This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_geometry.c
Campbell Barton 5018ea5e29 real fix for [#35097], (curve cap flipping).
previous commit was incorrect, the face flipping depended on the orientation of the curve.

fix by passing the bevel direction to the fill function so we can have a reliable front/back.

This also gives some speedup for all curve filling since we can avoid calculating the normal since its already known.
2013-04-26 21:04:12 +00:00

1537 lines
48 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/python/mathutils/mathutils_geometry.c
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils_geometry.h"
/* Used for PolyFill */
#ifndef MATH_STANDALONE /* define when building outside blender */
# include "MEM_guardedalloc.h"
# include "BLI_blenlib.h"
# include "BLI_boxpack2d.h"
# include "BKE_displist.h"
# include "BKE_curve.h"
#endif
#include "BLI_math.h"
#include "BLI_utildefines.h"
/*-------------------------DOC STRINGS ---------------------------*/
PyDoc_STRVAR(M_Geometry_doc,
"The Blender geometry module"
);
/* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
"\n"
" Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg ray: Direction of the projection\n"
" :type ray: :class:`mathutils.Vector`\n"
" :arg orig: Origin\n"
" :type orig: :class:`mathutils.Vector`\n"
" :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n"
" :type clip: boolean\n"
" :return: The point of intersection or None if no intersection is found\n"
" :rtype: :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
int clip = 1;
if (!PyArg_ParseTuple(args,
"O!O!O!O!O!|i:intersect_ray_tri",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3,
&vector_Type, &ray,
&vector_Type, &ray_off, &clip))
{
return NULL;
}
if (vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
PyErr_SetString(PyExc_ValueError,
"only 3D vectors for all parameters");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1 ||
BaseMath_ReadCallback(ray) == -1 ||
BaseMath_ReadCallback(ray_off) == -1)
{
return NULL;
}
copy_v3_v3(v1, vec1->vec);
copy_v3_v3(v2, vec2->vec);
copy_v3_v3(v3, vec3->vec);
copy_v3_v3(dir, ray->vec);
normalize_v3(dir);
copy_v3_v3(orig, ray_off->vec);
/* find vectors for two edges sharing v1 */
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
/* begin calculating determinant - also used to calculated U parameter */
cross_v3_v3v3(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
det = dot_v3v3(e1, pvec);
if (det > -0.000001f && det < 0.000001f) {
Py_RETURN_NONE;
}
inv_det = 1.0f / det;
/* calculate distance from v1 to ray origin */
sub_v3_v3v3(tvec, orig, v1);
/* calculate U parameter and test bounds */
u = dot_v3v3(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
/* prepare to test the V parameter */
cross_v3_v3v3(qvec, tvec, e1);
/* calculate V parameter and test bounds */
v = dot_v3v3(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
t = dot_v3v3(e2, qvec) * inv_det;
mul_v3_fl(dir, t);
add_v3_v3v3(pvec, orig, dir);
return Vector_CreatePyObject(pvec, 3, Py_NEW, NULL);
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
".. function:: intersect_line_line(v1, v2, v3, v4)\n"
"\n"
" Returns a tuple with the points on each line respectively closest to the other.\n"
"\n"
" :arg v1: First point of the first line\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Second point of the first line\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: First point of the second line\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg v4: Second point of the second line\n"
" :type v4: :class:`mathutils.Vector`\n"
" :rtype: tuple of :class:`mathutils.Vector`'s\n"
);
static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
{
PyObject *tuple;
VectorObject *vec1, *vec2, *vec3, *vec4;
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3,
&vector_Type, &vec4))
{
return NULL;
}
if (vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
PyErr_SetString(PyExc_ValueError,
"vectors must be of the same size");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1 ||
BaseMath_ReadCallback(vec4) == -1)
{
return NULL;
}
if (vec1->size == 3 || vec1->size == 2) {
int result;
if (vec1->size == 3) {
copy_v3_v3(v1, vec1->vec);
copy_v3_v3(v2, vec2->vec);
copy_v3_v3(v3, vec3->vec);
copy_v3_v3(v4, vec4->vec);
}
else {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v1[2] = 0.0f;
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v2[2] = 0.0f;
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
v3[2] = 0.0f;
v4[0] = vec4->vec[0];
v4[1] = vec4->vec[1];
v4[2] = 0.0f;
}
result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
if (result == 0) {
/* colinear */
Py_RETURN_NONE;
