This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/particle_distribute.c
Hans Goudey cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00

1390 lines
38 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_jitter_2d.h"
#include "BLI_kdtree.h"
#include "BLI_math.h"
#include "BLI_math_geom.h"
#include "BLI_rand.h"
#include "BLI_sort.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "DEG_depsgraph_query.h"
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if (psys->child) {
/* only re-allocate if we have to */
if (psys->part->childtype && psys->totchild == tot) {
memset(psys->child, 0, tot * sizeof(ChildParticle));
return;
}
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
if (psys->part->childtype) {
psys->totchild = tot;
if (psys->totchild) {
psys->child = MEM_callocN(psys->totchild * sizeof(ChildParticle), "child_particles");
}
}
}
static void distribute_simple_children(Scene *scene,
Object *ob,
Mesh *final_mesh,
Mesh *deform_mesh,
ParticleSystem *psys,
const bool use_render_params)
{
ChildParticle *cpa = NULL;
int i, p;
int child_nbr = psys_get_child_number(scene, psys, use_render_params);
int totpart = psys_get_tot_child(scene, psys, use_render_params);
RNG *rng = BLI_rng_new_srandom(31415926 + psys->seed + psys->child_seed);
alloc_child_particles(psys, totpart);
cpa = psys->child;
for (i = 0; i < child_nbr; i++) {
for (p = 0; p < psys->totpart; p++, cpa++) {
float length = 2.0;
cpa->parent = p;
/* create even spherical distribution inside unit sphere */
while (length >= 1.0f) {
cpa->fuv[0] = 2.0f * BLI_rng_get_float(rng) - 1.0f;
cpa->fuv[1] = 2.0f * BLI_rng_get_float(rng) - 1.0f;
cpa->fuv[2] = 2.0f * BLI_rng_get_float(rng) - 1.0f;
length = len_v3(cpa->fuv);
}
cpa->num = -1;
}
}
/* dmcache must be updated for parent particles if children from faces is used */
psys_calc_dmcache(ob, final_mesh, deform_mesh, psys);
BLI_rng_free(rng);
}
static void distribute_grid(Mesh *mesh, ParticleSystem *psys)
{
ParticleData *pa = NULL;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = mesh->mvert;
int totvert = mesh->totvert, from = psys->part->from;
int i, j, k, p, res = psys->part->grid_res, size[3], axis;
/* find bounding box of dm */
if (totvert > 0) {
mv = mvert;
copy_v3_v3(min, mv->co);
copy_v3_v3(max, mv->co);
mv++;
for (i = 1; i < totvert; i++, mv++) {
minmax_v3v3_v3(min, max, mv->co);
}
}
else {
zero_v3(min);
zero_v3(max);
}
sub_v3_v3v3(delta, max, min);
/* determine major axis */
axis = axis_dominant_v3_single(delta);
d = delta[axis] / (float)res;
size[axis] = res;
size[(axis + 1) % 3] = (int)ceil(delta[(axis + 1) % 3] / d);
size[(axis + 2) % 3] = (int)ceil(delta[(axis + 2) % 3] / d);
/* float errors grrr. */
size[(axis + 1) % 3] = MIN2(size[(axis + 1) % 3], res);
size[(axis + 2) % 3] = MIN2(size[(axis + 2) % 3], res);
size[0] = MAX2(size[0], 1);
size[1] = MAX2(size[1], 1);
size[2] = MAX2(size[2], 1);
/* no full offset for flat/thin objects */
min[0] += d < delta[0] ? d / 2.0f : delta[0] / 2.0f;
min[1] += d < delta[1] ? d / 2.0f : delta[1] / 2.0f;
min[2] += d < delta[2] ? d / 2.0f : delta[2] / 2.0f;
for (i = 0, p = 0, pa = psys->particles; i < res; i++) {
for (j = 0; j < res; j++) {
for (k = 0; k < res; k++, p++, pa++) {
pa->fuv[0] = min[0] + (float)i * d;
pa->fuv[1] = min[1] + (float)j * d;
pa->fuv[2] = min[2] + (float)k * d;
