quat_prev, quat); /* quat_prev can't have the tilt applied */
 | 
						|
					VECCOPY(vec_prev, vec);
 | 
						|
					
 | 
						|
					AxisAngleToQuat(q, vec, bevp1->alfa);
 | 
						|
					QuatMul(quat, q, quat);
 | 
						|
					QuatToMat3(quat, bevp1->mat);
 | 
						|
				}
 | 
						|
 | 
						|
				x1= bevp1->x- bevp0->x;
 | 
						|
				x2= bevp1->x- bevp2->x;
 | 
						|
				y1= bevp1->y- bevp0->y;
 | 
						|
				y2= bevp1->y- bevp2->y;
 | 
						|
 | 
						|
				calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
 | 
						|
 | 
						|
 | 
						|
				bevp0= bevp1;
 | 
						|
				bevp1= bevp2;
 | 
						|
				bevp2++;
 | 
						|
			}
 | 
						|
 | 
						|
			/* correct non-cyclic cases */
 | 
						|
			if(bl->poly== -1) {
 | 
						|
				if(bl->nr>2) {
 | 
						|
					bevp= (BevPoint *)(bl+1);
 | 
						|
					bevp1= bevp+1;
 | 
						|
					bevp->sina= bevp1->sina;
 | 
						|
					bevp->cosa= bevp1->cosa;
 | 
						|
					Mat3CpyMat3(bevp->mat, bevp1->mat);
 | 
						|
					bevp= (BevPoint *)(bl+1);
 | 
						|
					bevp+= (bl->nr-1);
 | 
						|
					bevp1= bevp-1;
 | 
						|
					bevp->sina= bevp1->sina;
 | 
						|
					bevp->cosa= bevp1->cosa;
 | 
						|
					Mat3CpyMat3(bevp->mat, bevp1->mat);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bl= bl->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* ****************** HANDLES ************** */
 | 
						|
 | 
						|
/*
 | 
						|
 *   handlecodes:
 | 
						|
 *		1: nothing,  1:auto,  2:vector,  3:aligned
 | 
						|
 */
 | 
						|
 | 
						|
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
 | 
						|
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
 | 
						|
{
 | 
						|
	float *p1,*p2,*p3, pt[3];
 | 
						|
	float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
 | 
						|
 | 
						|
	if(bezt->h1==0 && bezt->h2==0) return;
 | 
						|
 | 
						|
	p2= bezt->vec[1];
 | 
						|
 | 
						|
	if(prev==0) {
 | 
						|
		p3= next->vec[1];
 | 
						|
		pt[0]= 2*p2[0]- p3[0];
 | 
						|
		pt[1]= 2*p2[1]- p3[1];
 | 
						|
		pt[2]= 2*p2[2]- p3[2];
 | 
						|
		p1= pt;
 | 
						|
	}
 | 
						|
	else p1= prev->vec[1];
 | 
						|
 | 
						|
	if(next==0) {
 | 
						|
		pt[0]= 2*p2[0]- p1[0];
 | 
						|
		pt[1]= 2*p2[1]- p1[1];
 | 
						|
		pt[2]= 2*p2[2]- p1[2];
 | 
						|
		p3= pt;
 | 
						|
	}
 | 
						|
	else p3= next->vec[1];
 | 
						|
 | 
						|
	dx= p2[0]- p1[0];
 | 
						|
	dy= p2[1]- p1[1];
 | 
						|
	dz= p2[2]- p1[2];
 | 
						|
	
 | 
						|
	if(mode) len1= dx;
 | 
						|
	else len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
 | 
						|
	
 | 
						|
	dx1= p3[0]- p2[0];
 | 
						|
	dy1= p3[1]- p2[1];
 | 
						|
	dz1= p3[2]- p2[2];
 | 
						|
	
 | 
						|
	if(mode) len2= dx1;
 | 
						|
	else len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
 | 
						|
 | 
						|
	if(len1==0.0f) len1=1.0f;
 | 
						|
	if(len2==0.0f) len2=1.0f;
 | 
						|
 | 
						|
 | 
						|
	if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) {    /* auto */
 | 
						|
		vx= dx1/len2 + dx/len1;
 | 
						|
		vy= dy1/len2 + dy/len1;
 | 
						|
		vz= dz1/len2 + dz/len1;
 | 
						|
		len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz);
 | 
						|
		if(len!=0.0f) {
 | 
						|
			int leftviolate=0, rightviolate=0;	/* for mode==2 */
 | 
						|
			
