This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/modifiers/intern/MOD_solidify.c

976 lines
29 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*
* Contributor(s): Campbell Barton
* Shinsuke Irie
* Martin Felke
*
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file blender/modifiers/intern/MOD_solidify.c
* \ingroup modifiers
*/
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_utildefines_stack.h"
#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_mesh.h"
#include "BKE_particle.h"
#include "BKE_deform.h"
#include "MOD_modifiertypes.h"
#include "MOD_util.h"
#ifdef __GNUC__
# pragma GCC diagnostic error "-Wsign-conversion"
#endif
/* skip shell thickness for non-manifold edges, see [#35710] */
#define USE_NONMANIFOLD_WORKAROUND
/* *** derived mesh high quality normal calculation function *** */
/* could be exposed for other functions to use */
typedef struct EdgeFaceRef {
int f1; /* init as -1 */
int f2;
} EdgeFaceRef;
BLI_INLINE bool edgeref_is_init(const EdgeFaceRef *edge_ref)
{
return !((edge_ref->f1 == 0) && (edge_ref->f2 == 0));
}
/**
* \param dm Mesh to calculate normals for.
* \param face_nors Precalculated face normals.
* \param r_vert_nors Return vert normals.
*/
static void dm_calc_normal(DerivedMesh *dm, float (*face_nors)[3], float (*r_vert_nors)[3])
{
int i, numVerts, numEdges, numFaces;
MPoly *mpoly, *mp;
MLoop *mloop, *ml;
MEdge *medge, *ed;
MVert *mvert, *mv;
numVerts = dm->getNumVerts(dm);
numEdges = dm->getNumEdges(dm);
numFaces = dm->getNumPolys(dm);
mpoly = dm->getPolyArray(dm);
medge = dm->getEdgeArray(dm);
mvert = dm->getVertArray(dm);
mloop = dm->getLoopArray(dm);
/* we don't want to overwrite any referenced layers */
/* Doesn't work here! */
#if 0
mv = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, numVerts);
cddm->mvert = mv;
#endif
mv = mvert;
mp = mpoly;
{
EdgeFaceRef *edge_ref_array = MEM_calloc_arrayN((size_t)numEdges, sizeof(EdgeFaceRef), "Edge Connectivity");
EdgeFaceRef *edge_ref;
float edge_normal[3];
/* Add an edge reference if it's not there, pointing back to the face index. */
for (i = 0; i < numFaces; i++, mp++) {
int j;
ml = mloop + mp->loopstart;
for (j = 0; j < mp->totloop; j++, ml++) {
/* --- add edge ref to face --- */
edge_ref = &edge_ref_array[ml->e];
if (!edgeref_is_init(edge_ref)) {
edge_ref->f1 = i;
edge_ref->f2 = -1;
}
else if ((edge_ref->f1 != -1) && (edge_ref->f2 == -1)) {
edge_ref->f2 = i;
}
else {
/* 3+ faces using an edge, we can't handle this usefully */
edge_ref->f1 = edge_ref->f2 = -1;
#ifdef USE_NONMANIFOLD_WORKAROUND
medge[ml->e].flag |= ME_EDGE_TMP_TAG;
#endif
}
/* --- done --- */
}
}
for (i = 0, ed = medge, edge_ref = edge_ref_array; i < numEdges; i++, ed++, edge_ref++) {
/* Get the edge vert indices, and edge value (the face indices that use it) */
if (edgeref_is_init(edge_ref) && (edge_ref->f1 != -1)) {
if (edge_ref->f2 != -1) {
/* We have 2 faces using this edge, calculate the edges normal
* using the angle between the 2 faces as a weighting */
#if 0
add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]);
normalize_v3_length(
edge_normal,
angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2]));
#else
mid_v3_v3v3_angle_weighted(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]);
#endif
}
else {
/* only one face attached to that edge */
/* an edge without another attached- the weight on this is undefined */
copy_v3_v3(edge_normal, face_nors[edge_ref->f1]);
}
add_v3_v3(r_vert_nors[ed->v1], edge_normal);
add_v3_v3(r_vert_nors[ed->v2], edge_normal);
}
}
MEM_freeN(edge_ref_array);
}
/* normalize vertex normals and assign */