pa->flag |= PARS_UNEXIST;
pa->hair_index = 0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if (from == PART_FROM_VERT) {
float vec[3];
pa = psys->particles;
min[0] -= d / 2.0f;
min[1] -= d / 2.0f;
min[2] -= d / 2.0f;
for (i = 0, mv = mvert; i < totvert; i++, mv++) {
sub_v3_v3v3(vec, mv->co, min);
vec[0] /= delta[0];
vec[1] /= delta[1];
vec[2] /= delta[2];
pa[((int)(vec[0] * (size[0] - 1)) * res + (int)(vec[1] * (size[1] - 1))) * res +
(int)(vec[2] * (size[2] - 1))]
.flag &= ~PARS_UNEXIST;
}
}
else if (ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
float co1[3], co2[3];
MFace *mface = NULL, *mface_array;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax = from == PART_FROM_FACE ? 3 : 1;
totface = mesh->totface;
mface = mface_array = mesh->mface;
for (a = 0; a < amax; a++) {
if (a == 0) {
a0mul = res * res;
a1mul = res;
a2mul = 1;
}
else if (a == 1) {
a0mul = res;
a1mul = 1;
a2mul = res * res;
}
else {
a0mul = 1;
a1mul = res * res;
a2mul = res;
}
for (a1 = 0; a1 < size[(a + 1) % 3]; a1++) {
for (a2 = 0; a2 < size[(a + 2) % 3]; a2++) {
mface = mface_array;
pa = psys->particles + a1 * a1mul + a2 * a2mul;
copy_v3_v3(co1, pa->fuv);
co1[a] -= d < delta[a] ? d / 2.0f : delta[a] / 2.0f;
copy_v3_v3(co2, co1);
co2[a] += delta[a] + 0.001f * d;
co1[a] -= 0.001f * d;
struct IsectRayPrecalc isect_precalc;
float ray_direction[3];
sub_v3_v3v3(ray_direction, co2, co1);
isect_ray_tri_watertight_v3_precalc(&isect_precalc, ray_direction);
/* lets intersect the faces */
for (i = 0; i < totface; i++, mface++) {
ParticleData *pa1 = NULL, *pa2 = NULL;
copy_v3_v3(v1, mvert[mface->v1].co);
copy_v3_v3(v2, mvert[mface->v2].co);
copy_v3_v3(v3, mvert[mface->v3].co);
bool intersects_tri = isect_ray_tri_watertight_v3(
co1, &isect_precalc, v1, v2, v3, &lambda, NULL);
if (intersects_tri) {
pa1 = (pa + (int)(lambda * size[a]) * a0mul);
}
if (mface->v4 && (!intersects_tri || from == PART_FROM_VOLUME)) {
copy_v3_v3(v4, mvert[mface->v4].co);
if (isect_ray_tri_watertight_v3(co1, &isect_precalc, v1, v3, v4, &lambda, NULL)) {
pa2 = (pa + (int)(lambda * size[a]) * a0mul);
}
}
if (pa1) {
if (from == PART_FROM_FACE) {
pa1->flag &= ~PARS_UNEXIST;
}
else { /* store number of intersections */
pa1->hair_index++;
}
}
if (pa2 && pa2 != pa1) {
if (from == PART_FROM_FACE) {
pa2->flag &= ~PARS_UNEXIST;
}
else { /* store number of intersections */
pa2->hair_index++;
}
}
}
if (from == PART_FROM_VOLUME) {
int in = pa->hair_index % 2;
if (in) {
pa->hair_index++;
}
for (i = 0; i < size[0]; i++) {
if (in || (pa + i * a0mul)->hair_index % 2) {
(pa + i * a0mul)->flag &= ~PARS_UNEXIST;
}
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in = (in + (pa + i * a0mul)->hair_index) % 2;
}
}
}
}
}
}
if (psys->part->flag & PART_GRID_HEXAGONAL) {
for (i = 0, p = 0, pa = psys->particles; i < res; i++) {
for (j = 0; j < res; j++) {
for (k = 0; k < res; k++, p++, pa++) {
if (j % 2) {
pa->fuv[0] += d / 2.0f;
}
if (k % 2) {
pa->fuv[0] += d / 2.0f;
pa->fuv[1] += d / 2.0f;
}
}
}
}
}
if (psys->part->flag & PART_GRID_INVERT) {
for (i = 0; i < size[0]; i++) {
for (j = 0; j < size[1]; j++) {
pa = psys->particles + res * (i * res + j);
for (k = 0; k < size[2]; k++, pa++) {
pa->flag ^= PARS_UNEXIST;
}
}
}
}
if (psys->part->grid_rand > 0.0f) {
float rfac = d * psys->part->grid_rand;