 | 
						|
			if(len1>5.0f*len2) len1= 5.0f*len2;	
 | 
						|
			if(len2>5.0f*len1) len2= 5.0f*len1;
 | 
						|
			
 | 
						|
			if(bezt->h1==HD_AUTO) {
 | 
						|
				len1/=len;
 | 
						|
				*(p2-3)= *p2-vx*len1;
 | 
						|
				*(p2-2)= *(p2+1)-vy*len1;
 | 
						|
				*(p2-1)= *(p2+2)-vz*len1;
 | 
						|
				
 | 
						|
				if(mode==2 && next && prev) {	// keep horizontal if extrema
 | 
						|
					float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
 | 
						|
					float ydiff2= next->vec[1][1] - bezt->vec[1][1];
 | 
						|
					if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
 | 
						|
						bezt->vec[0][1]= bezt->vec[1][1];
 | 
						|
					}
 | 
						|
					else {						// handles should not be beyond y coord of two others
 | 
						|
						if(ydiff1<=0.0) { 
 | 
						|
							if(prev->vec[1][1] > bezt->vec[0][1]) {
 | 
						|
								bezt->vec[0][1]= prev->vec[1][1]; 
 | 
						|
								leftviolate= 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if(prev->vec[1][1] < bezt->vec[0][1]) {
 | 
						|
								bezt->vec[0][1]= prev->vec[1][1]; 
 | 
						|
								leftviolate= 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(bezt->h2==HD_AUTO) {
 | 
						|
				len2/=len;
 | 
						|
				*(p2+3)= *p2+vx*len2;
 | 
						|
				*(p2+4)= *(p2+1)+vy*len2;
 | 
						|
				*(p2+5)= *(p2+2)+vz*len2;
 | 
						|
				
 | 
						|
				if(mode==2 && next && prev) {	// keep horizontal if extrema
 | 
						|
					float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
 | 
						|
					float ydiff2= next->vec[1][1] - bezt->vec[1][1];
 | 
						|
					if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
 | 
						|
						bezt->vec[2][1]= bezt->vec[1][1];
 | 
						|
					}
 | 
						|
					else {						// handles should not be beyond y coord of two others
 | 
						|
						if(ydiff1<=0.0) { 
 | 
						|
							if(next->vec[1][1] < bezt->vec[2][1]) {
 | 
						|
								bezt->vec[2][1]= next->vec[1][1]; 
 | 
						|
								rightviolate= 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if(next->vec[1][1] > bezt->vec[2][1]) {
 | 
						|
								bezt->vec[2][1]= next->vec[1][1]; 
 | 
						|
								rightviolate= 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(leftviolate || rightviolate) {	/* align left handle */
 | 
						|
				float h1[3], h2[3];
 | 
						|
				
 | 
						|
				VecSubf(h1, p2-3, p2);
 | 
						|
				VecSubf(h2, p2, p2+3);
 | 
						|
				len1= Normalize(h1);
 | 
						|
				len2= Normalize(h2);
 | 
						|
				
 | 
						|
				vz= INPR(h1, h2);
 | 
						|
				
 | 
						|
				if(leftviolate) {
 | 
						|
					*(p2+3)= *(p2)   - vz*len2*h1[0];
 | 
						|
					*(p2+4)= *(p2+1) - vz*len2*h1[1];
 | 
						|
					*(p2+5)= *(p2+2) - vz*len2*h1[2];
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					*(p2-3)= *(p2)   + vz*len1*h2[0];
 | 
						|
					*(p2-2)= *(p2+1) + vz*len1*h2[1];
 | 
						|
					*(p2-1)= *(p2+2) + vz*len1*h2[2];
 | 
						|
				}
 | 
						|
			}
 | 
						|
			
