This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh_tangent.c
Hans Goudey cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00

759 lines
26 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*
* Functions to evaluate mesh tangents.
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_mesh_tangent.h"
#include "BKE_report.h"
#include "BLI_strict_flags.h"
#include "atomic_ops.h"
#include "mikktspace.h"
/* -------------------------------------------------------------------- */
/** \name Mesh Tangent Calculations (Single Layer)
* \{ */
/* Tangent space utils. */
/* User data. */
typedef struct {
const MPoly *mpolys; /* faces */
const MLoop *mloops; /* faces's vertices */
const MVert *mverts; /* vertices */
const MLoopUV *luvs; /* texture coordinates */
float (*lnors)[3]; /* loops' normals */
float (*tangents)[4]; /* output tangents */
int num_polys; /* number of polygons */
} BKEMeshToTangent;
/* Mikktspace's API */
static int get_num_faces(const SMikkTSpaceContext *pContext)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
return p_mesh->num_polys;
}
static int get_num_verts_of_face(const SMikkTSpaceContext *pContext, const int face_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
return p_mesh->mpolys[face_idx].totloop;
}
static void get_position(const SMikkTSpaceContext *pContext,
float r_co[3],
const int face_idx,
const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
const int loop_idx = p_mesh->mpolys[face_idx].loopstart + vert_idx;
copy_v3_v3(r_co, p_mesh->mverts[p_mesh->mloops[loop_idx].v].co);
}
static void get_texture_coordinate(const SMikkTSpaceContext *pContext,
float r_uv[2],
const int face_idx,
const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
copy_v2_v2(r_uv, p_mesh->luvs[p_mesh->mpolys[face_idx].loopstart + vert_idx].uv);
}
static void get_normal(const SMikkTSpaceContext *pContext,
float r_no[3],
const int face_idx,
const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
copy_v3_v3(r_no, p_mesh->lnors[p_mesh->mpolys[face_idx].loopstart + vert_idx]);
}
static void set_tspace(const SMikkTSpaceContext *pContext,
const float fv_tangent[3],
const float face_sign,
const int face_idx,
const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
float *p_res = p_mesh->tangents[p_mesh->mpolys[face_idx].loopstart + vert_idx];
copy_v3_v3(p_res, fv_tangent);
p_res[3] = face_sign;
}
void BKE_mesh_calc_loop_tangent_single_ex(const MVert *mverts,
const int UNUSED(numVerts),
const MLoop *mloops,
float (*r_looptangent)[4],
float (*loopnors)[3],
const MLoopUV *loopuvs,
const int UNUSED(numLoops),
const MPoly *mpolys,
const int numPolys,
ReportList *reports)
{
BKEMeshToTangent mesh_to_tangent = {NULL};
SMikkTSpaceContext s_context = {NULL};
SMikkTSpaceInterface s_interface = {NULL};
const MPoly *mp;
int mp_index;
/* First check we do have a tris/quads only mesh. */
for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
if (mp->totloop > 4) {
BKE_report(
reports, RPT_ERROR, "Tangent space can only be computed for tris/quads, aborting");
return;
}
}
/* Compute Mikktspace's tangent normals. */
mesh_to_tangent.mpolys = mpolys;
mesh_to_tangent.mloops = mloops;
mesh_to_tangent.mverts = mverts;
mesh_to_tangent.luvs = loopuvs;