for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++) {
if (pa->flag & PARS_UNEXIST) {
continue;
}
pa->fuv[0] += rfac * (psys_frand(psys, p + 31) - 0.5f);
pa->fuv[1] += rfac * (psys_frand(psys, p + 32) - 0.5f);
pa->fuv[2] += rfac * (psys_frand(psys, p + 33) - 0.5f);
}
}
}
/* modified copy from rayshade.c */
static void hammersley_create(float *out, int n, int seed, float amount)
{
RNG *rng;
double ofs[2], t;
rng = BLI_rng_new(31415926 + n + seed);
ofs[0] = BLI_rng_get_double(rng) + (double)amount;
ofs[1] = BLI_rng_get_double(rng) + (double)amount;
BLI_rng_free(rng);
for (int k = 0; k < n; k++) {
BLI_hammersley_1d(k, &t);
out[2 * k + 0] = fmod((double)k / (double)n + ofs[0], 1.0);
out[2 * k + 1] = fmod(t + ofs[1], 1.0);
}
}
/* almost exact copy of BLI_jitter_init */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if (num == 0) {
return;
}
rad1 = (float)(1.0f / sqrtf((float)num));
rad2 = (float)(1.0f / ((float)num));
rad3 = (float)sqrtf((float)num) / ((float)num);
rng = BLI_rng_new(31415926 + num + seed2);
x = 0;
num2 = 2 * num;
for (i = 0; i < num2; i += 2) {
jit[i] = x + amount * rad1 * (0.5f - BLI_rng_get_float(rng));
jit[i + 1] = i / (2.0f * num) + amount * rad1 * (0.5f - BLI_rng_get_float(rng));
jit[i] -= (float)floor(jit[i]);
jit[i + 1] -= (float)floor(jit[i + 1]);
x += rad3;
x -= (float)floor(x);
}
jit2 = MEM_mallocN(12 + sizeof(float[2]) * num, "initjit");
for (i = 0; i < 4; i++) {
BLI_jitterate1((float(*)[2])jit, (float(*)[2])jit2, num, rad1);
BLI_jitterate1((float(*)[2])jit, (float(*)[2])jit2, num, rad1);
BLI_jitterate2((float(*)[2])jit, (float(*)[2])jit2, num, rad2);
}
MEM_freeN(jit2);
BLI_rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if (!quad) {
if (u + v > 1.0f) {
v = 1.0f - v;
}
else {
u = 1.0f - u;
}
}
vert[0][0] = 0.0f;
vert[0][1] = 0.0f;
vert[0][2] = 0.0f;
vert[1][0] = 1.0f;
vert[1][1] = 0.0f;
vert[1][2] = 0.0f;
vert[2][0] = 1.0f;
vert[2][1] = 1.0f;
vert[2][2] = 0.0f;
co[0] = u;
co[1] = v;
co[2] = 0.0f;
if (quad) {
vert[3][0] = 0.0f;
vert[3][1] = 1.0f;
vert[3][2] = 0.0f;
interp_weights_poly_v3(w, vert, 4, co);
}
else {
interp_weights_poly_v3(w, vert, 3, co);
w[3] = 0.0f;
}
}
/* Find the index in "sum" array before "value" is crossed. */
static int distribute_binary_search(const float *sum, int n, float value)
{
int mid, low = 0, high = n - 1;
if (high == low) {
return low;
}
if (sum[low] >= value) {
return low;
}
if (sum[high - 1] < value) {
return high;
}
while (low < high) {
mid = (low + high) / 2;
if ((sum[mid] >= value) && (sum[mid - 1] < value)) {
return mid;
}
if (sum[mid] > value) {
high = mid - 1;
}
else {
low = mid + 1;
}
}
return low;
}
/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
* be sure to keep up to date if this changes */
#define PSYS_RND_DIST_SKIP 3
/* NOTE: this function must be thread safe, for `from == PART_FROM_CHILD`. */
#define ONLY_WORKING_WITH_PA_VERTS 0
static void distribute_from_verts_exec(ParticleTask *thread, ParticleData *pa, int p)
{
ParticleThreadContext *ctx = thread->ctx;
MFace *mface;
mface = ctx->mesh->mface;
int rng_skip_tot = PSYS_RND_DIST_SKIP; /* count how many rng_* calls won't need skipping */
/* TODO_PARTICLE - use original index */
pa->num = ctx->index[p];
zero_v4(pa->fuv);
if (pa->num != DMCACHE_NOTFOUND && pa->num < ctx->mesh->totvert) {