for (i = 0; i < numVerts; i++, mv++) {
if (normalize_v3(r_vert_nors[i]) == 0.0f) {
normal_short_to_float_v3(r_vert_nors[i], mv->no);
}
}
}
static void initData(ModifierData *md)
{
SolidifyModifierData *smd = (SolidifyModifierData *) md;
smd->offset = 0.01f;
smd->offset_fac = -1.0f;
smd->flag = MOD_SOLIDIFY_RIM;
}
static CustomDataMask requiredDataMask(Object *UNUSED(ob), ModifierData *md)
{
SolidifyModifierData *smd = (SolidifyModifierData *) md;
CustomDataMask dataMask = 0;
/* ask for vertexgroups if we need them */
if (smd->defgrp_name[0]) dataMask |= CD_MASK_MDEFORMVERT;
return dataMask;
}
/* specific function for solidify - define locally */
BLI_INLINE void madd_v3v3short_fl(float r[3], const short a[3], const float f)
{
r[0] += (float)a[0] * f;
r[1] += (float)a[1] * f;
r[2] += (float)a[2] * f;
}
static DerivedMesh *applyModifier(
ModifierData *md, Object *ob,
DerivedMesh *dm,
ModifierApplyFlag UNUSED(flag))
{
DerivedMesh *result;
const SolidifyModifierData *smd = (SolidifyModifierData *) md;
MVert *mv, *mvert, *orig_mvert;
MEdge *ed, *medge, *orig_medge;
MLoop *ml, *mloop, *orig_mloop;
MPoly *mp, *mpoly, *orig_mpoly;
const unsigned int numVerts = (unsigned int)dm->getNumVerts(dm);
const unsigned int numEdges = (unsigned int)dm->getNumEdges(dm);
const unsigned int numFaces = (unsigned int)dm->getNumPolys(dm);
const unsigned int numLoops = (unsigned int)dm->getNumLoops(dm);
unsigned int newLoops = 0, newFaces = 0, newEdges = 0, newVerts = 0, rimVerts = 0;
/* only use material offsets if we have 2 or more materials */
const short mat_nr_max = ob->totcol > 1 ? ob->totcol - 1 : 0;
const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0;
const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0;
/* use for edges */
/* over-alloc new_vert_arr, old_vert_arr */
unsigned int *new_vert_arr = NULL;
STACK_DECLARE(new_vert_arr);
unsigned int *new_edge_arr = NULL;
STACK_DECLARE(new_edge_arr);
unsigned int *old_vert_arr = MEM_calloc_arrayN(numVerts, sizeof(*old_vert_arr), "old_vert_arr in solidify");
unsigned int *edge_users = NULL;
char *edge_order = NULL;
float (*vert_nors)[3] = NULL;
float (*face_nors)[3] = NULL;
const bool need_face_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) || (smd->flag & MOD_SOLIDIFY_EVEN);
const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
const float ofs_new = smd->offset + ofs_orig;
const float offset_fac_vg = smd->offset_fac_vg;
const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg;
const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0;
const bool do_clamp = (smd->offset_clamp != 0.0f);
const bool do_shell = ((smd->flag & MOD_SOLIDIFY_RIM) && (smd->flag & MOD_SOLIDIFY_NOSHELL)) == 0;
/* weights */
MDeformVert *dvert;
const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0;
int defgrp_index;
/* array size is doubled in case of using a shell */
const unsigned int stride = do_shell ? 2 : 1;
modifier_get_vgroup(ob, dm, smd->defgrp_name, &dvert, &defgrp_index);
orig_mvert = dm->getVertArray(dm);
orig_medge = dm->getEdgeArray(dm);
orig_mloop = dm->getLoopArray(dm);
orig_mpoly = dm->getPolyArray(dm);
if (need_face_normals) {
/* calculate only face normals */
face_nors = MEM_malloc_arrayN(numFaces, sizeof(*face_nors), __func__);
BKE_mesh_calc_normals_poly(
orig_mvert, NULL, (int)numVerts,
orig_mloop, orig_mpoly,
(int)numLoops, (int)numFaces,
face_nors, true);
}
STACK_INIT(new_vert_arr, numVerts * 2);
STACK_INIT(new_edge_arr, numEdges * 2);
if (smd->flag & MOD_SOLIDIFY_RIM) {
BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(numVerts, __func__);
unsigned int eidx;
