This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_builder.hh
Jacques Lucke 4fe8d0419c Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case
that some parameters are different for every element and other parameters are
the same (there are some more less common cases). To simplify writing such
functions one can use a "virtual array". This is a data structure that has a value
for every index, but might not be stored as an actual array internally. Instead, it
might be just a single value or is computed on the fly. There are various tradeoffs
involved when using this data structure which are mentioned in `BLI_virtual_array.hh`.
It is called "virtual", because it uses inheritance and virtual methods.

Furthermore, there is a new virtual vector array data structure, which is an array
of vectors. Both these types have corresponding generic variants, which can be used
when the data type is not known at compile time. This is typically the case when
building a somewhat generic execution system. The function system used these virtual
data structures before, but now they are more versatile.

I've done this refactor in preparation for the attribute processor and other features of
geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used
independent of the function system.

One open question for me is whether all the generic data structures (and `CPPType`)
should be moved to blenlib as well. They are well isolated and don't really contain
any business logic. That can be done later if necessary.
2021-03-21 19:33:13 +01:00

387 lines
13 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup fn
*
* This file contains several utilities to create multi-functions with less redundant code.
*/
#include <functional>
#include "FN_multi_function.hh"
namespace blender::fn {
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single output (SO) of type Out1
*
* This example creates a function that adds 10 to the incoming values:
* CustomMF_SI_SO<int, int> fn("add 10", [](int value) { return value + 10; });
*/
template<typename In1, typename Out1> class CustomMF_SI_SO : public MultiFunction {
private:
using FunctionT = std::function<void(IndexMask, const VArray<In1> &, MutableSpan<Out1>)>;
FunctionT function_;
public:
CustomMF_SI_SO(StringRef name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature = this->get_builder(name);
signature.single_input<In1>("In1");
signature.single_output<Out1>("Out1");
}
template<typename ElementFuncT>
CustomMF_SI_SO(StringRef name, ElementFuncT element_fn)
: CustomMF_SI_SO(name, CustomMF_SI_SO::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask, const VArray<In1> &in1, MutableSpan<Out1> out1) {
mask.foreach_index(
[&](int i) { new (static_cast<void *>(&out1[i])) Out1(element_fn(in1[i])); });
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
const VArray<In1> &in1 = params.readonly_single_input<In1>(0);
MutableSpan<Out1> out1 = params.uninitialized_single_output<Out1>(1);
function_(mask, in1, out1);
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename Out1>
class CustomMF_SI_SI_SO : public MultiFunction {
private:
using FunctionT =
std::function<void(IndexMask, const VArray<In1> &, const VArray<In2> &, MutableSpan<Out1>)>;
FunctionT function_;
public:
CustomMF_SI_SI_SO(StringRef name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature = this->get_builder(name);
signature.single_input<In1>("In1");
signature.single_input<In2>("In2");
signature.single_output<Out1>("Out1");
}
template<typename ElementFuncT>
CustomMF_SI_SI_SO(StringRef name, ElementFuncT element_fn)
: CustomMF_SI_SI_SO(name, CustomMF_SI_SI_SO::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask,
const VArray<In1> &in1,
const VArray<In2> &in2,
MutableSpan<Out1> out1) {
mask.foreach_index(
[&](int i) { new (static_cast<void *>(&out1[i])) Out1(element_fn(in1[i], in2[i])); });
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
const VArray<In1> &in1 = params.readonly_single_input<In1>(0);
const VArray<In2> &in2 = params.readonly_single_input<In2>(1);
MutableSpan<Out1> out1 = params.uninitialized_single_output<Out1>(2);
function_(mask, in1, in2, out1);
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single input (SI) of type In3
* 4. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename In3, typename Out1>
class CustomMF_SI_SI_SI_SO : public MultiFunction {
private:
using FunctionT = std::function<void(IndexMask,
const VArray<In1> &,
const VArray<In2> &,
const VArray<In3> &,
MutableSpan<Out1>)>;
FunctionT function_;
public:
CustomMF_SI_SI_SI_SO(StringRef name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature = this->get_builder(name);
signature.single_input<In1>("In1");
signature.single_input<In2>("In2");
signature.single_input<In3>("In3");
signature.single_output<Out1>("Out1");
}
template<typename ElementFuncT>
CustomMF_SI_SI_SI_SO(StringRef name, ElementFuncT element_fn)
: CustomMF_SI_SI_SI_SO(name, CustomMF_SI_SI_SI_SO::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask,
const VArray<In1> &in1,
const VArray<In2> &in2,
const VArray<In3> &in3,
MutableSpan<Out1> out1) {
mask.foreach_index([&](int i) {
new (static_cast<void *>(&out1[i])) Out1(element_fn(in1[i], in2[i], in3[i]));
});
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
const VArray<In1> &in1 = params.readonly_single_input<In1>(0);
const VArray<In2> &in2 = params.readonly_single_input<In2>(1);
const VArray<In3> &in3 = params.readonly_single_input<In3>(2);
MutableSpan<Out1> out1 = params.uninitialized_single_output<Out1>(3);
function_(mask, in1, in2, in3, out1);
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single input (SI) of type In1
* 2. single input (SI) of type In2
* 3. single input (SI) of type In3