/* This finds the first face to contain the emitting vertex,
* this is not ideal, but is mostly fine as UV seams generally
* map to equal-colored parts of a texture */
for (int i = 0; i < ctx->mesh->totface; i++, mface++) {
if (ELEM(pa->num, mface->v1, mface->v2, mface->v3, mface->v4)) {
unsigned int *vert = &mface->v1;
for (int j = 0; j < 4; j++, vert++) {
if (*vert == pa->num) {
pa->fuv[j] = 1.0f;
break;
}
}
break;
}
}
}
#if ONLY_WORKING_WITH_PA_VERTS
if (ctx->tree) {
KDTreeNearest_3d ptn[3];
int w, maxw;
psys_particle_on_dm(
ctx->mesh, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co1, 0, 0, 0, orco1, 0);
BKE_mesh_orco_verts_transform(ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_3d_find_nearest_n(ctx->tree, orco1, ptn, 3);
for (w = 0; w < maxw; w++) {
pa->verts[w] = ptn->num;
}
}
#endif
BLI_assert(rng_skip_tot >= 0); /* should never be below zero */
if (rng_skip_tot > 0) {
BLI_rng_skip(thread->rng, rng_skip_tot);
}
}
static void distribute_from_faces_exec(ParticleTask *thread, ParticleData *pa, int p)
{
ParticleThreadContext *ctx = thread->ctx;
Mesh *mesh = ctx->mesh;
float randu, randv;
int distr = ctx->distr;
int i;
int rng_skip_tot = PSYS_RND_DIST_SKIP; /* count how many rng_* calls won't need skipping */
MFace *mface;
pa->num = i = ctx->index[p];
mface = &mesh->mface[i];
switch (distr) {
case PART_DISTR_JIT:
if (ctx->jitlevel == 1) {
if (mface->v4) {
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
}
else {
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
}
}
else {
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
if (!isnan(offset)) {
psys_uv_to_w(
ctx->jit[2 * (int)offset], ctx->jit[2 * (int)offset + 1], mface->v4, pa->fuv);
}
}
break;
case PART_DISTR_RAND:
randu = BLI_rng_get_float(thread->rng);
randv = BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset = 0.0f;
BLI_assert(rng_skip_tot >= 0); /* should never be below zero */
if (rng_skip_tot > 0) {
BLI_rng_skip(thread->rng, rng_skip_tot);
}
}
static void distribute_from_volume_exec(ParticleTask *thread, ParticleData *pa, int p)
{
ParticleThreadContext *ctx = thread->ctx;
Mesh *mesh = ctx->mesh;
float *v1, *v2, *v3, *v4, nor[3], co[3];
float cur_d, min_d, randu, randv;
int distr = ctx->distr;
int i, intersect, tot;
int rng_skip_tot = PSYS_RND_DIST_SKIP; /* count how many rng_* calls won't need skipping */
MFace *mface;
MVert *mvert = mesh->mvert;
pa->num = i = ctx->index[p];
mface = &mesh->mface[i];
switch (distr) {
case PART_DISTR_JIT:
if (ctx->jitlevel == 1) {
if (mface->v4) {
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
}
else {
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
}
}
else {
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
if (!isnan(offset)) {
psys_uv_to_w(
ctx->jit[2 * (int)offset], ctx->jit[2 * (int)offset + 1], mface->v4, pa->fuv);
}
}
break;
case PART_DISTR_RAND:
randu = BLI_rng_get_float(thread->rng);
randv = BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset = 0.0f;
/* experimental */
tot = mesh->totface;
psys_interpolate_face(
mvert, BKE_mesh_vertex_normals_ensure(mesh), mface, 0, 0, pa->fuv, co, nor, 0, 0, 0);
normalize_v3(nor);
negate_v3(nor);
min_d = FLT_MAX;
intersect = 0;
for (i = 0, mface = mesh->mface; i < tot; i++, mface++) {
if (i == pa->num) {
continue;
}
v1 = mvert[mface->v1].co;
v2 = mvert[mface->v2].co;