}
else {
tuple = PyTuple_New(2);
PyTuple_SET_ITEM(tuple, 0, Vector_CreatePyObject(i1, vec1->size, Py_NEW, NULL));
PyTuple_SET_ITEM(tuple, 1, Vector_CreatePyObject(i2, vec1->size, Py_NEW, NULL));
return tuple;
}
}
else {
PyErr_SetString(PyExc_ValueError,
"2D/3D vectors only");
return NULL;
}
}
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
PyDoc_STRVAR(M_Geometry_intersect_sphere_sphere_2d_doc,
".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
"\n"
" Returns 2 points on between intersecting circles.\n"
"\n"
" :arg p_a: Center of the first circle\n"
" :type p_a: :class:`mathutils.Vector`\n"
" :arg radius_a: Radius of the first circle\n"
" :type radius_a: float\n"
" :arg p_b: Center of the second circle\n"
" :type p_b: :class:`mathutils.Vector`\n"
" :arg radius_b: Radius of the second circle\n"
" :type radius_b: float\n"
" :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n"
);
static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
PyObject *ret;
VectorObject *vec_a, *vec_b;
float *v_a, *v_b;
float rad_a, rad_b;
float v_ab[2];
float dist;
if (!PyArg_ParseTuple(args, "O!fO!f:intersect_sphere_sphere_2d",
&vector_Type, &vec_a, &rad_a,
&vector_Type, &vec_b, &rad_b))
{
return NULL;
}
if (BaseMath_ReadCallback(vec_a) == -1 ||
BaseMath_ReadCallback(vec_b) == -1)
{
return NULL;
}
ret = PyTuple_New(2);
v_a = vec_a->vec;
v_b = vec_b->vec;
sub_v2_v2v2(v_ab, v_b, v_a);
dist = len_v2(v_ab);
if (/* out of range */
(dist > rad_a + rad_b) ||
/* fully-contained in the other */
(dist < abs(rad_a - rad_b)) ||
/* co-incident */
(dist < FLT_EPSILON))
{
/* out of range */
PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None);
PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None);
}
else {
const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
float i_cent[2];
float i1[2], i2[2];
i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
i1[0] = i_cent[0] + h * v_ab[1] / dist;
i1[1] = i_cent[1] - h * v_ab[0] / dist;
i2[0] = i_cent[0] - h * v_ab[1] / dist;
i2[1] = i_cent[1] + h * v_ab[0] / dist;
PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(i1, 2, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(i2, 2, Py_NEW, NULL));
}
return ret;
}
PyDoc_STRVAR(M_Geometry_normal_doc,
".. function:: normal(v1, v2, v3, v4=None)\n"
"\n"
" Returns the normal of the 3D tri or quad.\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg v4: Point4 (optional)\n"
" :type v4: :class:`mathutils.Vector`\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec1, *vec2, *vec3, *vec4;
float n[3];
if (PyTuple_GET_SIZE(args) == 3) {
if (!PyArg_ParseTuple(args, "O!O!O!:normal",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3))
{
return NULL;
}
if (vec1->size != vec2->size || vec1->size != vec3->size) {
PyErr_SetString(PyExc_ValueError,
"vectors must be of the same size");
return NULL;
}
if (vec1->size < 3) {
PyErr_SetString(PyExc_ValueError,
"2D vectors unsupported");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1)
{
return NULL;
}
normal_tri_v3(n, vec1->vec, vec2->vec, vec3->vec);
}
else {
if (!PyArg_ParseTuple(args, "O!O!O!O!:normal",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3,
&vector_Type, &vec4))
{
return NULL;
}
if (vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
PyErr_SetString(PyExc_ValueError,
"vectors must be of the same size");
return NULL;
}
if (vec1->size < 3) {
PyErr_SetString(PyExc_ValueError,
"2D vectors unsupported");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1 ||
BaseMath_ReadCallback(vec4) == -1)
{
return NULL;
}
normal_quad_v3(n, vec1->vec, vec2->vec, vec3->vec, vec4->vec);
}
return Vector_CreatePyObject(n, 3, Py_NEW, NULL);
}
/* --------------------------------- AREA FUNCTIONS-------------------- */
PyDoc_STRVAR(M_Geometry_area_tri_doc,
".. function:: area_tri(v1, v2, v3)\n"
"\n"
" Returns the area size of the 2D or 3D triangle defined.\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :rtype: float\n"
);
static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec1, *vec2, *vec3;
if (!PyArg_ParseTuple(args, "O!O!O!:area_tri",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3))
{
return NULL;
}
if (vec1->size != vec2->size || vec1->size != vec3->size) {
PyErr_SetString(PyExc_ValueError,
"vectors must be of the same size");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1)
{
return NULL;
}
if (vec1->size == 3) {
return PyFloat_FromDouble(area_tri_v3(vec1->vec, vec2->vec, vec3->vec));
}
else if (vec1->size == 2) {
return PyFloat_FromDouble(area_tri_v2(vec1->vec, vec2->vec, vec3->vec));
}
else {
PyErr_SetString(PyExc_ValueError,
"only 2D,3D vectors are supported");
return NULL;
}
}
PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc,
".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
"\n"
" Return the volume formed by a tetrahedron (points can be in any order).\n"
"\n"
" :arg v1: Point1\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg v2: Point2\n"
" :type v2: :class:`mathutils.Vector`\n"
" :arg v3: Point3\n"
" :type v3: :class:`mathutils.Vector`\n"
" :arg v4: Point4\n"
" :type v4: :class:`mathutils.Vector`\n"
" :rtype: float\n"
);
static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec1, *vec2, *vec3, *vec4;
if (!PyArg_ParseTuple(args, "O!O!O!O!:volume_tetrahedron",
&vector_Type, &vec1,
&vector_Type, &vec2,
&vector_Type, &vec3,
&vector_Type, &vec4))
{
return NULL;
}
if (vec1->size < 3 || vec2->size < 3 || vec3->size < 3 || vec4->size < 3) {
PyErr_SetString(PyExc_ValueError,
"geometry.volume_tetrahedron(...): "
" can't use 2D Vectors");
return NULL;
}
if (BaseMath_ReadCallback(vec1) == -1 ||
BaseMath_ReadCallback(vec2) == -1 ||
BaseMath_ReadCallback(vec3) == -1 ||
BaseMath_ReadCallback(vec4) == -1)
{
return NULL;
}
return PyFloat_FromDouble(volume_tetrahedron_v3(vec1->vec, vec2->vec, vec3->vec, vec4->vec));
}
PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc,
".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
"\n"
" Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
"\n"
" :arg lineA_p1: First point of the first line\n"
" :type lineA_p1: :class:`mathutils.Vector`\n"
" :arg lineA_p2: Second point of the first line\n"
" :type lineA_p2: :class:`mathutils.Vector`\n"
" :arg lineB_p1: First point of the second line\n"
" :type lineB_p1: :class:`mathutils.Vector`\n"
" :arg lineB_p2: Second point of the second line\n"
" :type lineB_p2: :class:`mathutils.Vector`\n"
" :return: The point of intersection or None when not found\n"
" :rtype: :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
float vi[2];
if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_line_line_2d",
&vector_Type, &line_a1,
&vector_Type, &line_a2,
&vector_Type, &line_b1,
&vector_Type, &line_b2))
{
return NULL;
}
if (BaseMath_ReadCallback(line_a1) == -1 ||
BaseMath_ReadCallback(line_a2) == -1 ||
BaseMath_ReadCallback(line_b1) == -1 ||
BaseMath_ReadCallback(line_b2) == -1)
{
return NULL;
}
if (isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) {
return Vector_CreatePyObject(vi, 2, Py_NEW, NULL);
}
else {
Py_RETURN_NONE;
}
}
PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc,
".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
"\n"
" Calculate the intersection between a line (as 2 vectors) and a plane.\n"
" Returns a vector for the intersection or None.\n"
"\n"
" :arg line_a: First point of the first line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the first line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg plane_co: A point on the plane\n"
" :type plane_co: :class:`mathutils.Vector`\n"
" :arg plane_no: The direction the plane is facing\n"
" :type plane_no: :class:`mathutils.Vector`\n"
" :arg no_flip: Always return an intersection on the directon defined bt line_a -> line_b\n"
" :type no_flip: :boolean\n"
" :return: The point of intersection or None when not found\n"
" :rtype: :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *line_a, *line_b, *plane_co, *plane_no;
int no_flip = 0;
float isect[3];
if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_line_plane",
&vector_Type, &line_a,
&vector_Type, &line_b,
&vector_Type, &plane_co,
&vector_Type, &plane_no,
&no_flip))
{
return NULL;
}
if (BaseMath_ReadCallback(line_a) == -1 ||
BaseMath_ReadCallback(line_b) == -1 ||
BaseMath_ReadCallback(plane_co) == -1 ||
BaseMath_ReadCallback(plane_no) == -1)
{
return NULL;
}
if (ELEM4(2, line_a->size, line_b->size, plane_co->size, plane_no->size)) {
PyErr_SetString(PyExc_ValueError,
"geometry.intersect_line_plane(...): "
" can't use 2D Vectors");
return NULL;
}
if (isect_line_plane_v3(isect, line_a->vec, line_b->vec, plane_co->vec, plane_no->vec, no_flip) == 1) {
return Vector_CreatePyObject(isect, 3, Py_NEW, NULL);
}
else {
Py_RETURN_NONE;
}
}
PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc,
".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
"\n"
" Return the intersection between two planes\n"
"\n"
" :arg plane_a_co: Point on the first plane\n"
" :type plane_a_co: :class:`mathutils.Vector`\n"
" :arg plane_a_no: Normal of the first plane\n"
" :type plane_a_no: :class:`mathutils.Vector`\n"
" :arg plane_b_co: Point on the second plane\n"
" :type plane_b_co: :class:`mathutils.Vector`\n"
" :arg plane_b_no: Normal of the second plane\n"
" :type plane_b_no: :class:`mathutils.Vector`\n"
" :return: The line of the intersection represented as a point and a vector\n"
