This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/modifiers/intern/MOD_screw.c

1174 lines
34 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*
* Contributor(s): Daniel Dunbar
* Ton Roosendaal,
* Ben Batt,
* Brecht Van Lommel,
* Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file blender/modifiers/intern/MOD_screw.c
* \ingroup modifiers
*/
/* Screw modifier: revolves the edges about an axis */
#include <limits.h>
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BLI_math.h"
#include "BLI_alloca.h"
#include "BLI_utildefines.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_library_query.h"
#include "depsgraph_private.h"
#include "DEG_depsgraph_build.h"
#include "MOD_modifiertypes.h"
#include "MEM_guardedalloc.h"
#include "BLI_strict_flags.h"
/* used for gathering edge connectivity */
typedef struct ScrewVertConnect {
float dist; /* distance from the center axis */
float co[3]; /* location relative to the transformed axis */
float no[3]; /* calc normal of the vertex */
unsigned int v[2]; /* 2 verts on either side of this one */
MEdge *e[2]; /* edges on either side, a bit of a waste since each edge ref's 2 edges */
char flag;
} ScrewVertConnect;
typedef struct ScrewVertIter {
ScrewVertConnect *v_array;
ScrewVertConnect *v_poin;
unsigned int v, v_other;
MEdge *e;
} ScrewVertIter;
#define SV_UNUSED (UINT_MAX)
#define SV_INVALID ((UINT_MAX) - 1)
#define SV_IS_VALID(v) ((v) < SV_INVALID)
static void screwvert_iter_init(ScrewVertIter *iter, ScrewVertConnect *array, unsigned int v_init, unsigned int dir)
{
iter->v_array = array;
iter->v = v_init;
if (SV_IS_VALID(v_init)) {
iter->v_poin = &array[v_init];
iter->v_other = iter->v_poin->v[dir];
iter->e = iter->v_poin->e[!dir];
}
else {
iter->v_poin = NULL;
iter->e = NULL;
}
}
static void screwvert_iter_step(ScrewVertIter *iter)
{
if (iter->v_poin->v[0] == iter->v_other) {
iter->v_other = iter->v;
iter->v = iter->v_poin->v[1];
}
else if (iter->v_poin->v[1] == iter->v_other) {
iter->v_other = iter->v;
iter->v = iter->v_poin->v[0];
}
if (SV_IS_VALID(iter->v)) {
iter->v_poin = &iter->v_array[iter->v];
iter->e = iter->v_poin->e[(iter->v_poin->e[0] == iter->e)];
}
else {
iter->e = NULL;
iter->v_poin = NULL;
}
}
static DerivedMesh *dm_remove_doubles_on_axis(
DerivedMesh *result, MVert *mvert_new, const uint totvert, const uint step_tot,
const float axis_vec[3], const float axis_offset[3], const float merge_threshold)
{
const float merge_threshold_sq = SQUARE(merge_threshold);
const bool use_offset = axis_offset != NULL;
uint tot_doubles = 0;
for (uint i = 0; i < totvert; i += 1) {
float axis_co[3];
if (use_offset) {
float offset_co[3];
sub_v3_v3v3(offset_co, mvert_new[i].co, axis_offset);
project_v3_v3v3_normalized(axis_co, offset_co, axis_vec);
add_v3_v3(axis_co, axis_offset);
}
else {
project_v3_v3v3_normalized(axis_co, mvert_new[i].co, axis_vec);
}
const float dist_sq = len_squared_v3v3(axis_co, mvert_new[i].co);
if (dist_sq <= merge_threshold_sq) {
mvert_new[i].flag |= ME_VERT_TMP_TAG;
tot_doubles += 1;
copy_v3_v3(mvert_new[i].co, axis_co);
}
}
if (tot_doubles != 0) {
uint tot = totvert * step_tot;
int *full_doubles_map = MEM_malloc_arrayN(tot, sizeof(int), __func__);
copy_vn_i(full_doubles_map, (int)tot, -1);
uint tot_doubles_left = tot_doubles;
for (uint i = 0; i < totvert; i += 1) {
if (mvert_new[i].flag & ME_VERT_TMP_TAG) {
int *doubles_map = &full_doubles_map[totvert + i] ;
for (uint step = 1; step < step_tot; step += 1) {
*doubles_map = (int)i;
doubles_map += totvert;
}
tot_doubles_left -= 1;
if (tot_doubles_left == 0) {
break;
}
}
}
result = CDDM_merge_verts(result, full_doubles_map, (int)(tot_doubles * (step_tot - 1)), CDDM_MERGE_VERTS_DUMP_IF_MAPPED);
MEM_freeN(full_doubles_map);
}
return result;
}
static void initData(ModifierData *md)
{
ScrewModifierData *ltmd = (ScrewModifierData *) md;
ltmd->ob_axis = NULL;
ltmd->angle = (float)(M_PI * 2.0);
ltmd->axis = 2;
ltmd->flag = MOD_SCREW_SMOOTH_SHADING;
ltmd->steps = 16;
ltmd->render_steps = 16;
ltmd->iter = 1;
ltmd->merge_dist = 0.01f;
}
static DerivedMesh *applyModifier(
ModifierData *md, Object *ob,
DerivedMesh *derivedData,
ModifierApplyFlag flag)