mesh_to_tangent.lnors = loopnors;
mesh_to_tangent.tangents = r_looptangent;
mesh_to_tangent.num_polys = numPolys;
s_context.m_pUserData = &mesh_to_tangent;
s_context.m_pInterface = &s_interface;
s_interface.m_getNumFaces = get_num_faces;
s_interface.m_getNumVerticesOfFace = get_num_verts_of_face;
s_interface.m_getPosition = get_position;
s_interface.m_getTexCoord = get_texture_coordinate;
s_interface.m_getNormal = get_normal;
s_interface.m_setTSpaceBasic = set_tspace;
/* 0 if failed */
if (genTangSpaceDefault(&s_context) == false) {
BKE_report(reports, RPT_ERROR, "Mikktspace failed to generate tangents for this mesh!");
}
}
void BKE_mesh_calc_loop_tangent_single(Mesh *mesh,
const char *uvmap,
float (*r_looptangents)[4],
ReportList *reports)
{
MLoopUV *loopuvs;
float(*loopnors)[3];
/* Check we have valid texture coordinates first! */
if (uvmap) {
loopuvs = CustomData_get_layer_named(&mesh->ldata, CD_MLOOPUV, uvmap);
}
else {
loopuvs = CustomData_get_layer(&mesh->ldata, CD_MLOOPUV);
}
if (!loopuvs) {
BKE_reportf(reports,
RPT_ERROR,
"Tangent space computation needs an UVMap, \"%s\" not found, aborting",
uvmap);
return;
}
loopnors = CustomData_get_layer(&mesh->ldata, CD_NORMAL);
if (!loopnors) {
BKE_report(
reports, RPT_ERROR, "Tangent space computation needs loop normals, none found, aborting");
return;
}
BKE_mesh_calc_loop_tangent_single_ex(mesh->mvert,
mesh->totvert,
mesh->mloop,
r_looptangents,
loopnors,
loopuvs,
mesh->totloop,
mesh->mpoly,
mesh->totpoly,
reports);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Tangent Calculations (All Layers)
* \{ */
/* Necessary complexity to handle looptri's as quads for correct tangents */
#define USE_LOOPTRI_DETECT_QUADS
typedef struct {
const float (*precomputedFaceNormals)[3];
const float (*precomputedLoopNormals)[3];
const MLoopTri *looptri;
MLoopUV *mloopuv; /* texture coordinates */
const MPoly *mpoly; /* indices */
const MLoop *mloop; /* indices */
const MVert *mvert; /* vertex coordinates */
const float (*vert_normals)[3];
const float (*orco)[3];
float (*tangent)[4]; /* destination */
int numTessFaces;
#ifdef USE_LOOPTRI_DETECT_QUADS
/* map from 'fake' face index to looptri,
* quads will point to the first looptri of the quad */
const int *face_as_quad_map;
int num_face_as_quad_map;
#endif
} SGLSLMeshToTangent;
/* interface */
static int dm_ts_GetNumFaces(const SMikkTSpaceContext *pContext)
{
SGLSLMeshToTangent *pMesh = pContext->m_pUserData;
#ifdef USE_LOOPTRI_DETECT_QUADS
return pMesh->num_face_as_quad_map;
#else
return pMesh->numTessFaces;
#endif
}
static int dm_ts_GetNumVertsOfFace(const SMikkTSpaceContext *pContext, const int face_num)
{
#ifdef USE_LOOPTRI_DETECT_QUADS
SGLSLMeshToTangent *pMesh = pContext->m_pUserData;
if (pMesh->face_as_quad_map) {
const MLoopTri *lt = &pMesh->looptri[pMesh->face_as_quad_map[face_num]];
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
return 4;
}
}
return 3;
#else
UNUSED_VARS(pContext, face_num);
return 3;
#endif
}
static void dm_ts_GetPosition(const SMikkTSpaceContext *pContext,
float r_co[3],
const int face_num,
const int vert_index)
{
// assert(vert_index >= 0 && vert_index < 4);
SGLSLMeshToTangent *pMesh = pContext->m_pUserData;
const MLoopTri *lt;