" :rtype: tuple pair of :class:`mathutils.Vector`\n"
);
static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
{
PyObject *ret;
VectorObject *plane_a_co, *plane_a_no, *plane_b_co, *plane_b_no;
float isect_co[3];
float isect_no[3];
if (!PyArg_ParseTuple(args, "O!O!O!O!|i:intersect_plane_plane",
&vector_Type, &plane_a_co,
&vector_Type, &plane_a_no,
&vector_Type, &plane_b_co,
&vector_Type, &plane_b_no))
{
return NULL;
}
if (BaseMath_ReadCallback(plane_a_co) == -1 ||
BaseMath_ReadCallback(plane_a_no) == -1 ||
BaseMath_ReadCallback(plane_b_co) == -1 ||
BaseMath_ReadCallback(plane_b_no) == -1)
{
return NULL;
}
if (ELEM4(2, plane_a_co->size, plane_a_no->size, plane_b_co->size, plane_b_no->size)) {
PyErr_SetString(PyExc_ValueError,
"geometry.intersect_plane_plane(...): "
" can't use 2D Vectors");
return NULL;
}
isect_plane_plane_v3(isect_co, isect_no,
plane_a_co->vec, plane_a_no->vec,
plane_b_co->vec, plane_b_no->vec);
normalize_v3(isect_no);
ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_co, 3, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_no, 3, Py_NEW, NULL));
return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
"\n"
" Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
" returns the intersection\n"
"\n"
" :arg line_a: First point of the first line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the first line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg sphere_co: The center of the sphere\n"
" :type sphere_co: :class:`mathutils.Vector`\n"
" :arg sphere_radius: Radius of the sphere\n"
" :type sphere_radius: sphere_radius\n"
" :return: The intersection points as a pair of vectors or None when there is no intersection\n"
" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *line_a, *line_b, *sphere_co;
float sphere_radius;
int clip = TRUE;
float isect_a[3];
float isect_b[3];
if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere",
&vector_Type, &line_a,
&vector_Type, &line_b,
&vector_Type, &sphere_co,
&sphere_radius, &clip))
{
return NULL;
}
if (BaseMath_ReadCallback(line_a) == -1 ||
BaseMath_ReadCallback(line_b) == -1 ||
BaseMath_ReadCallback(sphere_co) == -1)
{
return NULL;
}
if (ELEM3(2, line_a->size, line_b->size, sphere_co->size)) {
PyErr_SetString(PyExc_ValueError,
"geometry.intersect_line_sphere(...): "
" can't use 2D Vectors");
return NULL;
}
else {
short use_a = TRUE;
short use_b = TRUE;
float lambda;
PyObject *ret = PyTuple_New(2);
switch (isect_line_sphere_v3(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
case 1:
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
use_b = FALSE;
break;
case 2:
if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = FALSE;
if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = FALSE;
break;
default:
use_a = FALSE;
use_b = FALSE;
}
if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 3, Py_NEW, NULL)); }
else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); }
if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 3, Py_NEW, NULL)); }
else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); }
return ret;
}
}
/* keep in sync with M_Geometry_intersect_line_sphere */
PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc,
".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
"\n"
" Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
" returns the intersection\n"
"\n"
" :arg line_a: First point of the first line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the first line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg sphere_co: The center of the sphere\n"
" :type sphere_co: :class:`mathutils.Vector`\n"
" :arg sphere_radius: Radius of the sphere\n"
" :type sphere_radius: sphere_radius\n"
" :return: The intersection points as a pair of vectors or None when there is no intersection\n"
" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *line_a, *line_b, *sphere_co;
float sphere_radius;
int clip = TRUE;
float isect_a[2];
float isect_b[2];
if (!PyArg_ParseTuple(args, "O!O!O!f|i:intersect_line_sphere_2d",
&vector_Type, &line_a,
&vector_Type, &line_b,
&vector_Type, &sphere_co,
&sphere_radius, &clip))
{
return NULL;
}
if (BaseMath_ReadCallback(line_a) == -1 ||
BaseMath_ReadCallback(line_b) == -1 ||
BaseMath_ReadCallback(sphere_co) == -1)
{
return NULL;
}
else {
bool use_a = true;
bool use_b = true;
float lambda;
PyObject *ret = PyTuple_New(2);
switch (isect_line_sphere_v2(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
case 1:
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
use_b = FALSE;
break;
case 2:
if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a->vec, line_b->vec)) >= 0.0f) && (lambda <= 1.0f)))) use_b = false;