* 4. single input (SI) of type In4
* 5. single output (SO) of type Out1
*/
template<typename In1, typename In2, typename In3, typename In4, typename Out1>
class CustomMF_SI_SI_SI_SI_SO : public MultiFunction {
private:
using FunctionT = std::function<void(IndexMask,
const VArray<In1> &,
const VArray<In2> &,
const VArray<In3> &,
const VArray<In4> &,
MutableSpan<Out1>)>;
FunctionT function_;
public:
CustomMF_SI_SI_SI_SI_SO(StringRef name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature = this->get_builder(name);
signature.single_input<In1>("In1");
signature.single_input<In2>("In2");
signature.single_input<In3>("In3");
signature.single_input<In4>("In4");
signature.single_output<Out1>("Out1");
}
template<typename ElementFuncT>
CustomMF_SI_SI_SI_SI_SO(StringRef name, ElementFuncT element_fn)
: CustomMF_SI_SI_SI_SI_SO(name, CustomMF_SI_SI_SI_SI_SO::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask,
const VArray<In1> &in1,
const VArray<In2> &in2,
const VArray<In3> &in3,
const VArray<In4> &in4,
MutableSpan<Out1> out1) {
mask.foreach_index([&](int i) {
new (static_cast<void *>(&out1[i])) Out1(element_fn(in1[i], in2[i], in3[i], in4[i]));
});
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
const VArray<In1> &in1 = params.readonly_single_input<In1>(0);
const VArray<In2> &in2 = params.readonly_single_input<In2>(1);
const VArray<In3> &in3 = params.readonly_single_input<In3>(2);
const VArray<In4> &in4 = params.readonly_single_input<In4>(3);
MutableSpan<Out1> out1 = params.uninitialized_single_output<Out1>(4);
function_(mask, in1, in2, in3, in4, out1);
}
};
/**
* Generates a multi-function with the following parameters:
* 1. single mutable (SM) of type Mut1
*/
template<typename Mut1> class CustomMF_SM : public MultiFunction {
private:
using FunctionT = std::function<void(IndexMask, MutableSpan<Mut1>)>;
FunctionT function_;
public:
CustomMF_SM(StringRef name, FunctionT function) : function_(std::move(function))
{
MFSignatureBuilder signature = this->get_builder(name);
signature.single_mutable<Mut1>("Mut1");
}
template<typename ElementFuncT>
CustomMF_SM(StringRef name, ElementFuncT element_fn)
: CustomMF_SM(name, CustomMF_SM::create_function(element_fn))
{
}
template<typename ElementFuncT> static FunctionT create_function(ElementFuncT element_fn)
{
return [=](IndexMask mask, MutableSpan<Mut1> mut1) {
mask.foreach_index([&](int i) { element_fn(mut1[i]); });
};
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
MutableSpan<Mut1> mut1 = params.single_mutable<Mut1>(0);
function_(mask, mut1);
}
};
/**
* Generates a multi-function that converts between two types.
*/
template<typename From, typename To> class CustomMF_Convert : public MultiFunction {
public:
CustomMF_Convert()
{
std::string name = CPPType::get<From>().name() + " to " + CPPType::get<To>().name();
MFSignatureBuilder signature = this->get_builder(std::move(name));
signature.single_input<From>("Input");
signature.single_output<To>("Output");
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
const VArray<From> &inputs = params.readonly_single_input<From>(0);
MutableSpan<To> outputs = params.uninitialized_single_output<To>(1);
for (int64_t i : mask) {
new (static_cast<void *>(&outputs[i])) To(inputs[i]);
}
}
};
/**
* A multi-function that outputs the same value every time. The value is not owned by an instance
* of this function. The caller is responsible for destructing and freeing the value.
*/
class CustomMF_GenericConstant : public MultiFunction {
private:
const CPPType &type_;
const void *value_;
template<typename T> friend class CustomMF_Constant;
public:
CustomMF_GenericConstant(const CPPType &type, const void *value);
void call(IndexMask mask, MFParams params, MFContext context) const override;
uint64_t hash() const override;
bool equals(const MultiFunction &other) const override;
};
/**
* A multi-function that outputs the same array every time. The array is not owned by in instance
* of this function. The caller is responsible for destructing and freeing the values.
*/
class CustomMF_GenericConstantArray : public MultiFunction {
private:
GSpan array_;
public:
CustomMF_GenericConstantArray(GSpan array);
void call(IndexMask mask, MFParams params, MFContext context) const override;
};
/**
* Generates a multi-function that outputs a constant value.
*/
template<typename T> class CustomMF_Constant : public MultiFunction {
private:
T value_;
public:
template<typename U> CustomMF_Constant(U &&value) : value_(std::forward<U>(value))
{
MFSignatureBuilder signature = this->get_builder("Constant");
std::stringstream ss;
ss << value_;
signature.single_output<T>(ss.str());
}
void call(IndexMask mask, MFParams params, MFContext UNUSED(context)) const override
{
MutableSpan<T> output = params.uninitialized_single_output<T>(0);
mask.foreach_index([&](int i) { new (&output[i]) T(value_); });
}
uint64_t hash() const override
{
return DefaultHash<T>{}(value_);
}
bool equals(const MultiFunction &other) const override
{
const CustomMF_Constant *other1 = dynamic_cast<const CustomMF_Constant *>(&other);
if (other1 != nullptr) {
return value_ == other1->value_;
}
const CustomMF_GenericConstant *other2 = dynamic_cast<const CustomMF_GenericConstant *>(
&other);
if (other2 != nullptr) {
const CPPType &type = CPPType::get<T>();
if (type == other2->type_) {
return type.is_equal(static_cast<const void *>(&value_), other2->value_);
}
}
return false;
}
};
class CustomMF_DefaultOutput : public MultiFunction {
private:
int output_amount_;
public:
CustomMF_DefaultOutput(StringRef name,
Span<MFDataType> input_types,
Span<MFDataType> output_types);
void call(IndexMask mask, MFParams params, MFContext context) const override;
};
} // namespace blender::fn