{
DerivedMesh *dm = derivedData;
DerivedMesh *result;
ScrewModifierData *ltmd = (ScrewModifierData *) md;
const bool use_render_params = (flag & MOD_APPLY_RENDER) != 0;
int *origindex;
int mpoly_index = 0;
unsigned int step;
unsigned int i, j;
unsigned int i1, i2;
unsigned int step_tot = use_render_params ? ltmd->render_steps : ltmd->steps;
const bool do_flip = (ltmd->flag & MOD_SCREW_NORMAL_FLIP) != 0;
const int quad_ord[4] = {
do_flip ? 3 : 0,
do_flip ? 2 : 1,
do_flip ? 1 : 2,
do_flip ? 0 : 3,
};
const int quad_ord_ofs[4] = {
do_flip ? 2 : 0,
1,
do_flip ? 0 : 2,
3,
};
unsigned int maxVerts = 0, maxEdges = 0, maxPolys = 0;
const unsigned int totvert = (unsigned int)dm->getNumVerts(dm);
const unsigned int totedge = (unsigned int)dm->getNumEdges(dm);
const unsigned int totpoly = (unsigned int)dm->getNumPolys(dm);
unsigned int *edge_poly_map = NULL; /* orig edge to orig poly */
unsigned int *vert_loop_map = NULL; /* orig vert to orig loop */
/* UV Coords */
const unsigned int mloopuv_layers_tot = (unsigned int)CustomData_number_of_layers(&dm->loopData, CD_MLOOPUV);
MLoopUV **mloopuv_layers = BLI_array_alloca(mloopuv_layers, mloopuv_layers_tot);
float uv_u_scale;
float uv_v_minmax[2] = {FLT_MAX, -FLT_MAX};
float uv_v_range_inv;
float uv_axis_plane[4];
char axis_char = 'X';
bool close;
float angle = ltmd->angle;
float screw_ofs = ltmd->screw_ofs;
float axis_vec[3] = {0.0f, 0.0f, 0.0f};
float tmp_vec1[3], tmp_vec2[3];
float mat3[3][3];
float mtx_tx[4][4]; /* transform the coords by an object relative to this objects transformation */
float mtx_tx_inv[4][4]; /* inverted */
float mtx_tmp_a[4][4];
unsigned int vc_tot_linked = 0;
short other_axis_1, other_axis_2;
const float *tmpf1, *tmpf2;
unsigned int edge_offset;
MPoly *mpoly_orig, *mpoly_new, *mp_new;
MLoop *mloop_orig, *mloop_new, *ml_new;
MEdge *medge_orig, *med_orig, *med_new, *med_new_firstloop, *medge_new;
MVert *mvert_new, *mvert_orig, *mv_orig, *mv_new, *mv_new_base;
ScrewVertConnect *vc, *vc_tmp, *vert_connect = NULL;
const char mpoly_flag = (ltmd->flag & MOD_SCREW_SMOOTH_SHADING) ? ME_SMOOTH : 0;
/* don't do anything? */
if (!totvert)
return CDDM_from_template(dm, 0, 0, 0, 0, 0);
switch (ltmd->axis) {
case 0:
other_axis_1 = 1;
other_axis_2 = 2;
break;
case 1:
other_axis_1 = 0;
other_axis_2 = 2;
break;
default: /* 2, use default to quiet warnings */
other_axis_1 = 0;
other_axis_2 = 1;
break;
}
axis_vec[ltmd->axis] = 1.0f;
if (ltmd->ob_axis) {
/* calc the matrix relative to the axis object */
invert_m4_m4(mtx_tmp_a, ob->obmat);
copy_m4_m4(mtx_tx_inv, ltmd->ob_axis->obmat);
mul_m4_m4m4(mtx_tx, mtx_tmp_a, mtx_tx_inv);
/* calc the axis vec */
mul_mat3_m4_v3(mtx_tx, axis_vec); /* only rotation component */
normalize_v3(axis_vec);
/* screw */
if (ltmd->flag & MOD_SCREW_OBJECT_OFFSET) {
/* find the offset along this axis relative to this objects matrix */
float totlen = len_v3(mtx_tx[3]);
if (totlen != 0.0f) {
float zero[3] = {0.0f, 0.0f, 0.0f};
float cp[3];
screw_ofs = closest_to_line_v3(cp, mtx_tx[3], zero, axis_vec);
}
else {
screw_ofs = 0.0f;
}
}
/* angle */
#if 0 /* can't include this, not predictable enough, though quite fun. */
if (ltmd->flag & MOD_SCREW_OBJECT_ANGLE) {
float mtx3_tx[3][3];
copy_m3_m4(mtx3_tx, mtx_tx);
float vec[3] = {0, 1, 0};
float cross1[3];
float cross2[3];
cross_v3_v3v3(cross1, vec, axis_vec);
mul_v3_m3v3(cross2, mtx3_tx, cross1);
{
float c1[3];
float c2[3];
float axis_tmp[3];
cross_v3_v3v3(c1, cross2, axis_vec);
cross_v3_v3v3(c2, axis_vec, c1);
angle = angle_v3v3(cross1, c2);
cross_v3_v3v3(axis_tmp, cross1, c2);
normalize_v3(axis_tmp);
if (len_v3v3(axis_tmp, axis_vec) > 1.0f)
angle = -angle;
}
}
#endif
}
else {
/* exis char is used by i_rotate*/
axis_char = (char)(axis_char + ltmd->axis); /* 'X' + axis */
/* useful to be able to use the axis vec in some cases still */
zero_v3(axis_vec);
axis_vec[ltmd->axis] = 1.0f;
}
/* apply the multiplier */
angle *= (float)ltmd->iter;
screw_ofs *= (float)ltmd->iter;
uv_u_scale = 1.0f / (float)(step_tot);
/* multiplying the steps is a bit tricky, this works best */
step_tot = ((step_tot + 1) * ltmd->iter) - (ltmd->iter - 1);
/* will the screw be closed?