break;
default:
use_a = false;
use_b = false;
}
if (use_a) { PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(isect_a, 2, Py_NEW, NULL)); }
else { PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None); }
if (use_b) { PyTuple_SET_ITEM(ret, 1, Vector_CreatePyObject(isect_b, 2, Py_NEW, NULL)); }
else { PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None); }
return ret;
}
}
PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
"\n"
" Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg line_p1: First point of the line\n"
" :type line_p1: :class:`mathutils.Vector`\n"
" :arg line_p1: Second point of the line\n"
" :type line_p1: :class:`mathutils.Vector`\n"
" :rtype: (:class:`mathutils.Vector`, float)\n"
);
static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *pt, *line_1, *line_2;
float pt_in[3], pt_out[3], l1[3], l2[3];
float lambda;
PyObject *ret;
int size = 2;
if (!PyArg_ParseTuple(args, "O!O!O!:intersect_point_line",
&vector_Type, &pt,
&vector_Type, &line_1,
&vector_Type, &line_2))
{
return NULL;
}
if (BaseMath_ReadCallback(pt) == -1 ||
BaseMath_ReadCallback(line_1) == -1 ||
BaseMath_ReadCallback(line_2) == -1)
{
return NULL;
}
/* accept 2d verts */
if (pt->size >= 3) { copy_v3_v3(pt_in, pt->vec); size = 3; }
else { copy_v2_v2(pt_in, pt->vec); pt_in[2] = 0.0f; }
if (line_1->size >= 3) { copy_v3_v3(l1, line_1->vec); size = 3; }
else { copy_v2_v2(l1, line_1->vec); l1[2] = 0.0f; }
if (line_2->size >= 3) { copy_v3_v3(l2, line_2->vec); size = 3; }
else { copy_v2_v2(l2, line_2->vec); l2[2] = 0.0f; }
/* do the calculation */
lambda = closest_to_line_v3(pt_out, pt_in, l1, l2);
ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(pt_out, size, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(lambda));
return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc,
".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
"\n"
" :arg pt: Point\n"
" :type v1: :class:`mathutils.Vector`\n"
" :arg tri_p1: First point of the triangle\n"
" :type tri_p1: :class:`mathutils.Vector`\n"
" :arg tri_p2: Second point of the triangle\n"
" :type tri_p2: :class:`mathutils.Vector`\n"
" :arg tri_p3: Third point of the triangle\n"
" :type tri_p3: :class:`mathutils.Vector`\n"
" :rtype: int\n"
);
static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
if (!PyArg_ParseTuple(args, "O!O!O!O!:intersect_point_tri_2d",
&vector_Type, &pt_vec,
&vector_Type, &tri_p1,
&vector_Type, &tri_p2,
&vector_Type, &tri_p3))
{
return NULL;
}
if (BaseMath_ReadCallback(pt_vec) == -1 ||
BaseMath_ReadCallback(tri_p1) == -1 ||
BaseMath_ReadCallback(tri_p2) == -1 ||
BaseMath_ReadCallback(tri_p3) == -1)
{
return NULL;
}
return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
}
PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
"\n"
" Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, \n"
" only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
" Works only with convex quads without singular edges."
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg quad_p1: First point of the quad\n"
" :type quad_p1: :class:`mathutils.Vector`\n"
" :arg quad_p2: Second point of the quad\n"
" :type quad_p2: :class:`mathutils.Vector`\n"
" :arg quad_p3: Third point of the quad\n"
" :type quad_p3: :class:`mathutils.Vector`\n"
" :arg quad_p4: Forth point of the quad\n"
" :type quad_p4: :class:`mathutils.Vector`\n"
" :rtype: int\n"
);
static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
if (!PyArg_ParseTuple(args, "O!O!O!O!O!:intersect_point_quad_2d",
&vector_Type, &pt_vec,
&vector_Type, &quad_p1,
&vector_Type, &quad_p2,
&vector_Type, &quad_p3,
&vector_Type, &quad_p4))
{
return NULL;
}
if (BaseMath_ReadCallback(pt_vec) == -1 ||
BaseMath_ReadCallback(quad_p1) == -1 ||
BaseMath_ReadCallback(quad_p2) == -1 ||
BaseMath_ReadCallback(quad_p3) == -1 ||
BaseMath_ReadCallback(quad_p4) == -1)
{
return NULL;
}
return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
}
PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
"\n"
" Returns the signed distance between a point and a plane "
" (negative when below the normal).\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg plane_co: First point of the quad\n"
" :type plane_co: :class:`mathutils.Vector`\n"
" :arg plane_no: Second point of the quad\n"
" :type plane_no: :class:`mathutils.Vector`\n"
" :rtype: float\n"
);
static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *pt, *plene_co, *plane_no;
if (!PyArg_ParseTuple(args, "O!O!O!:distance_point_to_plane",
&vector_Type, &pt,
&vector_Type, &plene_co,
&vector_Type, &plane_no))
{
return NULL;
}
if (BaseMath_ReadCallback(pt) == -1 ||
BaseMath_ReadCallback(plene_co) == -1 ||
BaseMath_ReadCallback(plane_no) == -1)
