This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh_remesh_voxel.cc
Clément Foucault d43b5791e0 BLI: Refactor vector types & functions to use templates
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.

In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.

####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).

####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.

####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`

####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.

I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.

Reviewed By: brecht, sergey, JacquesLucke

Differential Revision: https://developer.blender.org/D13791
2022-01-12 12:57:07 +01:00

513 lines
17 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2019 by Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <cctype>
#include <cfloat>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include "MEM_guardedalloc.h"
#include "BLI_array.hh"
#include "BLI_index_range.hh"
#include "BLI_math_vec_types.hh"
#include "BLI_span.hh"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_bvhutils.h"
#include "BKE_customdata.h"
#include "BKE_editmesh.h"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_mesh_remesh_voxel.h" /* own include */
#include "BKE_mesh_runtime.h"
#include "bmesh_tools.h"
#ifdef WITH_OPENVDB
# include <openvdb/openvdb.h>
# include <openvdb/tools/MeshToVolume.h>
# include <openvdb/tools/VolumeToMesh.h>
#endif
#ifdef WITH_QUADRIFLOW
# include "quadriflow_capi.hpp"
#endif
using blender::Array;
using blender::float3;
using blender::IndexRange;
using blender::MutableSpan;
using blender::Span;
#ifdef WITH_QUADRIFLOW
static Mesh *remesh_quadriflow(const Mesh *input_mesh,
int target_faces,
int seed,
bool preserve_sharp,
bool preserve_boundary,
bool adaptive_scale,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
/* Ensure that the triangulated mesh data is up to data */
const MLoopTri *looptri = BKE_mesh_runtime_looptri_ensure(input_mesh);
/* Gather the required data for export to the internal quadriflow mesh format. */
MVertTri *verttri = (MVertTri *)MEM_callocN(
sizeof(*verttri) * BKE_mesh_runtime_looptri_len(input_mesh), "remesh_looptri");
BKE_mesh_runtime_verttri_from_looptri(
verttri, input_mesh->mloop, looptri, BKE_mesh_runtime_looptri_len(input_mesh));
const int totfaces = BKE_mesh_runtime_looptri_len(input_mesh);
const int totverts = input_mesh->totvert;
Array<float3> verts(totverts);
Array<int> faces(totfaces * 3);
for (const int i : IndexRange(totverts)) {
verts[i] = input_mesh->mvert[i].co;
}
for (const int i : IndexRange(totfaces)) {
MVertTri &vt = verttri[i];
faces[i * 3] = vt.tri[0];
faces[i * 3 + 1] = vt.tri[1];
faces[i * 3 + 2] = vt.tri[2];
}
/* Fill out the required input data */
QuadriflowRemeshData qrd;
qrd.totfaces = totfaces;
qrd.totverts = totverts;
qrd.verts = (float *)verts.data();
qrd.faces = faces.data();
qrd.target_faces = target_faces;
qrd.preserve_sharp = preserve_sharp;
qrd.preserve_boundary = preserve_boundary;
qrd.adaptive_scale = adaptive_scale;
qrd.minimum_cost_flow = false;
qrd.aggresive_sat = false;
qrd.rng_seed = seed;
qrd.out_faces = nullptr;
/* Run the remesher */
QFLOW_quadriflow_remesh(&qrd, update_cb, update_cb_data);
MEM_freeN(verttri);
if (qrd.out_faces == nullptr) {
/* The remeshing was canceled */
return nullptr;
}
if (qrd.out_totfaces == 0) {
/* Meshing failed */
MEM_freeN(qrd.out_faces);
MEM_freeN(qrd.out_verts);
return nullptr;
}
/* Construct the new output mesh */
Mesh *mesh = BKE_mesh_new_nomain(qrd.out_totverts, 0, 0, qrd.out_totfaces * 4, qrd.out_totfaces);