* Note! smaller then FLT_EPSILON * 100 gives problems with float precision so its never closed. */
if (fabsf(screw_ofs) <= (FLT_EPSILON * 100.0f) &&
fabsf(fabsf(angle) - ((float)M_PI * 2.0f)) <= (FLT_EPSILON * 100.0f))
{
close = 1;
step_tot--;
if (step_tot < 3) step_tot = 3;
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
maxEdges = (totvert * step_tot) + /* these are the edges between new verts */
(totedge * step_tot); /* -1 because vert edges join */
maxPolys = totedge * step_tot;
screw_ofs = 0.0f;
}
else {
close = 0;
if (step_tot < 3) step_tot = 3;
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
maxEdges = (totvert * (step_tot - 1)) + /* these are the edges between new verts */
(totedge * step_tot); /* -1 because vert edges join */
maxPolys = totedge * (step_tot - 1);
}
if ((ltmd->flag & MOD_SCREW_UV_STRETCH_U) == 0) {
uv_u_scale = (uv_u_scale / (float)ltmd->iter) * (angle / ((float)M_PI * 2.0f));
}
result = CDDM_from_template(dm, (int)maxVerts, (int)maxEdges, 0, (int)maxPolys * 4, (int)maxPolys);
/* copy verts from mesh */
mvert_orig = dm->getVertArray(dm);
medge_orig = dm->getEdgeArray(dm);
mvert_new = result->getVertArray(result);
mpoly_new = result->getPolyArray(result);
mloop_new = result->getLoopArray(result);
medge_new = result->getEdgeArray(result);
if (!CustomData_has_layer(&result->polyData, CD_ORIGINDEX)) {
CustomData_add_layer(&result->polyData, CD_ORIGINDEX, CD_CALLOC, NULL, (int)maxPolys);
}
origindex = CustomData_get_layer(&result->polyData, CD_ORIGINDEX);
DM_copy_vert_data(dm, result, 0, 0, (int)totvert); /* copy first otherwise this overwrites our own vertex normals */
if (mloopuv_layers_tot) {
float zero_co[3] = {0};
plane_from_point_normal_v3(uv_axis_plane, zero_co, axis_vec);
}
if (mloopuv_layers_tot) {
unsigned int uv_lay;
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
mloopuv_layers[uv_lay] = CustomData_get_layer_n(&result->loopData, CD_MLOOPUV, (int)uv_lay);
}
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
for (i = 0, mv_orig = mvert_orig; i < totvert; i++, mv_orig++) {
const float v = dist_signed_squared_to_plane_v3(mv_orig->co, uv_axis_plane);
uv_v_minmax[0] = min_ff(v, uv_v_minmax[0]);
uv_v_minmax[1] = max_ff(v, uv_v_minmax[1]);
}
uv_v_minmax[0] = sqrtf_signed(uv_v_minmax[0]);
uv_v_minmax[1] = sqrtf_signed(uv_v_minmax[1]);
}
uv_v_range_inv = uv_v_minmax[1] - uv_v_minmax[0];
uv_v_range_inv = uv_v_range_inv ? 1.0f / uv_v_range_inv : 0.0f;
}
/* Set the locations of the first set of verts */
mv_new = mvert_new;
mv_orig = mvert_orig;
/* Copy the first set of edges */
med_orig = medge_orig;
med_new = medge_new;
for (i = 0; i < totedge; i++, med_orig++, med_new++) {
med_new->v1 = med_orig->v1;
med_new->v2 = med_orig->v2;
med_new->crease = med_orig->crease;
med_new->flag = med_orig->flag & ~ME_LOOSEEDGE;
}
/* build polygon -> edge map */
if (totpoly) {
MPoly *mp_orig;
mpoly_orig = dm->getPolyArray(dm);
mloop_orig = dm->getLoopArray(dm);
edge_poly_map = MEM_malloc_arrayN(totedge, sizeof(*edge_poly_map), __func__);
memset(edge_poly_map, 0xff, sizeof(*edge_poly_map) * totedge);
vert_loop_map = MEM_malloc_arrayN(totvert, sizeof(*vert_loop_map), __func__);
memset(vert_loop_map, 0xff, sizeof(*vert_loop_map) * totvert);
for (i = 0, mp_orig = mpoly_orig; i < totpoly; i++, mp_orig++) {
unsigned int loopstart = (unsigned int)mp_orig->loopstart;
unsigned int loopend = loopstart + (unsigned int)mp_orig->totloop;
MLoop *ml_orig = &mloop_orig[loopstart];
unsigned int k;
for (k = loopstart; k < loopend; k++, ml_orig++) {
edge_poly_map[ml_orig->e] = i;
vert_loop_map[ml_orig->v] = k;
/* also order edges based on faces */
if (medge_new[ml_orig->e].v1 != ml_orig->v) {
SWAP(unsigned int, medge_new[ml_orig->e].v1, medge_new[ml_orig->e].v2);
}
}
}
}
if (ltmd->flag & MOD_SCREW_NORMAL_CALC) {
/*
* Normal Calculation (for face flipping)
* Sort edge verts for correct face flipping
* NOT REALLY NEEDED but face flipping is nice.