unsigned int i;
#define INVALID_UNUSED ((unsigned int)-1)
#define INVALID_PAIR ((unsigned int)-2)
new_vert_arr = MEM_malloc_arrayN(numVerts, 2 * sizeof(*new_vert_arr), __func__);
new_edge_arr = MEM_malloc_arrayN(((numEdges * 2) + numVerts), sizeof(*new_edge_arr), __func__);
edge_users = MEM_malloc_arrayN(numEdges, sizeof(*edge_users), "solid_mod edges");
edge_order = MEM_malloc_arrayN(numEdges, sizeof(*edge_order), "solid_mod eorder");
/* save doing 2 loops here... */
#if 0
copy_vn_i(edge_users, numEdges, INVALID_UNUSED);
#endif
for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) {
edge_users[eidx] = INVALID_UNUSED;
}
for (i = 0, mp = orig_mpoly; i < numFaces; i++, mp++) {
MLoop *ml_prev;
int j;
ml = orig_mloop + mp->loopstart;
ml_prev = ml + (mp->totloop - 1);
for (j = 0; j < mp->totloop; j++, ml++) {
/* add edge user */
eidx = ml_prev->e;
if (edge_users[eidx] == INVALID_UNUSED) {
ed = orig_medge + eidx;
BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) &&
ELEM(ml->v, ed->v1, ed->v2));
edge_users[eidx] = (ml_prev->v > ml->v) == (ed->v1 < ed->v2) ? i : (i + numFaces);
edge_order[eidx] = j;
}
else {
edge_users[eidx] = INVALID_PAIR;
}
ml_prev = ml;
}
}
for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) {
if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) {
BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v1);
BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v2);
STACK_PUSH(new_edge_arr, eidx);
newFaces++;
newLoops += 4;
}
}
for (i = 0; i < numVerts; i++) {
if (BLI_BITMAP_TEST(orig_mvert_tag, i)) {
old_vert_arr[i] = STACK_SIZE(new_vert_arr);
STACK_PUSH(new_vert_arr, i);
rimVerts++;
}
else {
old_vert_arr[i] = INVALID_UNUSED;
}
}
MEM_freeN(orig_mvert_tag);
}
if (do_shell == false) {
/* only add rim vertices */
newVerts = rimVerts;
/* each extruded face needs an opposite edge */
newEdges = newFaces;
}
else {
/* (stride == 2) in this case, so no need to add newVerts/newEdges */
BLI_assert(newVerts == 0);
BLI_assert(newEdges == 0);
}
if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) {
vert_nors = MEM_calloc_arrayN(numVerts, 3 * sizeof(float), "mod_solid_vno_hq");
dm_calc_normal(dm, face_nors, vert_nors);
}
result = CDDM_from_template(dm,
(int)((numVerts * stride) + newVerts),
(int)((numEdges * stride) + newEdges + rimVerts), 0,
(int)((numLoops * stride) + newLoops),
(int)((numFaces * stride) + newFaces));
mpoly = CDDM_get_polys(result);
mloop = CDDM_get_loops(result);
medge = CDDM_get_edges(result);
mvert = CDDM_get_verts(result);
if (do_shell) {
DM_copy_vert_data(dm, result, 0, 0, (int)numVerts);
DM_copy_vert_data(dm, result, 0, (int)numVerts, (int)numVerts);
DM_copy_edge_data(dm, result, 0, 0, (int)numEdges);
DM_copy_edge_data(dm, result, 0, (int)numEdges, (int)numEdges);
DM_copy_loop_data(dm, result, 0, 0, (int)numLoops);
DM_copy_loop_data(dm, result, 0, (int)numLoops, (int)numLoops);
DM_copy_poly_data(dm, result, 0, 0, (int)numFaces);
DM_copy_poly_data(dm, result, 0, (int)numFaces, (int)numFaces);
}
else {
int i, j;
DM_copy_vert_data(dm, result, 0, 0, (int)numVerts);
for (i = 0, j = (int)numVerts; i < numVerts; i++) {
if (old_vert_arr[i] != INVALID_UNUSED) {
DM_copy_vert_data(dm, result, i, j, 1);
j++;
}
}
DM_copy_edge_data(dm, result, 0, 0, (int)numEdges);
for (i = 0, j = (int)numEdges; i < numEdges; i++) {
if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) {
MEdge *ed_src, *ed_dst;
DM_copy_edge_data(dm, result, i, j, 1);
ed_src = &medge[i];
ed_dst = &medge[j];
ed_dst->v1 = old_vert_arr[ed_src->v1] + numVerts;
ed_dst->v2 = old_vert_arr[ed_src->v2] + numVerts;
j++;
}
}