uint loop_index;
const float *co;
#ifdef USE_LOOPTRI_DETECT_QUADS
if (pMesh->face_as_quad_map) {
lt = &pMesh->looptri[pMesh->face_as_quad_map[face_num]];
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
loop_index = (uint)(mp->loopstart + vert_index);
goto finally;
}
/* fall through to regular triangle */
}
else {
lt = &pMesh->looptri[face_num];
}
#else
lt = &pMesh->looptri[face_num];
#endif
loop_index = lt->tri[vert_index];
finally:
co = pMesh->mvert[pMesh->mloop[loop_index].v].co;
copy_v3_v3(r_co, co);
}
static void dm_ts_GetTextureCoordinate(const SMikkTSpaceContext *pContext,
float r_uv[2],
const int face_num,
const int vert_index)
{
// assert(vert_index >= 0 && vert_index < 4);
SGLSLMeshToTangent *pMesh = pContext->m_pUserData;
const MLoopTri *lt;
uint loop_index;
#ifdef USE_LOOPTRI_DETECT_QUADS
if (pMesh->face_as_quad_map) {
lt = &pMesh->looptri[pMesh->face_as_quad_map[face_num]];
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
loop_index = (uint)(mp->loopstart + vert_index);
goto finally;
}
/* fall through to regular triangle */
}
else {
lt = &pMesh->looptri[face_num];
}
#else
lt = &pMesh->looptri[face_num];
#endif
loop_index = lt->tri[vert_index];
finally:
if (pMesh->mloopuv != NULL) {
const float *uv = pMesh->mloopuv[loop_index].uv;
copy_v2_v2(r_uv, uv);
}
else {
const float *orco = pMesh->orco[pMesh->mloop[loop_index].v];
map_to_sphere(&r_uv[0], &r_uv[1], orco[0], orco[1], orco[2]);
}
}
static void dm_ts_GetNormal(const SMikkTSpaceContext *pContext,
float r_no[3],
const int face_num,
const int vert_index)
{
// assert(vert_index >= 0 && vert_index < 4);
SGLSLMeshToTangent *pMesh = (SGLSLMeshToTangent *)pContext->m_pUserData;
const MLoopTri *lt;
uint loop_index;
#ifdef USE_LOOPTRI_DETECT_QUADS
if (pMesh->face_as_quad_map) {
lt = &pMesh->looptri[pMesh->face_as_quad_map[face_num]];
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
loop_index = (uint)(mp->loopstart + vert_index);
goto finally;
}
/* fall through to regular triangle */
}
else {
lt = &pMesh->looptri[face_num];
}
#else
lt = &pMesh->looptri[face_num];
#endif
loop_index = lt->tri[vert_index];
finally:
if (pMesh->precomputedLoopNormals) {
copy_v3_v3(r_no, pMesh->precomputedLoopNormals[loop_index]);
}
else if ((pMesh->mpoly[lt->poly].flag & ME_SMOOTH) == 0) { /* flat */
if (pMesh->precomputedFaceNormals) {
copy_v3_v3(r_no, pMesh->precomputedFaceNormals[lt->poly]);
}
else {
#ifdef USE_LOOPTRI_DETECT_QUADS
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
normal_quad_v3(r_no,
pMesh->mvert[pMesh->mloop[mp->loopstart + 0].v].co,
pMesh->mvert[pMesh->mloop[mp->loopstart + 1].v].co,
pMesh->mvert[pMesh->mloop[mp->loopstart + 2].v].co,
pMesh->mvert[pMesh->mloop[mp->loopstart + 3].v].co);
}
else
#endif
{
normal_tri_v3(r_no,
pMesh->mvert[pMesh->mloop[lt->tri[0]].v].co,
pMesh->mvert[pMesh->mloop[lt->tri[1]].v].co,
pMesh->mvert[pMesh->mloop[lt->tri[2]].v].co);
}
}
}
else {
copy_v3_v3(r_no, pMesh->vert_normals[pMesh->mloop[loop_index].v]);
}
}
static void dm_ts_SetTSpace(const SMikkTSpaceContext *pContext,
const float fvTangent[3],
const float fSign,
const int face_num,
const int vert_index)
{
// assert(vert_index >= 0 && vert_index < 4);
SGLSLMeshToTangent *pMesh = (SGLSLMeshToTangent *)pContext->m_pUserData;