*
* */
/* Notice!
*
* Since we are only ordering the edges here it can avoid mallocing the
* extra space by abusing the vert array before its filled with new verts.
* The new array for vert_connect must be at least sizeof(ScrewVertConnect) * totvert
* and the size of our resulting meshes array is sizeof(MVert) * totvert * 3
* so its safe to use the second 2 thrids of MVert the array for vert_connect,
* just make sure ScrewVertConnect struct is no more than twice as big as MVert,
* at the moment there is no chance of that being a problem,
* unless MVert becomes half its current size.
*
* once the edges are ordered, vert_connect is not needed and it can be used for verts
*
* This makes the modifier faster with one less alloc.
*/
vert_connect = MEM_malloc_arrayN(totvert, sizeof(ScrewVertConnect), "ScrewVertConnect");
//vert_connect = (ScrewVertConnect *) &medge_new[totvert]; /* skip the first slice of verts */
vc = vert_connect;
/* Copy Vert Locations */
/* - We can do this in a later loop - only do here if no normal calc */
if (!totedge) {
for (i = 0; i < totvert; i++, mv_orig++, mv_new++) {
copy_v3_v3(mv_new->co, mv_orig->co);
normalize_v3_v3(vc->no, mv_new->co); /* no edges- this is really a dummy normal */
}
}
else {
/*printf("\n\n\n\n\nStarting Modifier\n");*/
/* set edge users */
med_new = medge_new;
mv_new = mvert_new;
if (ltmd->ob_axis) {
/*mtx_tx is initialized early on */
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
vc->flag = 0;
vc->e[0] = vc->e[1] = NULL;
vc->v[0] = vc->v[1] = SV_UNUSED;
mul_m4_v3(mtx_tx, vc->co);
/* length in 2d, don't sqrt because this is only for comparison */
vc->dist = vc->co[other_axis_1] * vc->co[other_axis_1] +
vc->co[other_axis_2] * vc->co[other_axis_2];
/* printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist);*/
}
}
else {
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
vc->flag = 0;
vc->e[0] = vc->e[1] = NULL;
vc->v[0] = vc->v[1] = SV_UNUSED;
/* length in 2d, don't sqrt because this is only for comparison */
vc->dist = vc->co[other_axis_1] * vc->co[other_axis_1] +
vc->co[other_axis_2] * vc->co[other_axis_2];
/* printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist);*/
}
}
/* this loop builds connectivity info for verts */
for (i = 0; i < totedge; i++, med_new++) {
vc = &vert_connect[med_new->v1];
if (vc->v[0] == SV_UNUSED) { /* unused */
vc->v[0] = med_new->v2;
vc->e[0] = med_new;
}
else if (vc->v[1] == SV_UNUSED) {
vc->v[1] = med_new->v2;
vc->e[1] = med_new;
}
else {
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
}
vc = &vert_connect[med_new->v2];
/* same as above but swap v1/2 */
if (vc->v[0] == SV_UNUSED) { /* unused */
vc->v[0] = med_new->v1;
vc->e[0] = med_new;
}
else if (vc->v[1] == SV_UNUSED) {
vc->v[1] = med_new->v1;
vc->e[1] = med_new;
}
else {
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
}
}
/* find the first vert */
vc = vert_connect;
for (i = 0; i < totvert; i++, vc++) {
/* Now do search for connected verts, order all edges and flip them
* so resulting faces are flipped the right way */
vc_tot_linked = 0; /* count the number of linked verts for this loop */
if (vc->flag == 0) {
unsigned int v_best = SV_UNUSED, ed_loop_closed = 0; /* vert and vert new */
ScrewVertIter lt_iter;
float fl = -1.0f;
/* compiler complains if not initialized, but it should be initialized below */
bool ed_loop_flip = false;
/*printf("Loop on connected vert: %i\n", i);*/
for (j = 0; j < 2; j++) {
/*printf("\tSide: %i\n", j);*/
screwvert_iter_init(&lt_iter, vert_connect, i, j);
if (j == 1) {
screwvert_iter_step(&lt_iter);
}
while (lt_iter.v_poin) {
/*printf("\t\tVERT: %i\n", lt_iter.v);*/