/* will be created later */
DM_copy_loop_data(dm, result, 0, 0, (int)numLoops);
DM_copy_poly_data(dm, result, 0, 0, (int)numFaces);
}
#undef INVALID_UNUSED
#undef INVALID_PAIR
/* initializes: (i_end, do_shell_align, mv) */
#define INIT_VERT_ARRAY_OFFSETS(test) \
if (((ofs_new >= ofs_orig) == do_flip) == test) { \
i_end = numVerts; \
do_shell_align = true; \
mv = mvert; \
} \
else { \
if (do_shell) { \
i_end = numVerts; \
do_shell_align = true; \
} \
else { \
i_end = newVerts ; \
do_shell_align = false; \
} \
mv = &mvert[numVerts]; \
} (void)0
/* flip normals */
if (do_shell) {
unsigned int i;
mp = mpoly + numFaces;
for (i = 0; i < dm->numPolyData; i++, mp++) {
const int loop_end = mp->totloop - 1;
MLoop *ml2;
unsigned int e;
int j;
/* reverses the loop direction (MLoop.v as well as custom-data)
* MLoop.e also needs to be corrected too, done in a separate loop below. */
ml2 = mloop + mp->loopstart + dm->numLoopData;
#if 0
for (j = 0; j < mp->totloop; j++) {
CustomData_copy_data(&dm->loopData, &result->loopData, mp->loopstart + j,
mp->loopstart + (loop_end - j) + dm->numLoopData, 1);
}
#else
/* slightly more involved, keep the first vertex the same for the copy,
* ensures the diagonals in the new face match the original. */
j = 0;
for (int j_prev = loop_end; j < mp->totloop; j_prev = j++) {
CustomData_copy_data(&dm->loopData, &result->loopData, mp->loopstart + j,
mp->loopstart + (loop_end - j_prev) + dm->numLoopData, 1);
}
#endif
if (mat_ofs) {
mp->mat_nr += mat_ofs;
CLAMP(mp->mat_nr, 0, mat_nr_max);
}
e = ml2[0].e;
for (j = 0; j < loop_end; j++) {
ml2[j].e = ml2[j + 1].e;
}
ml2[loop_end].e = e;
mp->loopstart += dm->numLoopData;
for (j = 0; j < mp->totloop; j++) {
ml2[j].e += numEdges;
ml2[j].v += numVerts;
}
}
for (i = 0, ed = medge + numEdges; i < numEdges; i++, ed++) {
ed->v1 += numVerts;
ed->v2 += numVerts;
}
}
/* note, copied vertex layers don't have flipped normals yet. do this after applying offset */
if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) {
/* no even thickness, very simple */
float scalar_short;
float scalar_short_vgroup;
/* for clamping */
float *vert_lens = NULL;
const float offset = fabsf(smd->offset) * smd->offset_clamp;
const float offset_sq = offset * offset;
if (do_clamp) {
unsigned int i;
vert_lens = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_lens");
copy_vn_fl(vert_lens, (int)numVerts, FLT_MAX);
for (i = 0; i < numEdges; i++) {
const float ed_len_sq = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co);
vert_lens[medge[i].v1] = min_ff(vert_lens[medge[i].v1], ed_len_sq);
vert_lens[medge[i].v2] = min_ff(vert_lens[medge[i].v2], ed_len_sq);
}
}
if (ofs_new != 0.0f) {
unsigned int i_orig, i_end;
bool do_shell_align;
scalar_short = scalar_short_vgroup = ofs_new / 32767.0f;
INIT_VERT_ARRAY_OFFSETS(false);
for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig];
if (dvert) {
MDeformVert *dv = &dvert[i];
if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index);
else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index);
scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short;
}
if (do_clamp) {
/* always reset becaise we may have set before */
if (dvert == NULL) {
scalar_short_vgroup = scalar_short;
}
if (vert_lens[i] < offset_sq) {
float scalar = sqrtf(vert_lens[i]) / offset;
scalar_short_vgroup *= scalar;
}
}
madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup);
}
}
if (ofs_orig != 0.0f) {
unsigned int i_orig, i_end;
bool do_shell_align;
scalar_short = scalar_short_vgroup = ofs_orig / 32767.0f;
/* as above but swapped */
INIT_VERT_ARRAY_OFFSETS(true);