for (const int i : IndexRange(qrd.out_totverts)) {
copy_v3_v3(mesh->mvert[i].co, &qrd.out_verts[i * 3]);
}
for (const int i : IndexRange(qrd.out_totfaces)) {
MPoly &poly = mesh->mpoly[i];
const int loopstart = i * 4;
poly.loopstart = loopstart;
poly.totloop = 4;
mesh->mloop[loopstart].v = qrd.out_faces[loopstart];
mesh->mloop[loopstart + 1].v = qrd.out_faces[loopstart + 1];
mesh->mloop[loopstart + 2].v = qrd.out_faces[loopstart + 2];
mesh->mloop[loopstart + 3].v = qrd.out_faces[loopstart + 3];
}
BKE_mesh_calc_edges(mesh, false, false);
BKE_mesh_calc_normals(mesh);
MEM_freeN(qrd.out_faces);
MEM_freeN(qrd.out_verts);
return mesh;
}
#endif
Mesh *BKE_mesh_remesh_quadriflow(const Mesh *mesh,
int target_faces,
int seed,
bool preserve_sharp,
bool preserve_boundary,
bool adaptive_scale,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
#ifdef WITH_QUADRIFLOW
if (target_faces <= 0) {
target_faces = -1;
}
return remesh_quadriflow(mesh,
target_faces,
seed,
preserve_sharp,
preserve_boundary,
adaptive_scale,
update_cb,
update_cb_data);
#else
UNUSED_VARS(mesh,
target_faces,
seed,
preserve_sharp,
preserve_boundary,
adaptive_scale,
update_cb,
update_cb_data);
return nullptr;
#endif
}
#ifdef WITH_OPENVDB
static openvdb::FloatGrid::Ptr remesh_voxel_level_set_create(const Mesh *mesh,
const float voxel_size)
{
Span<MLoop> mloop{mesh->mloop, mesh->totloop};
Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(mesh),
BKE_mesh_runtime_looptri_len(mesh)};
std::vector<openvdb::Vec3s> points(mesh->totvert);
std::vector<openvdb::Vec3I> triangles(looptris.size());
for (const int i : IndexRange(mesh->totvert)) {
const float3 co = mesh->mvert[i].co;
points[i] = openvdb::Vec3s(co.x, co.y, co.z);
}
for (const int i : IndexRange(looptris.size())) {
const MLoopTri &loop_tri = looptris[i];
triangles[i] = openvdb::Vec3I(
mloop[loop_tri.tri[0]].v, mloop[loop_tri.tri[1]].v, mloop[loop_tri.tri[2]].v);
}
openvdb::math::Transform::Ptr transform = openvdb::math::Transform::createLinearTransform(
voxel_size);
openvdb::FloatGrid::Ptr grid = openvdb::tools::meshToLevelSet<openvdb::FloatGrid>(
*transform, points, triangles, 1.0f);
return grid;
}
static Mesh *remesh_voxel_volume_to_mesh(const openvdb::FloatGrid::Ptr level_set_grid,
const float isovalue,
const float adaptivity,
const bool relax_disoriented_triangles)
{
std::vector<openvdb::Vec3s> vertices;
std::vector<openvdb::Vec4I> quads;
std::vector<openvdb::Vec3I> tris;
openvdb::tools::volumeToMesh<openvdb::FloatGrid>(
*level_set_grid, vertices, tris, quads, isovalue, adaptivity, relax_disoriented_triangles);
Mesh *mesh = BKE_mesh_new_nomain(
vertices.size(), 0, 0, quads.size() * 4 + tris.size() * 3, quads.size() + tris.size());
MutableSpan<MVert> mverts{mesh->mvert, mesh->totvert};
MutableSpan<MLoop> mloops{mesh->mloop, mesh->totloop};
MutableSpan<MPoly> mpolys{mesh->mpoly, mesh->totpoly};
for (const int i : mverts.index_range()) {
copy_v3_v3(mverts[i].co, float3(vertices[i].x(), vertices[i].y(), vertices[i].z()));
}
for (const int i : IndexRange(quads.size())) {
MPoly &poly = mpolys[i];
const int loopstart = i * 4;
poly.loopstart = loopstart;
poly.totloop = 4;
mloops[loopstart].v = quads[i][0];
mloops[loopstart + 1].v = quads[i][3];
mloops[loopstart + 2].v = quads[i][2];
mloops[loopstart + 3].v = quads[i][1];
}
const int triangle_loop_start = quads.size() * 4;
for (const int i : IndexRange(tris.size())) {
MPoly &poly = mpolys[quads.size() + i];
const int loopstart = triangle_loop_start + i * 3;
poly.loopstart = loopstart;
poly.totloop = 3;
mloops[loopstart].v = tris[i][2];
mloops[loopstart + 1].v = tris[i][1];
mloops[loopstart + 2].v = tris[i][0];