if (lt_iter.v_poin->flag) {
/*printf("\t\t\tBreaking Found end\n");*/
//endpoints[0] = endpoints[1] = SV_UNUSED;
ed_loop_closed = 1; /* circle */
break;
}
lt_iter.v_poin->flag = 1;
vc_tot_linked++;
/*printf("Testing 2 floats %f : %f\n", fl, lt_iter.v_poin->dist);*/
if (fl <= lt_iter.v_poin->dist) {
fl = lt_iter.v_poin->dist;
v_best = lt_iter.v;
/*printf("\t\t\tVERT BEST: %i\n", v_best);*/
}
screwvert_iter_step(&lt_iter);
if (!lt_iter.v_poin) {
/*printf("\t\t\tFound End Also Num %i\n", j);*/
/*endpoints[j] = lt_iter.v_other;*/ /* other is still valid */
break;
}
}
}
/* now we have a collection of used edges. flip their edges the right way*/
/*if (v_best != SV_UNUSED) - */
/*printf("Done Looking - vc_tot_linked: %i\n", vc_tot_linked);*/
if (vc_tot_linked > 1) {
float vf_1, vf_2, vf_best;
vc_tmp = &vert_connect[v_best];
tmpf1 = vert_connect[vc_tmp->v[0]].co;
tmpf2 = vert_connect[vc_tmp->v[1]].co;
/* edge connects on each side! */
if (SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) {
/*printf("Verts on each side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);*/
/* find out which is higher */
vf_1 = tmpf1[ltmd->axis];
vf_2 = tmpf2[ltmd->axis];
vf_best = vc_tmp->co[ltmd->axis];
if (vf_1 < vf_best && vf_best < vf_2) {
ed_loop_flip = 0;
}
else if (vf_1 > vf_best && vf_best > vf_2) {
ed_loop_flip = 1;
}
else {
/* not so simple to work out which edge is higher */
sub_v3_v3v3(tmp_vec1, tmpf1, vc_tmp->co);
sub_v3_v3v3(tmp_vec2, tmpf2, vc_tmp->co);
normalize_v3(tmp_vec1);
normalize_v3(tmp_vec2);
if (tmp_vec1[ltmd->axis] < tmp_vec2[ltmd->axis]) {
ed_loop_flip = 1;
}
else {
ed_loop_flip = 0;
}
}
}
else if (SV_IS_VALID(vc_tmp->v[0])) { /*vertex only connected on 1 side */
/*printf("Verts on ONE side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);*/
if (tmpf1[ltmd->axis] < vc_tmp->co[ltmd->axis]) { /* best is above */
ed_loop_flip = 1;
}
else { /* best is below or even... in even case we can't know what to do. */
ed_loop_flip = 0;
}
}
#if 0
else {
printf("No Connected ___\n");
}
#endif
/*printf("flip direction %i\n", ed_loop_flip);*/
/* switch the flip option if set
* note: flip is now done at face level so copying vgroup slizes is easier */
#if 0
if (do_flip)
ed_loop_flip = !ed_loop_flip;
#endif
if (angle < 0.0f)
ed_loop_flip = !ed_loop_flip;
/* if its closed, we only need 1 loop */
for (j = ed_loop_closed; j < 2; j++) {
/*printf("Ordering Side J %i\n", j);*/
screwvert_iter_init(&lt_iter, vert_connect, v_best, j);
/*printf("\n\nStarting - Loop\n");*/
lt_iter.v_poin->flag = 1; /* so a non loop will traverse the other side */
/* If this is the vert off the best vert and
* the best vert has 2 edges connected too it
* then swap the flip direction */
if (j == 1 && SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1]))
ed_loop_flip = !ed_loop_flip;
while (lt_iter.v_poin && lt_iter.v_poin->flag != 2) {
/*printf("\tOrdering Vert V %i\n", lt_iter.v);*/
lt_iter.v_poin->flag = 2;
if (lt_iter.e) {
if (lt_iter.v == lt_iter.e->v1) {
if (ed_loop_flip == 0) {
/*printf("\t\t\tFlipping 0\n");*/
SWAP(unsigned int, lt_iter.e->v1, lt_iter.e->v2);
}
/* else {
printf("\t\t\tFlipping Not 0\n");
}*/
}
else if (lt_iter.v == lt_iter.e->v2) {
if (ed_loop_flip == 1) {
/*printf("\t\t\tFlipping 1\n");*/
SWAP(unsigned int, lt_iter.e->v1, lt_iter.e->v2);
}
/* else {
printf("\t\t\tFlipping Not 1\n");
}*/
}
/* else {
printf("\t\tIncorrect edge topology");
}*/
}
/* else {
printf("\t\tNo Edge at this point\n");
}*/
screwvert_iter_step(&lt_iter);
}
}
}
}
/* *VERTEX NORMALS*
* we know the surrounding edges are ordered correctly now
* so its safe to create vertex normals.