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if(bezt->h1==HD_VECT) {	/* vector */
 | 
						|
		dx/=3.0; 
 | 
						|
		dy/=3.0; 
 | 
						|
		dz/=3.0;
 | 
						|
		*(p2-3)= *p2-dx;
 | 
						|
		*(p2-2)= *(p2+1)-dy;
 | 
						|
		*(p2-1)= *(p2+2)-dz;
 | 
						|
	}
 | 
						|
	if(bezt->h2==HD_VECT) {
 | 
						|
		dx1/=3.0; 
 | 
						|
		dy1/=3.0; 
 | 
						|
		dz1/=3.0;
 | 
						|
		*(p2+3)= *p2+dx1;
 | 
						|
		*(p2+4)= *(p2+1)+dy1;
 | 
						|
		*(p2+5)= *(p2+2)+dz1;
 | 
						|
	}
 | 
						|
 | 
						|
	len2= VecLenf(p2, p2+3);
 | 
						|
	len1= VecLenf(p2, p2-3);
 | 
						|
	if(len1==0.0) len1=1.0;
 | 
						|
	if(len2==0.0) len2=1.0;
 | 
						|
 | 
						|
	if(bezt->f1 & SELECT) { /* order of calculation */
 | 
						|
		if(bezt->h2==HD_ALIGN) {	/* aligned */
 | 
						|
			len= len2/len1;
 | 
						|
			p2[3]= p2[0]+len*(p2[0]-p2[-3]);
 | 
						|
			p2[4]= p2[1]+len*(p2[1]-p2[-2]);
 | 
						|
			p2[5]= p2[2]+len*(p2[2]-p2[-1]);
 | 
						|
		}
 | 
						|
		if(bezt->h1==HD_ALIGN) {
 | 
						|
			len= len1/len2;
 | 
						|
			p2[-3]= p2[0]+len*(p2[0]-p2[3]);
 | 
						|
			p2[-2]= p2[1]+len*(p2[1]-p2[4]);
 | 
						|
			p2[-1]= p2[2]+len*(p2[2]-p2[5]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if(bezt->h1==HD_ALIGN) {
 | 
						|
			len= len1/len2;
 | 
						|
			p2[-3]= p2[0]+len*(p2[0]-p2[3]);
 | 
						|
			p2[-2]= p2[1]+len*(p2[1]-p2[4]);
 | 
						|
			p2[-1]= p2[2]+len*(p2[2]-p2[5]);
 | 
						|
		}
 | 
						|
		if(bezt->h2==HD_ALIGN) {	/* aligned */
 | 
						|
			len= len2/len1;
 | 
						|
			p2[3]= p2[0]+len*(p2[0]-p2[-3]);
 | 
						|
			p2[4]= p2[1]+len*(p2[1]-p2[-2]);
 | 
						|
			p2[5]= p2[2]+len*(p2[2]-p2[-1]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
 | 
						|
{
 | 
						|
	BezTriple *bezt, *prev, *next;
 | 
						|
	short a;
 | 
						|
 | 
						|
	if((nu->type & 7)!=CU_BEZIER) return;
 | 
						|
	if(nu->pntsu<2) return;
 | 
						|
	