for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig];
if (dvert) {
MDeformVert *dv = &dvert[i];
if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index);
else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index);
scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short;
}
if (do_clamp) {
/* always reset becaise we may have set before */
if (dvert == NULL) {
scalar_short_vgroup = scalar_short;
}
if (vert_lens[i] < offset_sq) {
float scalar = sqrtf(vert_lens[i]) / offset;
scalar_short_vgroup *= scalar;
}
}
madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup);
}
}
if (do_clamp) {
MEM_freeN(vert_lens);
}
}
else {
#ifdef USE_NONMANIFOLD_WORKAROUND
const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0;
#endif
/* same as EM_solidify() in editmesh_lib.c */
float *vert_angles = MEM_calloc_arrayN(numVerts, 2 * sizeof(float), "mod_solid_pair"); /* 2 in 1 */
float *vert_accum = vert_angles + numVerts;
unsigned int vidx;
unsigned int i;
if (vert_nors == NULL) {
vert_nors = MEM_malloc_arrayN(numVerts, 3 * sizeof(float), "mod_solid_vno");
for (i = 0, mv = mvert; i < numVerts; i++, mv++) {
normal_short_to_float_v3(vert_nors[i], mv->no);
}
}
for (i = 0, mp = mpoly; i < numFaces; i++, mp++) {
/* #BKE_mesh_calc_poly_angles logic is inlined here */
float nor_prev[3];
float nor_next[3];
int i_curr = mp->totloop - 1;
int i_next = 0;
ml = &mloop[mp->loopstart];
sub_v3_v3v3(nor_prev, mvert[ml[i_curr - 1].v].co, mvert[ml[i_curr].v].co);
normalize_v3(nor_prev);
while (i_next < mp->totloop) {
float angle;
sub_v3_v3v3(nor_next, mvert[ml[i_curr].v].co, mvert[ml[i_next].v].co);
normalize_v3(nor_next);
angle = angle_normalized_v3v3(nor_prev, nor_next);
/* --- not related to angle calc --- */
if (angle < FLT_EPSILON) {
angle = FLT_EPSILON;
}
vidx = ml[i_curr].v;
vert_accum[vidx] += angle;
#ifdef USE_NONMANIFOLD_WORKAROUND
/* skip 3+ face user edges */
if ((check_non_manifold == false) ||
LIKELY(((orig_medge[ml[i_curr].e].flag & ME_EDGE_TMP_TAG) == 0) &&
((orig_medge[ml[i_next].e].flag & ME_EDGE_TMP_TAG) == 0)))
{
vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle;
}
else {
vert_angles[vidx] += angle;
}
#else
vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle;
#endif
/* --- end non-angle-calc section --- */
/* step */
copy_v3_v3(nor_prev, nor_next);
i_curr = i_next;
i_next++;
}
}
/* vertex group support */
if (dvert) {
MDeformVert *dv = dvert;
float scalar;
if (defgrp_invert) {
for (i = 0; i < numVerts; i++, dv++) {
scalar = 1.0f - defvert_find_weight(dv, defgrp_index);
scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
vert_angles[i] *= scalar;
}
}
else {
for (i = 0; i < numVerts; i++, dv++) {
scalar = defvert_find_weight(dv, defgrp_index);
scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
vert_angles[i] *= scalar;
}
}
}
if (do_clamp) {
float *vert_lens_sq = MEM_malloc_arrayN(numVerts, sizeof(float), "vert_lens");
const float offset = fabsf(smd->offset) * smd->offset_clamp;
const float offset_sq = offset * offset;
copy_vn_fl(vert_lens_sq, (int)numVerts, FLT_MAX);
for (i = 0; i < numEdges; i++) {
const float ed_len = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co);
vert_lens_sq[medge[i].v1] = min_ff(vert_lens_sq[medge[i].v1], ed_len);
vert_lens_sq[medge[i].v2] = min_ff(vert_lens_sq[medge[i].v2], ed_len);
}
for (i = 0; i < numVerts; i++) {
if (vert_lens_sq[i] < offset_sq) {
float scalar = sqrtf(vert_lens_sq[i]) / offset;
vert_angles[i] *= scalar;
}
}
MEM_freeN(vert_lens_sq);
}
if (ofs_new != 0.0f) {
unsigned int i_orig, i_end;
bool do_shell_align;
INIT_VERT_ARRAY_OFFSETS(false);