*
* calculate vertex normals that can be propagated on lathing
* use edge connectivity work this out */
if (SV_IS_VALID(vc->v[0])) {
if (SV_IS_VALID(vc->v[1])) {
/* 2 edges connedted */
/* make 2 connecting vert locations relative to the middle vert */
sub_v3_v3v3(tmp_vec1, mvert_new[vc->v[0]].co, mvert_new[i].co);
sub_v3_v3v3(tmp_vec2, mvert_new[vc->v[1]].co, mvert_new[i].co);
/* normalize so both edges have the same influence, no matter their length */
normalize_v3(tmp_vec1);
normalize_v3(tmp_vec2);
/* vc_no_tmp1 - this line is the average direction of both connecting edges
*
* Use the edge order to make the subtraction, flip the normal the right way
* edge should be there but check just in case... */
if (vc->e[0]->v1 == i) {
sub_v3_v3(tmp_vec1, tmp_vec2);
}
else {
sub_v3_v3v3(tmp_vec1, tmp_vec2, tmp_vec1);
}
}
else {
/* only 1 edge connected - same as above except
* don't need to average edge direction */
if (vc->e[0]->v2 == i) {
sub_v3_v3v3(tmp_vec1, mvert_new[i].co, mvert_new[vc->v[0]].co);
}
else {
sub_v3_v3v3(tmp_vec1, mvert_new[vc->v[0]].co, mvert_new[i].co);
}
}
/* tmp_vec2 - is a line 90d from the pivot to the vec
* This is used so the resulting normal points directly away from the middle */
cross_v3_v3v3(tmp_vec2, axis_vec, vc->co);
if (UNLIKELY(is_zero_v3(tmp_vec2))) {
/* we're _on_ the axis, so copy it based on our winding */
if (vc->e[0]->v2 == i) {
negate_v3_v3(vc->no, axis_vec);
}
else {
copy_v3_v3(vc->no, axis_vec);
}
}
else {
/* edge average vector and right angle to the pivot make the normal */
cross_v3_v3v3(vc->no, tmp_vec1, tmp_vec2);
}
}
else {
copy_v3_v3(vc->no, vc->co);
}
/* we won't be looping on this data again so copy normals here */
if ((angle < 0.0f) != do_flip)
negate_v3(vc->no);
normalize_v3(vc->no);
normal_float_to_short_v3(mvert_new[i].no, vc->no);
/* Done with normals */
}
}
}
else {
mv_orig = mvert_orig;
mv_new = mvert_new;
for (i = 0; i < totvert; i++, mv_new++, mv_orig++) {
copy_v3_v3(mv_new->co, mv_orig->co);
}
}
/* done with edge connectivity based normal flipping */
/* Add Faces */
for (step = 1; step < step_tot; step++) {
const unsigned int varray_stride = totvert * step;
float step_angle;
float nor_tx[3];
float mat[4][4];
/* Rotation Matrix */
step_angle = (angle / (float)(step_tot - (!close))) * (float)step;
if (ltmd->ob_axis) {
axis_angle_normalized_to_mat3(mat3, axis_vec, step_angle);
}
else {
axis_angle_to_mat3_single(mat3, axis_char, step_angle);
}
copy_m4_m3(mat, mat3);
if (screw_ofs)
madd_v3_v3fl(mat[3], axis_vec, screw_ofs * ((float)step / (float)(step_tot - 1)));
/* copy a slice */
DM_copy_vert_data(dm, result, 0, (int)varray_stride, (int)totvert);
mv_new_base = mvert_new;
mv_new = &mvert_new[varray_stride]; /* advance to the next slice */
for (j = 0; j < totvert; j++, mv_new_base++, mv_new++) {
/* set normal */
if (vert_connect) {
mul_v3_m3v3(nor_tx, mat3, vert_connect[j].no);
/* set the normal now its transformed */
normal_float_to_short_v3(mv_new->no, nor_tx);
}
/* set location */
copy_v3_v3(mv_new->co, mv_new_base->co);
/* only need to set these if using non cleared memory */
/*mv_new->mat_nr = mv_new->flag = 0;*/
if (ltmd->ob_axis) {
sub_v3_v3(mv_new->co, mtx_tx[3]);
mul_m4_v3(mat, mv_new->co);
add_v3_v3(mv_new->co, mtx_tx[3]);
}
else {
mul_m4_v3(mat, mv_new->co);
}
/* add the new edge */
med_new->v1 = varray_stride + j;
med_new->v2 = med_new->v1 - totvert;
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
med_new++;
}
}
/* we can avoid if using vert alloc trick */
if (vert_connect) {
MEM_freeN(vert_connect);
vert_connect = NULL;
}
if (close) {