 | 
						|
	a= nu->pntsu;
 | 
						|
	bezt= nu->bezt;
 | 
						|
	if(nu->flagu & CU_CYCLIC) prev= bezt+(a-1);
 | 
						|
	else prev= 0;
 | 
						|
	next= bezt+1;
 | 
						|
 | 
						|
	while(a--) {
 | 
						|
		calchandleNurb(bezt, prev, next, 0);
 | 
						|
		prev= bezt;
 | 
						|
		if(a==1) {
 | 
						|
			if(nu->flagu & CU_CYCLIC) next= nu->bezt;
 | 
						|
			else next= 0;
 | 
						|
		}
 | 
						|
		else next++;
 | 
						|
 | 
						|
		bezt++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void testhandlesNurb(Nurb *nu)
 | 
						|
{
 | 
						|
    /* use when something has changed with handles.
 | 
						|
    it treats all BezTriples with the following rules:
 | 
						|
    PHASE 1: do types have to be altered?
 | 
						|
       Auto handles: become aligned when selection status is NOT(000 || 111)
 | 
						|
       Vector handles: become 'nothing' when (one half selected AND other not)
 | 
						|
    PHASE 2: recalculate handles
 | 
						|
    */
 | 
						|
	BezTriple *bezt;
 | 
						|
	short flag, a;
 | 
						|
 | 
						|
	if((nu->type & 7)!=CU_BEZIER) return;
 | 
						|
 | 
						|
	bezt= nu->bezt;
 | 
						|
	a= nu->pntsu;
 | 
						|
	while(a--) {
 | 
						|
		flag= 0;
 | 
						|
		if(bezt->f1 & SELECT) flag++;
 | 
						|
		if(bezt->f2 & SELECT) flag += 2;
 | 
						|
		if(bezt->f3 & SELECT) flag += 4;
 | 
						|
 | 
						|
		if( !(flag==0 || flag==7) ) {
 | 
						|
			if(bezt->h1==HD_AUTO) {   /* auto */
 | 
						|
				bezt->h1= HD_ALIGN;
 | 
						|
			}
 | 
						|
			if(bezt->h2==HD_AUTO) {   /* auto */
 | 
						|
				bezt->h2= HD_ALIGN;
 | 
						|
			}
 | 
						|
 | 
						|
			if(bezt->h1==HD_VECT) {   /* vector */
 | 
						|
				if(flag < 4) bezt->h1= 0;
 | 
						|
			}
 | 
						|
			if(bezt->h2==HD_VECT) {   /* vector */
 | 
						|
				if( flag > 3) bezt->h2= 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bezt++;
 | 
						|
	}
 | 
						|
 | 
						|
	calchandlesNurb(nu);
 | 
						|
}
 | 
						|
 | 
						|
void autocalchandlesNurb(Nurb *nu, int flag)
 | 
						|
{
 | 
						|
	/* checks handle coordinates and calculates type */
 | 
						|
	
 | 
						|
	BezTriple *bezt2, *bezt1, *bezt0;
 | 
						|
	int i, align, leftsmall, rightsmall;
 | 
						|
 | 
						|
	if(nu==0 || nu->bezt==0) return;
 | 
						|
	
 | 
						|
	bezt2 = nu->bezt;
 | 
						|
	bezt1 = bezt2 + (nu->pntsu-1);
 | 
						|
	bezt0 = bezt1 - 1;
 | 
						|
	i = nu->pntsu;
 | 
						|
 | 
						|
	while(i--) {
 | 
						|
		
 | 
						|
		align= leftsmall= rightsmall= 0;
 | 
						|
		
 | 
						|
		/* left handle: */
 | 
						|
		if(flag==0 || (bezt1->f1 & flag) ) {
 | 
						|
			bezt1->h1= 0;
 | 
						|
			/* distance too short: vectorhandle */
 | 
						|
			if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
 | 
						|
				bezt1->h1= HD_VECT;
 | 
						|
				leftsmall= 1;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* aligned handle? */
 | 
						|
				if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
 | 
						|
					align= 1;
 | 
						|
					bezt1->h1= HD_ALIGN;
 | 
						|
				}
 | 
						|
				/* or vector handle? */
 | 
						|
				if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
 | 
						|
					bezt1->h1= HD_VECT;
 | 
						|
				
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* right handle: */
 | 
						|
		if(flag==0 || (bezt1->f3 & flag) ) {
 | 
						|
			bezt1->h2= 0;
 | 
						|
			/* distance too short: vectorhandle */
 | 
						|
			if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
 | 
						|
				bezt1->h2= HD_VECT;
 | 
						|
				rightsmall= 1;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* aligned handle? */
 | 
						|
				if(align) bezt1->h2= HD_ALIGN;
 | 
						|
 | 
						|
				/* or vector handle? */
 | 
						|
				if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
 | 
						|
					bezt1->h2= HD_VECT;
 | 
						|
				
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
 | 
						|
		if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
 | 
						|
		
 | 
						|
		/* undesired combination: */
 | 
						|
		if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
 | 
						|
		if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
 | 
						|
		