const MLoopTri *lt;
uint loop_index;
#ifdef USE_LOOPTRI_DETECT_QUADS
if (pMesh->face_as_quad_map) {
lt = &pMesh->looptri[pMesh->face_as_quad_map[face_num]];
const MPoly *mp = &pMesh->mpoly[lt->poly];
if (mp->totloop == 4) {
loop_index = (uint)(mp->loopstart + vert_index);
goto finally;
}
/* fall through to regular triangle */
}
else {
lt = &pMesh->looptri[face_num];
}
#else
lt = &pMesh->looptri[face_num];
#endif
loop_index = lt->tri[vert_index];
float *pRes;
finally:
pRes = pMesh->tangent[loop_index];
copy_v3_v3(pRes, fvTangent);
pRes[3] = fSign;
}
static void DM_calc_loop_tangents_thread(TaskPool *__restrict UNUSED(pool), void *taskdata)
{
struct SGLSLMeshToTangent *mesh2tangent = taskdata;
/* new computation method */
{
SMikkTSpaceContext sContext = {NULL};
SMikkTSpaceInterface sInterface = {NULL};
sContext.m_pUserData = mesh2tangent;
sContext.m_pInterface = &sInterface;
sInterface.m_getNumFaces = dm_ts_GetNumFaces;
sInterface.m_getNumVerticesOfFace = dm_ts_GetNumVertsOfFace;
sInterface.m_getPosition = dm_ts_GetPosition;
sInterface.m_getTexCoord = dm_ts_GetTextureCoordinate;
sInterface.m_getNormal = dm_ts_GetNormal;
sInterface.m_setTSpaceBasic = dm_ts_SetTSpace;
/* 0 if failed */
genTangSpaceDefault(&sContext);
}
}
void BKE_mesh_add_loop_tangent_named_layer_for_uv(CustomData *uv_data,
CustomData *tan_data,
int numLoopData,
const char *layer_name)
{
if (CustomData_get_named_layer_index(tan_data, CD_TANGENT, layer_name) == -1 &&
CustomData_get_named_layer_index(uv_data, CD_MLOOPUV, layer_name) != -1) {
CustomData_add_layer_named(tan_data, CD_TANGENT, CD_CALLOC, NULL, numLoopData, layer_name);
}
}
void BKE_mesh_calc_loop_tangent_step_0(const CustomData *loopData,
bool calc_active_tangent,
const char (*tangent_names)[MAX_NAME],
int tangent_names_count,
bool *rcalc_act,
bool *rcalc_ren,
int *ract_uv_n,
int *rren_uv_n,
char *ract_uv_name,
char *rren_uv_name,
short *rtangent_mask)
{
/* Active uv in viewport */
int layer_index = CustomData_get_layer_index(loopData, CD_MLOOPUV);
*ract_uv_n = CustomData_get_active_layer(loopData, CD_MLOOPUV);
ract_uv_name[0] = 0;
if (*ract_uv_n != -1) {
strcpy(ract_uv_name, loopData->layers[*ract_uv_n + layer_index].name);
}
/* Active tangent in render */
*rren_uv_n = CustomData_get_render_layer(loopData, CD_MLOOPUV);
rren_uv_name[0] = 0;
if (*rren_uv_n != -1) {
strcpy(rren_uv_name, loopData->layers[*rren_uv_n + layer_index].name);
}
/* If active tangent not in tangent_names we take it into account */
*rcalc_act = false;
*rcalc_ren = false;
for (int i = 0; i < tangent_names_count; i++) {
if (tangent_names[i][0] == 0) {
calc_active_tangent = true;
}
}
if (calc_active_tangent) {
*rcalc_act = true;
*rcalc_ren = true;
for (int i = 0; i < tangent_names_count; i++) {
if (STREQ(ract_uv_name, tangent_names[i])) {
*rcalc_act = false;
}
if (STREQ(rren_uv_name, tangent_names[i])) {
*rcalc_ren = false;
}
}
}
*rtangent_mask = 0;
const int uv_layer_num = CustomData_number_of_layers(loopData, CD_MLOOPUV);
for (int n = 0; n < uv_layer_num; n++) {
const char *name = CustomData_get_layer_name(loopData, CD_MLOOPUV, n);
bool add = false;
for (int i = 0; i < tangent_names_count; i++) {
if (tangent_names[i][0] && STREQ(tangent_names[i], name)) {