/* last loop of edges, previous loop doesn't account for the last set of edges */
const unsigned int varray_stride = (step_tot - 1) * totvert;
for (i = 0; i < totvert; i++) {
med_new->v1 = i;
med_new->v2 = varray_stride + i;
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
med_new++;
}
}
mp_new = mpoly_new;
ml_new = mloop_new;
med_new_firstloop = medge_new;
/* more of an offset in this case */
edge_offset = totedge + (totvert * (step_tot - (close ? 0 : 1)));
for (i = 0; i < totedge; i++, med_new_firstloop++) {
const unsigned int step_last = step_tot - (close ? 1 : 2);
const unsigned int mpoly_index_orig = totpoly ? edge_poly_map[i] : UINT_MAX;
const bool has_mpoly_orig = (mpoly_index_orig != UINT_MAX);
float uv_v_offset_a, uv_v_offset_b;
const unsigned int mloop_index_orig[2] = {
vert_loop_map ? vert_loop_map[medge_new[i].v1] : UINT_MAX,
vert_loop_map ? vert_loop_map[medge_new[i].v2] : UINT_MAX,
};
const bool has_mloop_orig = mloop_index_orig[0] != UINT_MAX;
short mat_nr;
/* for each edge, make a cylinder of quads */
i1 = med_new_firstloop->v1;
i2 = med_new_firstloop->v2;
if (has_mpoly_orig) {
mat_nr = mpoly_orig[mpoly_index_orig].mat_nr;
}
else {
mat_nr = 0;
}
if (has_mloop_orig == false && mloopuv_layers_tot) {
uv_v_offset_a = dist_signed_to_plane_v3(mvert_new[medge_new[i].v1].co, uv_axis_plane);
uv_v_offset_b = dist_signed_to_plane_v3(mvert_new[medge_new[i].v2].co, uv_axis_plane);
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
uv_v_offset_a = (uv_v_offset_a - uv_v_minmax[0]) * uv_v_range_inv;
uv_v_offset_b = (uv_v_offset_b - uv_v_minmax[0]) * uv_v_range_inv;
}
}
for (step = 0; step <= step_last; step++) {
/* Polygon */
if (has_mpoly_orig) {
DM_copy_poly_data(dm, result, (int)mpoly_index_orig, (int)mpoly_index, 1);
origindex[mpoly_index] = (int)mpoly_index_orig;
}
else {
origindex[mpoly_index] = ORIGINDEX_NONE;
mp_new->flag = mpoly_flag;
mp_new->mat_nr = mat_nr;
}
mp_new->loopstart = mpoly_index * 4;
mp_new->totloop = 4;
/* Loop-Custom-Data */
if (has_mloop_orig) {
int l_index = (int)(ml_new - mloop_new);
DM_copy_loop_data(dm, result, (int)mloop_index_orig[0], l_index + 0, 1);
DM_copy_loop_data(dm, result, (int)mloop_index_orig[1], l_index + 1, 1);
DM_copy_loop_data(dm, result, (int)mloop_index_orig[1], l_index + 2, 1);
DM_copy_loop_data(dm, result, (int)mloop_index_orig[0], l_index + 3, 1);
if (mloopuv_layers_tot) {
unsigned int uv_lay;
const float uv_u_offset_a = (float)(step) * uv_u_scale;
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
mluv[quad_ord[0]].uv[0] += uv_u_offset_a;
mluv[quad_ord[1]].uv[0] += uv_u_offset_a;
mluv[quad_ord[2]].uv[0] += uv_u_offset_b;
mluv[quad_ord[3]].uv[0] += uv_u_offset_b;
}
}
}
else {
if (mloopuv_layers_tot) {
int l_index = (int)(ml_new - mloop_new);
unsigned int uv_lay;
const float uv_u_offset_a = (float)(step) * uv_u_scale;
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
copy_v2_fl2(mluv[quad_ord[0]].uv, uv_u_offset_a, uv_v_offset_a);
copy_v2_fl2(mluv[quad_ord[1]].uv, uv_u_offset_a, uv_v_offset_b);
copy_v2_fl2(mluv[quad_ord[2]].uv, uv_u_offset_b, uv_v_offset_b);
copy_v2_fl2(mluv[quad_ord[3]].uv, uv_u_offset_b, uv_v_offset_a);
}
}
}
/* Loop-Data */
if (!(close && step == step_last)) {
/* regular segments */
ml_new[quad_ord[0]].v = i1;
ml_new[quad_ord[1]].v = i2;
ml_new[quad_ord[2]].v = i2 + totvert;
ml_new[quad_ord[3]].v = i1 + totvert;
ml_new[quad_ord_ofs[0]].e = step == 0 ? i : (edge_offset + step + (i * (step_tot - 1))) - 1;
ml_new[quad_ord_ofs[1]].e = totedge + i2;
ml_new[quad_ord_ofs[2]].e = edge_offset + step + (i * (step_tot - 1));