 | 
						|
		bezt0= bezt1;
 | 
						|
		bezt1= bezt2;
 | 
						|
		bezt2++;
 | 
						|
	}
 | 
						|
 | 
						|
	calchandlesNurb(nu);
 | 
						|
}
 | 
						|
 | 
						|
void autocalchandlesNurb_all(ListBase *editnurb, int flag)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	
 | 
						|
	nu= editnurb->first;
 | 
						|
	while(nu) {
 | 
						|
		autocalchandlesNurb(nu, flag);
 | 
						|
		nu= nu->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void sethandlesNurb(ListBase *editnurb, short code)
 | 
						|
{
 | 
						|
	/* code==1: set autohandle */
 | 
						|
	/* code==2: set vectorhandle */
 | 
						|
	/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
 | 
						|
	/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
 | 
						|
	/* code==5: Set align, like 3 but no toggle */
 | 
						|
	/* code==6: Clear align, like 3 but no toggle */
 | 
						|
	Nurb *nu;
 | 
						|
	BezTriple *bezt;
 | 
						|
	short a, ok=0;
 | 
						|
 | 
						|
	if(code==1 || code==2) {
 | 
						|
		nu= editnurb->first;
 | 
						|
		while(nu) {
 | 
						|
			if( (nu->type & 7)==CU_BEZIER) {
 | 
						|
				bezt= nu->bezt;
 | 
						|
				a= nu->pntsu;
 | 
						|
				while(a--) {
 | 
						|
					if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
 | 
						|
						if(bezt->f1 & SELECT) bezt->h1= code;
 | 
						|
						if(bezt->f3 & SELECT) bezt->h2= code;
 | 
						|
						if(bezt->h1!=bezt->h2) {
 | 
						|
							if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
 | 
						|
							if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				calchandlesNurb(nu);
 | 
						|
			}
 | 
						|
			nu= nu->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* there is 1 handle not FREE: FREE it all, else make ALIGNED  */
 | 
						|
		
 | 
						|
		nu= editnurb->first;
 | 
						|
		if (code == 5) {
 | 
						|
			ok = HD_ALIGN;
 | 
						|
		} else if (code == 6) {
 | 
						|
			ok = HD_FREE;
 | 
						|
		} else {
 | 
						|
			/* Toggle */
 | 
						|
			while(nu) {
 | 
						|
				if( (nu->type & 7)==CU_BEZIER) {
 | 
						|
					bezt= nu->bezt;
 | 
						|
					a= nu->pntsu;
 | 
						|
					while(a--) {
 | 
						|
						if((bezt->f1 & SELECT) && bezt->h1) ok= 1;
 | 
						|
						if((bezt->f3 & SELECT) && bezt->h2) ok= 1;
 | 
						|
						if(ok) break;
 | 
						|
						bezt++;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				nu= nu->next;
 | 
						|
			}
 | 
						|
			if(ok) ok= HD_FREE;
 | 
						|
			else ok= HD_ALIGN;
 | 
						|
		}
 | 
						|
		nu= editnurb->first;
 | 
						|
		while(nu) {
 | 
						|
			if( (nu->type & 7)==CU_BEZIER) {
 | 
						|
				bezt= nu->bezt;
 | 
						|
				a= nu->pntsu;
 | 
						|
				while(a--) {
 | 
						|
					if(bezt->f1 & SELECT) bezt->h1= ok;
 | 
						|
					if(bezt->f3 & SELECT) bezt->h2= ok;
 | 
						|
	
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				calchandlesNurb(nu);
 | 
						|
			}
 | 
						|
			nu= nu->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void swapdata(void *adr1, void *adr2, int len)
 | 
						|
{
 | 
						|
 | 
						|
	if(len<=0) return;
 | 
						|
 | 
						|
	if(len<65) {
 | 
						|
		char adr[64];
 | 
						|
 | 
						|
		memcpy(adr, adr1, len);
 | 
						|
		memcpy(adr1, adr2, len);
 | 
						|
		memcpy(adr2, adr, len);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		char *adr;
 | 
						|
 | 
						|
		adr= (char *)MEM_mallocN(len, "curve swap");
 | 
						|
		memcpy(adr, adr1, len);
 | 
						|
		memcpy(adr1, adr2, len);
 | 
						|
		memcpy(adr2, adr, len);
 | 
						|
		MEM_freeN(adr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void switchdirectionNurb(Nurb *nu)
 | 
						|
{
 | 
						|
	BezTriple *bezt1, *bezt2;
 | 
						|
	BPoint *bp1, *bp2;
 | 
						|
	float *fp1, *fp2, *tempf;
 | 
						|
	int a, b;
 | 
						|
 | 
						|
	if(nu->pntsu==1 && nu->pntsv==1) return;
 | 
						|
 | 
						|
	if((nu->type & 7)==CU_BEZIER) {
 | 
						|
		a= nu->pntsu;
 | 
						|
		bezt1= nu->bezt;
 | 
						|
		bezt2= bezt1+(a-1);
 | 
						|
		if(a & 1) a+= 1;	/* if odd, also swap middle content */
 | 
						|
		a/= 2;
 | 
						|
		while(a>0) {
 | 
						|
			if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
 | 
						|
 | 
						|
			swapdata(bezt1->vec[0], bezt1->vec[2], 12);
 | 
						|
			if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
 | 
						|
 | 
						|
			SWAP(char, bezt1->h1, bezt1->h2);
 | 
						|
			SWAP(short, bezt1->f1, bezt1->f3);
 | 
						|
			