{
return NULL;
}
return PyFloat_FromDouble(dist_to_plane_v3(pt->vec, plene_co->vec, plane_no->vec));
}
PyDoc_STRVAR(M_Geometry_barycentric_transform_doc,
".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
"\n"
" Return a transformed point, the transformation is defined by 2 triangles.\n"
"\n"
" :arg point: The point to transform.\n"
" :type point: :class:`mathutils.Vector`\n"
" :arg tri_a1: source triangle vertex.\n"
" :type tri_a1: :class:`mathutils.Vector`\n"
" :arg tri_a2: source triangle vertex.\n"
" :type tri_a2: :class:`mathutils.Vector`\n"
" :arg tri_a3: source triangle vertex.\n"
" :type tri_a3: :class:`mathutils.Vector`\n"
" :arg tri_a1: target triangle vertex.\n"
" :type tri_a1: :class:`mathutils.Vector`\n"
" :arg tri_a2: target triangle vertex.\n"
" :type tri_a2: :class:`mathutils.Vector`\n"
" :arg tri_a3: target triangle vertex.\n"
" :type tri_a3: :class:`mathutils.Vector`\n"
" :return: The transformed point\n"
" :rtype: :class:`mathutils.Vector`'s\n"
);
static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec_pt;
VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
float vec[3];
if (!PyArg_ParseTuple(args, "O!O!O!O!O!O!O!:barycentric_transform",
&vector_Type, &vec_pt,
&vector_Type, &vec_t1_src,
&vector_Type, &vec_t2_src,
&vector_Type, &vec_t3_src,
&vector_Type, &vec_t1_tar,
&vector_Type, &vec_t2_tar,
&vector_Type, &vec_t3_tar))
{
return NULL;
}
if (vec_pt->size != 3 ||
vec_t1_src->size != 3 ||
vec_t2_src->size != 3 ||
vec_t3_src->size != 3 ||
vec_t1_tar->size != 3 ||
vec_t2_tar->size != 3 ||
vec_t3_tar->size != 3)
{
PyErr_SetString(PyExc_ValueError,
"One of more of the vector arguments wasn't a 3D vector");
return NULL;
}
barycentric_transform(vec, vec_pt->vec,
vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
return Vector_CreatePyObject(vec, 3, Py_NEW, NULL);
}
PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
".. function:: points_in_planes(planes)\n"
"\n"
" Returns a list of points inside all planes given and a list of index values for the planes used.\n"
"\n"
" :arg planes: List of planes (4D vectors).\n"
" :type planes: list of :class:`mathutils.Vector`\n"
" :return: two lists, once containing the vertices inside the planes, another containing the plane indicies used\n"
" :rtype: pair of lists\n"
);
/* note: this function could be optimized by some spatial structure */
static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
{
PyObject *py_planes;
float (*planes)[4];
unsigned int planes_len;
if (!PyArg_ParseTuple(args, "O:points_in_planes",
&py_planes))
{
return NULL;
}
if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
return NULL;
}
else {
/* note, this could be refactored into plain C easy - py bits are noted */
const float eps = 0.0001f;
const unsigned int len = (unsigned int)planes_len;
unsigned int i, j, k, l;
float n1n2[3], n2n3[3], n3n1[3];
float potentialVertex[3];
char *planes_used = PyMem_Malloc(sizeof(char) * len);
/* python */
PyObject *py_verts = PyList_New(0);
PyObject *py_plene_index = PyList_New(0);
memset(planes_used, 0, sizeof(char) * len);
for (i = 0; i < len; i++) {
const float *N1 = planes[i];
for (j = i + 1; j < len; j++) {
const float *N2 = planes[j];
cross_v3_v3v3(n1n2, N1, N2);
if (len_squared_v3(n1n2) > eps) {
for (k = j + 1; k < len; k++) {
const float *N3 = planes[k];
cross_v3_v3v3(n2n3, N2, N3);
if (len_squared_v3(n2n3) > eps) {
cross_v3_v3v3(n3n1, N3, N1);
if (len_squared_v3(n3n1) > eps) {
const float quotient = dot_v3v3(N1, n2n3);
if (fabsf(quotient) > eps) {
/* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
const float quotient_ninv = -1.0f / quotient;
potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv;
potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv;
potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv;
for (l = 0; l < len; l++) {
const float *NP = planes[l];
if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
break;
}
}
if (l == len) { /* ok */
/* python */
PyObject *item = Vector_CreatePyObject(potentialVertex, 3, Py_NEW, NULL);
PyList_Append(py_verts, item);
Py_DECREF(item);
planes_used[i] = planes_used[j] = planes_used[k] = TRUE;
}
}
}
}
}
}
}
}
PyMem_Free(planes);
/* now make a list of used planes */
for (i = 0; i < len; i++) {
if (planes_used[i]) {
PyObject *item = PyLong_FromLong(i);
PyList_Append(py_plene_index, item);
Py_DECREF(item);
}
}
PyMem_Free(planes_used);
{
PyObject *ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, py_verts);
PyTuple_SET_ITEM(ret, 1, py_plene_index);
return ret;
}
}
}
#ifndef MATH_STANDALONE
PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
"\n"
" Interpolate a bezier spline segment.\n"
"\n"