for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
if (vert_accum[i_other]) { /* zero if unselected */
madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_new * (vert_angles[i_other] / vert_accum[i_other]));
}
}
}
if (ofs_orig != 0.0f) {
unsigned int i_orig, i_end;
bool do_shell_align;
/* same as above but swapped, intentional use of 'ofs_new' */
INIT_VERT_ARRAY_OFFSETS(true);
for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
if (vert_accum[i_other]) { /* zero if unselected */
madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_orig * (vert_angles[i_other] / vert_accum[i_other]));
}
}
}
MEM_freeN(vert_angles);
}
if (vert_nors)
MEM_freeN(vert_nors);
/* must recalculate normals with vgroups since they can displace unevenly [#26888] */
if ((dm->dirty & DM_DIRTY_NORMALS) || (smd->flag & MOD_SOLIDIFY_RIM) || dvert) {
result->dirty |= DM_DIRTY_NORMALS;
}
else if (do_shell) {
unsigned int i;
/* flip vertex normals for copied verts */
mv = mvert + numVerts;
for (i = 0; i < numVerts; i++, mv++) {
negate_v3_short(mv->no);
}
}
if (smd->flag & MOD_SOLIDIFY_RIM) {
unsigned int i;
/* bugger, need to re-calculate the normals for the new edge faces.
* This could be done in many ways, but probably the quickest way
* is to calculate the average normals for side faces only.
* Then blend them with the normals of the edge verts.
*
* at the moment its easiest to allocate an entire array for every vertex,
* even though we only need edge verts - campbell
*/
#define SOLIDIFY_SIDE_NORMALS
#ifdef SOLIDIFY_SIDE_NORMALS
const bool do_side_normals = !(result->dirty & DM_DIRTY_NORMALS);
/* annoying to allocate these since we only need the edge verts, */
float (*edge_vert_nos)[3] = do_side_normals ? MEM_calloc_arrayN(numVerts, 3 * sizeof(float), __func__) : NULL;
float nor[3];
#endif
const unsigned char crease_rim = smd->crease_rim * 255.0f;
const unsigned char crease_outer = smd->crease_outer * 255.0f;
const unsigned char crease_inner = smd->crease_inner * 255.0f;
int *origindex_edge;
int *orig_ed;
unsigned int j;
if (crease_rim || crease_outer || crease_inner) {
result->cd_flag |= ME_CDFLAG_EDGE_CREASE;
}
/* add faces & edges */
origindex_edge = result->getEdgeDataArray(result, CD_ORIGINDEX);
ed = &medge[(numEdges * stride) + newEdges]; /* start after copied edges */
orig_ed = &origindex_edge[(numEdges * stride) + newEdges];
for (i = 0; i < rimVerts; i++, ed++, orig_ed++) {
ed->v1 = new_vert_arr[i];
ed->v2 = (do_shell ? new_vert_arr[i] : i) + numVerts;
ed->flag |= ME_EDGEDRAW;
*orig_ed = ORIGINDEX_NONE;
if (crease_rim) {
ed->crease = crease_rim;
}
}
/* faces */
mp = mpoly + (numFaces * stride);
ml = mloop + (numLoops * stride);
j = 0;
for (i = 0; i < newFaces; i++, mp++) {
unsigned int eidx = new_edge_arr[i];
unsigned int fidx = edge_users[eidx];
int k1, k2;
bool flip;
if (fidx >= numFaces) {
fidx -= numFaces;
flip = true;
}
else {
flip = false;
}
ed = medge + eidx;
/* copy most of the face settings */
DM_copy_poly_data(dm, result, (int)fidx, (int)((numFaces * stride) + i), 1);
mp->loopstart = (int)(j + (numLoops * stride));
mp->flag = mpoly[fidx].flag;
/* notice we use 'mp->totloop' which is later overwritten,
* we could lookup the original face but there's no point since this is a copy
* and will have the same value, just take care when changing order of assignment */
k1 = mpoly[fidx].loopstart + (((edge_order[eidx] - 1) + mp->totloop) % mp->totloop); /* prev loop */
k2 = mpoly[fidx].loopstart + (edge_order[eidx]);
mp->totloop = 4;
CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 0), 1);
CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 1), 1);
CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 2), 1);
CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 3), 1);
if (flip == false) {
ml[j].v = ed->v1;
ml[j++].e = eidx;
ml[j].v = ed->v2;
ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges;
ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts;
ml[j++].e = (do_shell ? eidx : i) + numEdges;
ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts;
ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges;
}
else {
ml[j].v = ed->v2;
ml[j++].e = eidx;
ml[j].v = ed->v1;
ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges;
ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts;
ml[j++].e = (do_shell ? eidx : i) + numEdges;
ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts;
ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges;
}
origindex_edge[ml[j - 3].e] = ORIGINDEX_NONE;
origindex_edge[ml[j - 1].e] = ORIGINDEX_NONE;
/* use the next material index if option enabled */
if (mat_ofs_rim) {
mp->mat_nr += mat_ofs_rim;
CLAMP(mp->mat_nr, 0, mat_nr_max);
}
if (crease_outer) {
/* crease += crease_outer; without wrapping */
char *cr = &(ed->crease);
int tcr = *cr + crease_outer;
*cr = tcr > 255 ? 255 : tcr;
}
if (crease_inner) {
/* crease += crease_inner; without wrapping */
char *cr = &(medge[numEdges + (do_shell ? eidx : i)].crease);
int tcr = *cr + crease_inner;
*cr = tcr > 255 ? 255 : tcr;
}
#ifdef SOLIDIFY_SIDE_NORMALS
if (do_side_normals) {
normal_quad_v3(nor,
mvert[ml[j - 4].v].co,
mvert[ml[j - 3].v].co,
mvert[ml[j - 2].v].co,
mvert[ml[j - 1].v].co);
add_v3_v3(edge_vert_nos[ed->v1], nor);
add_v3_v3(edge_vert_nos[ed->v2], nor);
}
#endif
}
#ifdef SOLIDIFY_SIDE_NORMALS
if (do_side_normals) {
const MEdge *ed_orig = medge;
ed = medge + (numEdges * stride);
for (i = 0; i < rimVerts; i++, ed++, ed_orig++) {
float nor_cpy[3];
short *nor_short;
int k;
/* note, only the first vertex (lower half of the index) is calculated */
normalize_v3_v3(nor_cpy, edge_vert_nos[ed_orig->v1]);
for (k = 0; k < 2; k++) { /* loop over both verts of the edge */
nor_short = mvert[*(&ed->v1 + k)].no;
normal_short_to_float_v3(nor, nor_short);
add_v3_v3(nor, nor_cpy);
normalize_v3(nor);
normal_float_to_short_v3(nor_short, nor);
}
}
MEM_freeN(edge_vert_nos);
}
#endif
MEM_freeN(new_vert_arr);
MEM_freeN(new_edge_arr);
MEM_freeN(edge_users);
MEM_freeN(edge_order);
}
if (old_vert_arr)
MEM_freeN(old_vert_arr);
if (face_nors)
MEM_freeN(face_nors);
if (numFaces == 0 && numEdges != 0) {
modifier_setError(md, "Faces needed for useful output");
}
return result;
}
#undef SOLIDIFY_SIDE_NORMALS
static bool dependsOnNormals(ModifierData *UNUSED(md))
{
/* even when we calculate our own normals,
* the vertex normals are used as a fallback */
return true;
}
ModifierTypeInfo modifierType_Solidify = {
/* name */ "Solidify",
/* structName */ "SolidifyModifierData",
/* structSize */ sizeof(SolidifyModifierData),
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh |
eModifierTypeFlag_AcceptsCVs |
eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode |
eModifierTypeFlag_EnableInEditmode,
/* copyData */ modifier_copyData_generic,
/* deformVerts */ NULL,
/* deformMatrices */ NULL,
/* deformVertsEM */ NULL,
/* deformMatricesEM */ NULL,
/* applyModifier */ applyModifier,
/* applyModifierEM */ NULL,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ NULL,
/* isDisabled */ NULL,
/* updateDepgraph */ NULL,
/* updateDepsgraph */ NULL,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ dependsOnNormals,
/* foreachObjectLink */ NULL,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
};