ml_new[quad_ord_ofs[3]].e = totedge + i1;
/* new vertical edge */
if (step) { /* The first set is already done */
med_new->v1 = i1;
med_new->v2 = i2;
med_new->flag = med_new_firstloop->flag;
med_new->crease = med_new_firstloop->crease;
med_new++;
}
i1 += totvert;
i2 += totvert;
}
else {
/* last segment */
ml_new[quad_ord[0]].v = i1;
ml_new[quad_ord[1]].v = i2;
ml_new[quad_ord[2]].v = med_new_firstloop->v2;
ml_new[quad_ord[3]].v = med_new_firstloop->v1;
ml_new[quad_ord_ofs[0]].e = (edge_offset + step + (i * (step_tot - 1))) - 1;
ml_new[quad_ord_ofs[1]].e = totedge + i2;
ml_new[quad_ord_ofs[2]].e = i;
ml_new[quad_ord_ofs[3]].e = totedge + i1;
}
mp_new++;
ml_new += 4;
mpoly_index++;
}
/* new vertical edge */
med_new->v1 = i1;
med_new->v2 = i2;
med_new->flag = med_new_firstloop->flag & ~ME_LOOSEEDGE;
med_new->crease = med_new_firstloop->crease;
med_new++;
}
/* validate loop edges */
#if 0
{
unsigned i = 0;
printf("\n");
for (; i < maxPolys * 4; i += 4) {
unsigned int ii;
ml_new = mloop_new + i;
ii = findEd(medge_new, maxEdges, ml_new[0].v, ml_new[1].v);
printf("%d %d -- ", ii, ml_new[0].e);
ml_new[0].e = ii;
ii = findEd(medge_new, maxEdges, ml_new[1].v, ml_new[2].v);
printf("%d %d -- ", ii, ml_new[1].e);
ml_new[1].e = ii;
ii = findEd(medge_new, maxEdges, ml_new[2].v, ml_new[3].v);
printf("%d %d -- ", ii, ml_new[2].e);
ml_new[2].e = ii;
ii = findEd(medge_new, maxEdges, ml_new[3].v, ml_new[0].v);
printf("%d %d\n", ii, ml_new[3].e);
ml_new[3].e = ii;
}
}
#endif
if (edge_poly_map) {
MEM_freeN(edge_poly_map);
}
if (vert_loop_map) {
MEM_freeN(vert_loop_map);
}
if ((ltmd->flag & MOD_SCREW_MERGE) && (screw_ofs == 0.0f)) {
DerivedMesh *result_prev = result;
result = dm_remove_doubles_on_axis(
result, mvert_new, totvert, step_tot,
axis_vec, ltmd->ob_axis ? mtx_tx[3] : NULL, ltmd->merge_dist);
if (result != result_prev) {
result->dirty |= DM_DIRTY_NORMALS;
}
}
if ((ltmd->flag & MOD_SCREW_NORMAL_CALC) == 0) {
result->dirty |= DM_DIRTY_NORMALS;
}
return result;
}
static void updateDepgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
ScrewModifierData *ltmd = (ScrewModifierData *) md;
if (ltmd->ob_axis) {
DagNode *curNode = dag_get_node(ctx->forest, ltmd->ob_axis);
dag_add_relation(ctx->forest, curNode, ctx->obNode,
DAG_RL_DATA_DATA | DAG_RL_OB_DATA,
"Screw Modifier");
}
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
ScrewModifierData *ltmd = (ScrewModifierData *)md;
if (ltmd->ob_axis != NULL) {
DEG_add_object_relation(ctx->node, ltmd->ob_axis, DEG_OB_COMP_TRANSFORM, "Screw Modifier");
}
}
static void foreachObjectLink(
ModifierData *md, Object *ob,
ObjectWalkFunc walk, void *userData)
{
ScrewModifierData *ltmd = (ScrewModifierData *) md;
walk(userData, ob, &ltmd->ob_axis, IDWALK_CB_NOP);
}
ModifierTypeInfo modifierType_Screw = {
/* name */ "Screw",
/* structName */ "ScrewModifierData",
/* structSize */ sizeof(ScrewModifierData),
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh |
eModifierTypeFlag_AcceptsCVs |
eModifierTypeFlag_SupportsEditmode |
eModifierTypeFlag_EnableInEditmode,
/* copyData */ modifier_copyData_generic,
/* deformVerts */ NULL,
/* deformMatrices */ NULL,
/* deformVertsEM */ NULL,
/* deformMatricesEM */ NULL,
/* applyModifier */ applyModifier,
/* applyModifierEM */ NULL,
/* initData */ initData,
/* requiredDataMask */ NULL,
/* freeData */ NULL,
/* isDisabled */ NULL,
/* updateDepgraph */ updateDepgraph,
/* updateDepsgraph */ updateDepsgraph,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ NULL,
/* foreachObjectLink */ foreachObjectLink,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
};