add = true;
break;
}
}
if (!add && ((*rcalc_act && ract_uv_name[0] && STREQ(ract_uv_name, name)) ||
(*rcalc_ren && rren_uv_name[0] && STREQ(rren_uv_name, name)))) {
add = true;
}
if (add) {
*rtangent_mask |= (short)(1 << n);
}
}
if (uv_layer_num == 0) {
*rtangent_mask |= DM_TANGENT_MASK_ORCO;
}
}
void BKE_mesh_calc_loop_tangent_ex(const MVert *mvert,
const MPoly *mpoly,
const uint mpoly_len,
const MLoop *mloop,
const MLoopTri *looptri,
const uint looptri_len,
CustomData *loopdata,
bool calc_active_tangent,
const char (*tangent_names)[MAX_NAME],
int tangent_names_len,
const float (*vert_normals)[3],
const float (*poly_normals)[3],
const float (*loop_normals)[3],
const float (*vert_orco)[3],
/* result */
CustomData *loopdata_out,
const uint loopdata_out_len,
short *tangent_mask_curr_p)
{
int act_uv_n = -1;
int ren_uv_n = -1;
bool calc_act = false;
bool calc_ren = false;
char act_uv_name[MAX_NAME];
char ren_uv_name[MAX_NAME];
short tangent_mask = 0;
short tangent_mask_curr = *tangent_mask_curr_p;
BKE_mesh_calc_loop_tangent_step_0(loopdata,
calc_active_tangent,
tangent_names,
tangent_names_len,
&calc_act,
&calc_ren,
&act_uv_n,
&ren_uv_n,
act_uv_name,
ren_uv_name,
&tangent_mask);
if ((tangent_mask_curr | tangent_mask) != tangent_mask_curr) {
/* Check we have all the needed layers */
/* Allocate needed tangent layers */
for (int i = 0; i < tangent_names_len; i++) {
if (tangent_names[i][0]) {
BKE_mesh_add_loop_tangent_named_layer_for_uv(
loopdata, loopdata_out, (int)loopdata_out_len, tangent_names[i]);
}
}
if ((tangent_mask & DM_TANGENT_MASK_ORCO) &&
CustomData_get_named_layer_index(loopdata, CD_TANGENT, "") == -1) {
CustomData_add_layer_named(
loopdata_out, CD_TANGENT, CD_CALLOC, NULL, (int)loopdata_out_len, "");
}
if (calc_act && act_uv_name[0]) {
BKE_mesh_add_loop_tangent_named_layer_for_uv(
loopdata, loopdata_out, (int)loopdata_out_len, act_uv_name);
}
if (calc_ren && ren_uv_name[0]) {
BKE_mesh_add_loop_tangent_named_layer_for_uv(
loopdata, loopdata_out, (int)loopdata_out_len, ren_uv_name);
}
#ifdef USE_LOOPTRI_DETECT_QUADS
int num_face_as_quad_map;
int *face_as_quad_map = NULL;
/* map faces to quads */
if (looptri_len != mpoly_len) {
/* Over allocate, since we don't know how many ngon or quads we have. */
/* map fake face index to looptri */
face_as_quad_map = MEM_mallocN(sizeof(int) * looptri_len, __func__);
int k, j;
for (k = 0, j = 0; j < (int)looptri_len; k++, j++) {
face_as_quad_map[k] = j;
/* step over all quads */
if (mpoly[looptri[j].poly].totloop == 4) {
j++; /* skips the nest looptri */
}
}
num_face_as_quad_map = k;
}
else {
num_face_as_quad_map = (int)looptri_len;
}
#endif
/* Calculation */
if (looptri_len != 0) {
TaskPool *task_pool = BLI_task_pool_create(NULL, TASK_PRIORITY_LOW);
tangent_mask_curr = 0;
/* Calculate tangent layers */
SGLSLMeshToTangent data_array[MAX_MTFACE];
const int tangent_layer_num = CustomData_number_of_layers(loopdata_out, CD_TANGENT);
for (int n = 0; n < tangent_layer_num; n++) {
int index = CustomData_get_layer_index_n(loopdata_out, CD_TANGENT, n);
BLI_assert(n < MAX_MTFACE);
SGLSLMeshToTangent *mesh2tangent = &data_array[n];
mesh2tangent->numTessFaces = (int)looptri_len;
#ifdef USE_LOOPTRI_DETECT_QUADS