 | 
						|
			if(bezt1!=bezt2) {
 | 
						|
				SWAP(char, bezt2->h1, bezt2->h2);
 | 
						|
				SWAP(short, bezt2->f1, bezt2->f3);
 | 
						|
				bezt1->alfa= -bezt1->alfa;
 | 
						|
				bezt2->alfa= -bezt2->alfa;
 | 
						|
			}
 | 
						|
			a--;
 | 
						|
			bezt1++; 
 | 
						|
			bezt2--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if(nu->pntsv==1) {
 | 
						|
		a= nu->pntsu;
 | 
						|
		bp1= nu->bp;
 | 
						|
		bp2= bp1+(a-1);
 | 
						|
		a/= 2;
 | 
						|
		while(bp1!=bp2 && a>0) {
 | 
						|
			SWAP(BPoint, *bp1, *bp2);
 | 
						|
			a--;
 | 
						|
			bp1->alfa= -bp1->alfa;
 | 
						|
			bp2->alfa= -bp2->alfa;
 | 
						|
			bp1++; 
 | 
						|
			bp2--;
 | 
						|
		}
 | 
						|
		if((nu->type & 7)==CU_NURBS) {
 | 
						|
			/* inverse knots */
 | 
						|
			a= KNOTSU(nu);
 | 
						|
			fp1= nu->knotsu;
 | 
						|
			fp2= fp1+(a-1);
 | 
						|
			a/= 2;
 | 
						|
			while(fp1!=fp2 && a>0) {
 | 
						|
				SWAP(float, *fp1, *fp2);
 | 
						|
				a--;
 | 
						|
				fp1++; 
 | 
						|
				fp2--;
 | 
						|
			}
 | 
						|
			/* and make in increasing order again */
 | 
						|
			a= KNOTSU(nu);
 | 
						|
			fp1= nu->knotsu;
 | 
						|
			fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
 | 
						|
			while(a--) {
 | 
						|
				fp2[0]= fabs(fp1[1]-fp1[0]);
 | 
						|
				fp1++;
 | 
						|
				fp2++;
 | 
						|
			}
 | 
						|
	
 | 
						|
			a= KNOTSU(nu)-1;
 | 
						|
			fp1= nu->knotsu;
 | 
						|
			fp2= tempf;
 | 
						|
			fp1[0]= 0.0;
 | 
						|
			fp1++;
 | 
						|
			while(a--) {
 | 
						|
				fp1[0]= fp1[-1]+fp2[0];
 | 
						|
				fp1++;
 | 
						|
				fp2++;
 | 
						|
			}
 | 
						|
			MEM_freeN(tempf);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		
 | 
						|
		for(b=0; b<nu->pntsv; b++) {
 | 
						|
		
 | 
						|
			bp1= nu->bp+b*nu->pntsu;
 | 
						|
			a= nu->pntsu;
 | 
						|
			bp2= bp1+(a-1);
 | 
						|
			a/= 2;
 | 
						|
			
