This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/split/kernel_lamp_emission.h
Thomas Dinges 83e73a2100 Cycles: Refactor how we pass bounce info to light path node.
This commit changes the way how we pass bounce information to the Light
Path node. Instead of manualy copying the bounces into ShaderData, we now
directly pass PathState. This reduces the arguments that we need to pass
around and also makes it easier to extend the feature.

This commit also exposes the Transmission Bounce Depth to the Light Path
node. It works similar to the Transparent Depth Output: Replace a
Transmission lightpath after X bounces with another shader, e.g a Diffuse
one. This can be used to avoid black surfaces, due to low amount of max
bounces.

Reviewed by Sergey and Brecht, thanks for some hlp with this.

I tested compilation and usage on CPU (SVM and OSL), CUDA, OpenCL Split
and Mega kernel. Hopefully this covers all devices. :)
2016-01-06 23:43:29 +01:00

177 lines
7.2 KiB
C++

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split_common.h"
/* Note on kernel_lamp_emission
* This is the 3rd kernel in the ray-tracing logic. This is the second of the
* path-iteration kernels. This kernel takes care of the indirect lamp emission logic.
* This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS. It processes rays of state RAY_ACTIVE
* and RAY_HIT_BACKGROUND.
* We will empty QUEUE_ACTIVE_AND_REGENERATED_RAYS queue in this kernel.
* The input/output of the kernel is as follows,
* Throughput_coop ------------------------------------|--- kernel_lamp_emission --|--- PathRadiance_coop
* Ray_coop -------------------------------------------| |--- Queue_data(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* PathState_coop -------------------------------------| |--- Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* kg (globals) ---------------------------------------| |
* Intersection_coop ----------------------------------| |
* ray_state ------------------------------------------| |
* Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -----| |
* Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ----| |
* queuesize ------------------------------------------| |
* use_queues_flag ------------------------------------| |
* sw -------------------------------------------------| |
* sh -------------------------------------------------| |
* parallel_samples -----------------------------------| |
*
* note : sd is neither input nor output. Its just filled and consumed in the same, kernel_lamp_emission, kernel.
*/
ccl_device void kernel_lamp_emission(
KernelGlobals *kg,
ShaderData *sd, /* Required for lamp emission */
ccl_global float3 *throughput_coop, /* Required for lamp emission */
PathRadiance *PathRadiance_coop, /* Required for lamp emission */
ccl_global Ray *Ray_coop, /* Required for lamp emission */
ccl_global PathState *PathState_coop, /* Required for lamp emission */
Intersection *Intersection_coop, /* Required for lamp emission */
ccl_global char *ray_state, /* Denotes the state of each ray */
int sw, int sh,
ccl_global char *use_queues_flag, /* Used to decide if this kernel should use
* queues to fetch ray index
*/
int parallel_samples, /* Number of samples to be processed in parallel */
int ray_index)
{
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) ||
IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND))
{
PathRadiance *L = &PathRadiance_coop[ray_index];
ccl_global PathState *state = &PathState_coop[ray_index];
float3 throughput = throughput_coop[ray_index];
Ray ray = Ray_coop[ray_index];
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state->ray_t*ray.D;
state->ray_t += Intersection_coop[ray_index].t;
light_ray.D = ray.D;
light_ray.t = state->ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, state, &light_ray, &emission, sd)) {
path_radiance_accum_emission(L, throughput, emission, state->bounce);
}
}
#endif /* __LAMP_MIS__ */
/* __VOLUME__ feature is disabled */
#if 0
#ifdef __VOLUME__
/* volume attenuation, emission, scatter */
if(state->volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
#ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state->volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
ShaderData volume_sd;
shader_setup_from_volume(kg, &volume_sd, &volume_ray);
kernel_volume_decoupled_record(kg, state,
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state->bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
bool all = false;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
throughput, state, &L, 1.0f, all, &volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
state, &volume_ray, &volume_sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
if(result != VOLUME_PATH_SCATTERED)
throughput *= volume_segment.accum_transmittance;
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, state, &L, &ray))
continue;
else
break;
}
}
else
#endif /* __VOLUME_DECOUPLED__ */
{
/* integrate along volume segment with distance sampling */
ShaderData volume_sd;
VolumeIntegrateResult result = kernel_volume_integrate(
kg, state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, state, &L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, state, &L, &ray))
continue;
else
break;
}
#endif /* __VOLUME_SCATTER__ */
}
}
#endif /* __VOLUME__ */
#endif
}
}