}
BKE_mesh_calc_edges(mesh, false, false);
BKE_mesh_normals_tag_dirty(mesh);
return mesh;
}
#endif
Mesh *BKE_mesh_remesh_voxel(const Mesh *mesh,
const float voxel_size,
const float adaptivity,
const float isovalue)
{
#ifdef WITH_OPENVDB
openvdb::FloatGrid::Ptr level_set = remesh_voxel_level_set_create(mesh, voxel_size);
return remesh_voxel_volume_to_mesh(level_set, isovalue, adaptivity, false);
#else
UNUSED_VARS(mesh, voxel_size, adaptivity, isovalue);
return nullptr;
#endif
}
void BKE_mesh_remesh_reproject_paint_mask(Mesh *target, Mesh *source)
{
BVHTreeFromMesh bvhtree = {nullptr};
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_VERTS, 2);
MVert *target_verts = (MVert *)CustomData_get_layer(&target->vdata, CD_MVERT);
float *target_mask;
if (CustomData_has_layer(&target->vdata, CD_PAINT_MASK)) {
target_mask = (float *)CustomData_get_layer(&target->vdata, CD_PAINT_MASK);
}
else {
target_mask = (float *)CustomData_add_layer(
&target->vdata, CD_PAINT_MASK, CD_CALLOC, nullptr, target->totvert);
}
float *source_mask;
if (CustomData_has_layer(&source->vdata, CD_PAINT_MASK)) {
source_mask = (float *)CustomData_get_layer(&source->vdata, CD_PAINT_MASK);
}
else {
source_mask = (float *)CustomData_add_layer(
&source->vdata, CD_PAINT_MASK, CD_CALLOC, nullptr, source->totvert);
}
for (int i = 0; i < target->totvert; i++) {
float from_co[3];
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
copy_v3_v3(from_co, target_verts[i].co);
BLI_bvhtree_find_nearest(bvhtree.tree, from_co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
target_mask[i] = source_mask[nearest.index];
}
}
free_bvhtree_from_mesh(&bvhtree);
}
void BKE_remesh_reproject_sculpt_face_sets(Mesh *target, Mesh *source)
{
BVHTreeFromMesh bvhtree = {nullptr};
const MPoly *target_polys = (const MPoly *)CustomData_get_layer(&target->pdata, CD_MPOLY);
const MVert *target_verts = (const MVert *)CustomData_get_layer(&target->vdata, CD_MVERT);
const MLoop *target_loops = (const MLoop *)CustomData_get_layer(&target->ldata, CD_MLOOP);
int *target_face_sets;
if (CustomData_has_layer(&target->pdata, CD_SCULPT_FACE_SETS)) {
target_face_sets = (int *)CustomData_get_layer(&target->pdata, CD_SCULPT_FACE_SETS);
}
else {
target_face_sets = (int *)CustomData_add_layer(
&target->pdata, CD_SCULPT_FACE_SETS, CD_CALLOC, nullptr, target->totpoly);
}
const int *source_face_sets;
if (CustomData_has_layer(&source->pdata, CD_SCULPT_FACE_SETS)) {
source_face_sets = (const int *)CustomData_get_layer(&source->pdata, CD_SCULPT_FACE_SETS);
}
else {
source_face_sets = (const int *)CustomData_add_layer(
&source->pdata, CD_SCULPT_FACE_SETS, CD_CALLOC, nullptr, source->totpoly);
}
const MLoopTri *looptri = BKE_mesh_runtime_looptri_ensure(source);
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_LOOPTRI, 2);
for (int i = 0; i < target->totpoly; i++) {
float from_co[3];
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
const MPoly *mpoly = &target_polys[i];
BKE_mesh_calc_poly_center(mpoly, &target_loops[mpoly->loopstart], target_verts, from_co);
BLI_bvhtree_find_nearest(bvhtree.tree, from_co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
target_face_sets[i] = source_face_sets[looptri[nearest.index].poly];
}
else {
target_face_sets[i] = 1;
}
}
free_bvhtree_from_mesh(&bvhtree);
}
void BKE_remesh_reproject_vertex_paint(Mesh *target, const Mesh *source)
{
BVHTreeFromMesh bvhtree = {nullptr};
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_VERTS, 2);
int tot_color_layer = CustomData_number_of_layers(&source->vdata, CD_PROP_COLOR);
for (int layer_n = 0; layer_n < tot_color_layer; layer_n++) {