 | 
						|
			while(bp1!=bp2 && a>0) {
 | 
						|
				SWAP(BPoint, *bp1, *bp2);
 | 
						|
				a--;
 | 
						|
				bp1++; 
 | 
						|
				bp2--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float (*curve_getVertexCos(Curve *cu, ListBase *lb, int *numVerts_r))[3]
 | 
						|
{
 | 
						|
	int i, numVerts = *numVerts_r = count_curveverts(lb);
 | 
						|
	float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
 | 
						|
	Nurb *nu;
 | 
						|
 | 
						|
	co = cos[0];
 | 
						|
	for (nu=lb->first; nu; nu=nu->next) {
 | 
						|
		if ((nu->type & 7)==CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i=0; i<nu->pntsu; i++,bezt++) {
 | 
						|
				VECCOPY(co, bezt->vec[0]); co+=3;
 | 
						|
				VECCOPY(co, bezt->vec[1]); co+=3;
 | 
						|
				VECCOPY(co, bezt->vec[2]); co+=3;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
 | 
						|
				VECCOPY(co, bp->vec); co+=3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return cos;
 | 
						|
}
 | 
						|
 | 
						|
void curve_applyVertexCos(Curve *cu, ListBase *lb, float (*vertexCos)[3])
 | 
						|
{
 | 
						|
	float *co = vertexCos[0];
 | 
						|
	Nurb *nu;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (nu=lb->first; nu; nu=nu->next) {
 | 
						|
		if ((nu->type & 7)==CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i=0; i<nu->pntsu; i++,bezt++) {
 | 
						|
				VECCOPY(bezt->vec[0], co); co+=3;
 | 
						|
				VECCOPY(bezt->vec[1], co); co+=3;
 | 
						|
				VECCOPY(bezt->vec[2], co); co+=3;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
 | 
						|
				VECCOPY(bp->vec, co); co+=3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int check_valid_nurb_u( struct Nurb *nu )
 | 
						|
{
 | 
						|
	if (nu==NULL)						return 0;
 | 
						|
	if (nu->pntsu <= 1)					return 0;
 | 
						|
	if ((nu->type & 7)!=CU_NURBS)		return 1; /* not a nurb, lets assume its valid */
 | 
						|
	
 | 
						|
	if (nu->pntsu < nu->orderu)			return 0;
 | 
						|
	if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagu>>1) & 2)) { /* Bezier U Endpoints */
 | 
						|
		if (nu->orderu==4) {
 | 
						|
			if (nu->pntsu < 5)			return 0; /* bezier with 4 orderu needs 5 points */
 | 
						|
		} else if (nu->orderu != 3)		return 0; /* order must be 3 or 4 */
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
int check_valid_nurb_v( struct Nurb *nu)
 | 
						|
{
 | 
						|
	if (nu==NULL)						return 0;
 | 
						|
	if (nu->pntsv <= 1)					return 0;
 | 
						|
	if ((nu->type & 7)!=CU_NURBS)		return 1; /* not a nurb, lets assume its valid */
 | 
						|
	
 | 
						|
	if (nu->pntsv < nu->orderv)			return 0;
 | 
						|
	if (((nu->flag & CU_CYCLIC)==0) && ((nu->flagv>>1) & 2)) { /* Bezier V Endpoints */
 | 
						|
		if (nu->orderv==4) {
 | 
						|
			if (nu->pntsv < 5)			return 0; /* bezier with 4 orderu needs 5 points */
 | 
						|
		} else if (nu->orderv != 3)		return 0; /* order must be 3 or 4 */
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int clamp_nurb_order_u( struct Nurb *nu )
 | 
						|
{
 | 
						|
	int change = 0;
 | 
						|
	if(nu->pntsu<nu->orderu) {
 | 
						|
		nu->orderu= nu->pntsu;
 | 
						|
		change= 1;
 | 
						|
	}
 | 
						|
	if(((nu->flag & CU_CYCLIC)==0) && (nu->flagu>>1)&2) {
 | 
						|
		CLAMP(nu->orderu, 3,4);
 | 
						|
		change= 1;
 | 
						|
	}
 | 
						|
	return change;
 | 
						|
}
 | 
						|
 | 
						|
int clamp_nurb_order_v( struct Nurb *nu)
 | 
						|
{
 | 
						|
	int change = 0;
 | 
						|
	if(nu->pntsv<nu->orderv) {
 | 
						|
		nu->orderv= nu->pntsv;
 | 
						|
		change= 1;
 | 
						|
	}
 | 
						|
	if(((nu->flag & CU_CYCLIC)==0) && (nu->flagv>>1)&2) {
 | 
						|
		CLAMP(nu->orderv, 3,4);
 | 
						|
		change= 1;
 | 
						|
	}
 | 
						|
	return change;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 |