mesh2tangent->face_as_quad_map = face_as_quad_map;
mesh2tangent->num_face_as_quad_map = num_face_as_quad_map;
#endif
mesh2tangent->mvert = mvert;
mesh2tangent->vert_normals = vert_normals;
mesh2tangent->mpoly = mpoly;
mesh2tangent->mloop = mloop;
mesh2tangent->looptri = looptri;
/* NOTE: we assume we do have tessellated loop normals at this point
* (in case it is object-enabled), have to check this is valid. */
mesh2tangent->precomputedLoopNormals = loop_normals;
mesh2tangent->precomputedFaceNormals = poly_normals;
mesh2tangent->orco = NULL;
mesh2tangent->mloopuv = CustomData_get_layer_named(
loopdata, CD_MLOOPUV, loopdata_out->layers[index].name);
/* Fill the resulting tangent_mask */
if (!mesh2tangent->mloopuv) {
mesh2tangent->orco = vert_orco;
if (!mesh2tangent->orco) {
continue;
}
tangent_mask_curr |= DM_TANGENT_MASK_ORCO;
}
else {
int uv_ind = CustomData_get_named_layer_index(
loopdata, CD_MLOOPUV, loopdata_out->layers[index].name);
int uv_start = CustomData_get_layer_index(loopdata, CD_MLOOPUV);
BLI_assert(uv_ind != -1 && uv_start != -1);
BLI_assert(uv_ind - uv_start < MAX_MTFACE);
tangent_mask_curr |= (short)(1 << (uv_ind - uv_start));
}
mesh2tangent->tangent = loopdata_out->layers[index].data;
BLI_task_pool_push(task_pool, DM_calc_loop_tangents_thread, mesh2tangent, false, NULL);
}
BLI_assert(tangent_mask_curr == tangent_mask);
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
}
else {
tangent_mask_curr = tangent_mask;
}
#ifdef USE_LOOPTRI_DETECT_QUADS
if (face_as_quad_map) {
MEM_freeN(face_as_quad_map);
}
# undef USE_LOOPTRI_DETECT_QUADS
#endif
*tangent_mask_curr_p = tangent_mask_curr;
/* Update active layer index */
int act_uv_index = (act_uv_n != -1) ?
CustomData_get_layer_index_n(loopdata, CD_MLOOPUV, act_uv_n) :
-1;
if (act_uv_index != -1) {
int tan_index = CustomData_get_named_layer_index(
loopdata, CD_TANGENT, loopdata->layers[act_uv_index].name);
CustomData_set_layer_active_index(loopdata, CD_TANGENT, tan_index);
} /* else tangent has been built from orco */
/* Update render layer index */
int ren_uv_index = (ren_uv_n != -1) ?
CustomData_get_layer_index_n(loopdata, CD_MLOOPUV, ren_uv_n) :
-1;
if (ren_uv_index != -1) {
int tan_index = CustomData_get_named_layer_index(
loopdata, CD_TANGENT, loopdata->layers[ren_uv_index].name);
CustomData_set_layer_render_index(loopdata, CD_TANGENT, tan_index);
} /* else tangent has been built from orco */
}
}
void BKE_mesh_calc_loop_tangents(Mesh *me_eval,
bool calc_active_tangent,
const char (*tangent_names)[MAX_NAME],
int tangent_names_len)
{
BKE_mesh_runtime_looptri_ensure(me_eval);
/* TODO(campbell): store in Mesh.runtime to avoid recalculation. */
short tangent_mask = 0;
BKE_mesh_calc_loop_tangent_ex(me_eval->mvert,
me_eval->mpoly,
(uint)me_eval->totpoly,
me_eval->mloop,
me_eval->runtime.looptris.array,
(uint)me_eval->runtime.looptris.len,
&me_eval->ldata,
calc_active_tangent,
tangent_names,
tangent_names_len,
BKE_mesh_vertex_normals_ensure(me_eval),
BKE_mesh_poly_normals_ensure(me_eval),
CustomData_get_layer(&me_eval->ldata, CD_NORMAL),
CustomData_get_layer(&me_eval->vdata, CD_ORCO), /* may be NULL */
/* result */
&me_eval->ldata,
(uint)me_eval->totloop,
&tangent_mask);
}
/** \} */