" :arg knot1: First bezier spline point.\n"
" :type knot1: :class:`mathutils.Vector`\n"
" :arg handle1: First bezier spline handle.\n"
" :type handle1: :class:`mathutils.Vector`\n"
" :arg handle2: Second bezier spline handle.\n"
" :type handle2: :class:`mathutils.Vector`\n"
" :arg knot2: Second bezier spline point.\n"
" :type knot2: :class:`mathutils.Vector`\n"
" :arg resolution: Number of points to return.\n"
" :type resolution: int\n"
" :return: The interpolated points\n"
" :rtype: list of :class:`mathutils.Vector`'s\n"
);
static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
{
VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
int resolu;
int dims;
int i;
float *coord_array, *fp;
PyObject *list;
float k1[4] = {0.0, 0.0, 0.0, 0.0};
float h1[4] = {0.0, 0.0, 0.0, 0.0};
float k2[4] = {0.0, 0.0, 0.0, 0.0};
float h2[4] = {0.0, 0.0, 0.0, 0.0};
if (!PyArg_ParseTuple(args, "O!O!O!O!i:interpolate_bezier",
&vector_Type, &vec_k1,
&vector_Type, &vec_h1,
&vector_Type, &vec_h2,
&vector_Type, &vec_k2, &resolu))
{
return NULL;
}
if (resolu <= 1) {
PyErr_SetString(PyExc_ValueError,
"resolution must be 2 or over");
return NULL;
}
if (BaseMath_ReadCallback(vec_k1) == -1 ||
BaseMath_ReadCallback(vec_h1) == -1 ||
BaseMath_ReadCallback(vec_k2) == -1 ||
BaseMath_ReadCallback(vec_h2) == -1)
{
return NULL;
}
dims = max_iiii(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
for (i = 0; i < vec_k1->size; i++) k1[i] = vec_k1->vec[i];
for (i = 0; i < vec_h1->size; i++) h1[i] = vec_h1->vec[i];
for (i = 0; i < vec_k2->size; i++) k2[i] = vec_k2->vec[i];
for (i = 0; i < vec_h2->size; i++) h2[i] = vec_h2->vec[i];
coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "interpolate_bezier");
for (i = 0; i < dims; i++) {
BKE_curve_forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array + i, resolu - 1, sizeof(float) * dims);
}
list = PyList_New(resolu);
fp = coord_array;
for (i = 0; i < resolu; i++, fp = fp + dims) {
PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, Py_NEW, NULL));
}
MEM_freeN(coord_array);
return list;
}
PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
".. function:: tessellate_polygon(veclist_list)\n"
"\n"
" Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n"
"\n"
" :arg veclist_list: list of polylines\n"
" :rtype: list\n"
);
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
{
PyObject *tri_list; /*return this list of tri's */
PyObject *polyLine, *polyVec;
int i, len_polylines, len_polypoints, ls_error = 0;
/* display listbase */
ListBase dispbase = {NULL, NULL};
DispList *dl;
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
int index, *dl_face, totpoints = 0;
if (!PySequence_Check(polyLineSeq)) {
PyErr_SetString(PyExc_TypeError,
"expected a sequence of poly lines");
return NULL;
}
len_polylines = PySequence_Size(polyLineSeq);
for (i = 0; i < len_polylines; i++) {
polyLine = PySequence_GetItem(polyLineSeq, i);
if (!PySequence_Check(polyLine)) {
BKE_displist_free(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
PyErr_SetString(PyExc_TypeError,
"One or more of the polylines is not a sequence of mathutils.Vector's");
return NULL;
}
len_polypoints = PySequence_Size(polyLine);
if (len_polypoints > 0) { /* don't bother adding edges as polylines */
#if 0
if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
freedisplist(&dispbase);
Py_DECREF(polyLine);
PyErr_SetString(PyExc_TypeError,
"A point in one of the polylines is not a mathutils.Vector type");
return NULL;
}
#endif
dl = MEM_callocN(sizeof(DispList), "poly disp");
BLI_addtail(&dispbase, dl);
dl->type = DL_INDEX3;
dl->nr = len_polypoints;
dl->type = DL_POLY;
dl->parts = 1; /* no faces, 1 edge loop */
dl->col = 0; /* no material */
dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts");
dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index");
for (index = 0; index < len_polypoints; index++, fp += 3) {
polyVec = PySequence_GetItem(polyLine, index);
if (VectorObject_Check(polyVec)) {
if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1)
ls_error = 1;
fp[0] = ((VectorObject *)polyVec)->vec[0];
fp[1] = ((VectorObject *)polyVec)->vec[1];
if (((VectorObject *)polyVec)->size > 2)
fp[2] = ((VectorObject *)polyVec)->vec[2];
else
fp[2] = 0.0f; /* if its a 2d vector then set the z to be zero */
}
else {
ls_error = 1;
}
totpoints++;
Py_DECREF(polyVec);
}
}
Py_DECREF(polyLine);
}
if (ls_error) {
BKE_displist_free(&dispbase); /* possible some dl was allocated */
PyErr_SetString(PyExc_TypeError,
"A point in one of the polylines "
"is not a mathutils.Vector type");
return NULL;
}
else if (totpoints) {
/* now make the list to return */
/* TODO, add normal arg */
BKE_displist_fill(&dispbase, &dispbase, NULL, false);