const char *layer_name = CustomData_get_layer_name(&source->vdata, CD_PROP_COLOR, layer_n);
CustomData_add_layer_named(
&target->vdata, CD_PROP_COLOR, CD_CALLOC, nullptr, target->totvert, layer_name);
MPropCol *target_color = (MPropCol *)CustomData_get_layer_n(
&target->vdata, CD_PROP_COLOR, layer_n);
MVert *target_verts = (MVert *)CustomData_get_layer(&target->vdata, CD_MVERT);
const MPropCol *source_color = (const MPropCol *)CustomData_get_layer_n(
&source->vdata, CD_PROP_COLOR, layer_n);
for (int i = 0; i < target->totvert; i++) {
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(
bvhtree.tree, target_verts[i].co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
copy_v4_v4(target_color[i].color, source_color[nearest.index].color);
}
}
}
free_bvhtree_from_mesh(&bvhtree);
}
struct Mesh *BKE_mesh_remesh_voxel_fix_poles(const Mesh *mesh)
{
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_ME(mesh);
BMeshCreateParams bmesh_create_params{};
bmesh_create_params.use_toolflags = true;
BMesh *bm = BM_mesh_create(&allocsize, &bmesh_create_params);
BMeshFromMeshParams bmesh_from_mesh_params{};
bmesh_from_mesh_params.calc_face_normal = true;
BM_mesh_bm_from_me(bm, mesh, &bmesh_from_mesh_params);
BMVert *v;
BMEdge *ed, *ed_next;
BMFace *f, *f_next;
BMIter iter_a, iter_b;
/* Merge 3 edge poles vertices that exist in the same face */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
BM_ITER_MESH_MUTABLE (f, f_next, &iter_a, bm, BM_FACES_OF_MESH) {
BMVert *v1, *v2;
v1 = nullptr;
v2 = nullptr;
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
if (BM_vert_edge_count(v) == 3) {
if (v1) {
v2 = v;
}
else {
v1 = v;
}
}
}
if (v1 && v2 && (v1 != v2) && !BM_edge_exists(v1, v2)) {
BM_face_kill(bm, f);
BMEdge *e = BM_edge_create(bm, v1, v2, nullptr, BM_CREATE_NOP);
BM_elem_flag_set(e, BM_ELEM_TAG, true);
}
}
BM_ITER_MESH_MUTABLE (ed, ed_next, &iter_a, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(ed, BM_ELEM_TAG)) {
float co[3];
mid_v3_v3v3(co, ed->v1->co, ed->v2->co);
BMVert *vc = BM_edge_collapse(bm, ed, ed->v1, true, true);
copy_v3_v3(vc->co, co);
}
}
/* Delete faces with a 3 edge pole in all their vertices */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
BM_ITER_MESH (f, &iter_a, bm, BM_FACES_OF_MESH) {
bool dissolve = true;
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
if (BM_vert_edge_count(v) != 3) {
dissolve = false;
}
}
if (dissolve) {
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
BM_elem_flag_set(v, BM_ELEM_TAG, true);
}
}
}
BM_mesh_delete_hflag_context(bm, BM_ELEM_TAG, DEL_VERTS);
BM_ITER_MESH (ed, &iter_a, bm, BM_EDGES_OF_MESH) {
if (BM_edge_face_count(ed) != 2) {
BM_elem_flag_set(ed, BM_ELEM_TAG, true);
}
}
BM_mesh_edgenet(bm, false, true);
/* Smooth the result */
for (int i = 0; i < 4; i++) {
BM_ITER_MESH (v, &iter_a, bm, BM_VERTS_OF_MESH) {
float co[3];
zero_v3(co);
BM_ITER_ELEM (ed, &iter_b, v, BM_EDGES_OF_VERT) {
BMVert *vert = BM_edge_other_vert(ed, v);
add_v3_v3(co, vert->co);
}
mul_v3_fl(co, 1.0f / (float)BM_vert_edge_count(v));
mid_v3_v3v3(v->co, v->co, co);
}
}
BM_mesh_normals_update(bm);
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false);
BM_mesh_elem_hflag_enable_all(bm, BM_FACE, BM_ELEM_TAG, false);
BMO_op_callf(bm,
(BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE),
"recalc_face_normals faces=%hf",
BM_ELEM_TAG);
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
BMeshToMeshParams bmesh_to_mesh_params{};
bmesh_to_mesh_params.calc_object_remap = false;
Mesh *result = BKE_mesh_from_bmesh_nomain(bm, &bmesh_to_mesh_params, mesh);
BM_mesh_free(bm);
return result;
}