/* The faces are stored in a new DisplayList
* thats added to the head of the listbase */
dl = dispbase.first;
tri_list = PyList_New(dl->parts);
if (!tri_list) {
BKE_displist_free(&dispbase);
PyErr_SetString(PyExc_RuntimeError,
"failed to make a new list");
return NULL;
}
index = 0;
dl_face = dl->index;
while (index < dl->parts) {
PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]));
dl_face += 3;
index++;
}
BKE_displist_free(&dispbase);
}
else {
/* no points, do this so scripts don't barf */
BKE_displist_free(&dispbase); /* possible some dl was allocated */
tri_list = PyList_New(0);
}
return tri_list;
}
static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray)
{
Py_ssize_t len, i;
PyObject *list_item, *item_1, *item_2;
BoxPack *box;
/* Error checking must already be done */
if (!PyList_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"can only back a list of [x, y, w, h]");
return -1;
}
len = PyList_GET_SIZE(value);
*boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
for (i = 0; i < len; i++) {
list_item = PyList_GET_ITEM(value, i);
if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
MEM_freeN(*boxarray);
PyErr_SetString(PyExc_TypeError,
"can only pack a list of [x, y, w, h]");
return -1;
}
box = (*boxarray) + i;
item_1 = PyList_GET_ITEM(list_item, 2);
item_2 = PyList_GET_ITEM(list_item, 3);
box->w = (float)PyFloat_AsDouble(item_1);
box->h = (float)PyFloat_AsDouble(item_2);
box->index = i;
/* accounts for error case too and overwrites with own error */
if (box->w < 0.0f || box->h < 0.0f) {
MEM_freeN(*boxarray);
PyErr_SetString(PyExc_TypeError,
"error parsing width and height values from list: "
"[x, y, w, h], not numbers or below zero");
return -1;
}
/* verts will be added later */
}
return 0;
}
static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray)
{
Py_ssize_t len, i;
PyObject *list_item;
BoxPack *box;
len = PyList_GET_SIZE(value);
for (i = 0; i < len; i++) {
box = (*boxarray) + i;
list_item = PyList_GET_ITEM(value, box->index);
PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
}
MEM_freeN(*boxarray);
}
PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
".. function:: box_pack_2d(boxes)\n"
"\n"
" Returns the normal of the 3D tri or quad.\n"
"\n"
" :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n"
" :type boxes: list\n"
" :return: the width and height of the packed bounding box\n"
" :rtype: tuple, pair of floats\n"
);
static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
{
float tot_width = 0.0f, tot_height = 0.0f;
Py_ssize_t len;
PyObject *ret;
if (!PyList_Check(boxlist)) {
PyErr_SetString(PyExc_TypeError,
"expected a list of boxes [[x, y, w, h], ... ]");
return NULL;
}
len = PyList_GET_SIZE(boxlist);
if (len) {
BoxPack *boxarray = NULL;
if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
return NULL; /* exception set */
}
/* Non Python function */
BLI_box_pack_2D(boxarray, len, &tot_width, &tot_height);
boxPack_ToPyObject(boxlist, &boxarray);
}
ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(tot_width));
PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(tot_width));
return ret;
}
#endif /* MATH_STANDALONE */
static PyMethodDef M_Geometry_methods[] = {
{"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
{"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
{"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
{"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
{"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
{"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
{"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
{"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc},
{"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
{"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc},
{"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc},
{"intersect_sphere_sphere_2d", (PyCFunction) M_Geometry_intersect_sphere_sphere_2d, METH_VARARGS, M_Geometry_intersect_sphere_sphere_2d_doc},
{"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
{"volume_tetrahedron", (PyCFunction) M_Geometry_volume_tetrahedron, METH_VARARGS, M_Geometry_volume_tetrahedron_doc},
{"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
{"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
{"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc},
#ifndef MATH_STANDALONE
{"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
{"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc},
{"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
#endif
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_geometry(void)
{
PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
return submodule;
}