v3 = mvert[mface->v3].co;
if (isect_ray_tri_v3(co, nor, v2, v3, v1, &cur_d, NULL)) {
if (cur_d < min_d) {
min_d = cur_d;
pa->foffset = cur_d * 0.5f; /* to the middle of volume */
intersect = 1;
}
}
if (mface->v4) {
v4 = mvert[mface->v4].co;
if (isect_ray_tri_v3(co, nor, v4, v1, v3, &cur_d, NULL)) {
if (cur_d < min_d) {
min_d = cur_d;
pa->foffset = cur_d * 0.5f; /* to the middle of volume */
intersect = 1;
}
}
}
}
if (intersect == 0) {
pa->foffset = 0.0;
}
else {
switch (distr) {
case PART_DISTR_JIT:
pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
break;
case PART_DISTR_RAND:
pa->foffset *= BLI_rng_get_float(thread->rng);
rng_skip_tot--;
break;
}
}
BLI_assert(rng_skip_tot >= 0); /* should never be below zero */
if (rng_skip_tot > 0) {
BLI_rng_skip(thread->rng, rng_skip_tot);
}
}
static void distribute_children_exec(ParticleTask *thread, ChildParticle *cpa, int p)
{
ParticleThreadContext *ctx = thread->ctx;
Object *ob = ctx->sim.ob;
Mesh *mesh = ctx->mesh;
float orco1[3], co1[3], nor1[3];
float randu, randv;
int cfrom = ctx->cfrom;
int i;
int rng_skip_tot = PSYS_RND_DIST_SKIP; /* count how many rng_* calls won't need skipping */
MFace *mf;
if (ctx->index[p] < 0) {
cpa->num = 0;
cpa->fuv[0] = cpa->fuv[1] = cpa->fuv[2] = cpa->fuv[3] = 0.0f;
cpa->pa[0] = cpa->pa[1] = cpa->pa[2] = cpa->pa[3] = 0;
return;
}
mf = &mesh->mface[ctx->index[p]];
randu = BLI_rng_get_float(thread->rng);
randv = BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
cpa->num = ctx->index[p];
if (ctx->tree) {
KDTreeNearest_3d ptn[10];
int w, maxw; //, do_seams;
float maxd /*, mind,dd */, totw = 0.0f;
int parent[10];
float pweight[10];
psys_particle_on_dm(mesh,
cfrom,
cpa->num,
DMCACHE_ISCHILD,
cpa->fuv,
cpa->foffset,
co1,
nor1,
NULL,
NULL,
orco1);
BKE_mesh_orco_verts_transform(ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_3d_find_nearest_n(ctx->tree, orco1, ptn, 3);
maxd = ptn[maxw - 1].dist;
/* mind=ptn[0].dist; */ /* UNUSED */
/* the weights here could be done better */
for (w = 0; w < maxw; w++) {
parent[w] = ptn[w].index;
pweight[w] = (float)pow(2.0, (double)(-6.0f * ptn[w].dist / maxd));
}
for (; w < 10; w++) {
parent[w] = -1;
pweight[w] = 0.0f;
}
for (w = 0, i = 0; w < maxw && i < 4; w++) {
if (parent[w] >= 0) {
cpa->pa[i] = parent[w];
cpa->w[i] = pweight[w];
totw += pweight[w];
i++;
}
}
for (; i < 4; i++) {
cpa->pa[i] = -1;
cpa->w[i] = 0.0f;
}
if (totw > 0.0f) {
for (w = 0; w < 4; w++) {
cpa->w[w] /= totw;
}
}
cpa->parent = cpa->pa[0];
}
if (rng_skip_tot > 0) { /* should never be below zero */
BLI_rng_skip(thread->rng, rng_skip_tot);
}
}
static void exec_distribute_parent(TaskPool *__restrict UNUSED(pool), void *taskdata)
{
ParticleTask *task = taskdata;
ParticleSystem *psys = task->ctx->sim.psys;
ParticleData *pa;
int p;
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->begin);
pa = psys->particles + task->begin;
switch (psys->part->from) {
case PART_FROM_FACE:
for (p = task->begin; p < task->end; p++, pa++) {
distribute_from_faces_exec(task, pa, p);
}
break;
case PART_FROM_VOLUME:
for (p = task->begin; p < task->end; p++, pa++) {
distribute_from_volume_exec(task, pa, p);
}
break;
case PART_FROM_VERT:
for (p = task->begin; p < task->end; p++, pa++) {
distribute_from_verts_exec(task, pa, p);
}
break;
}
}
static void exec_distribute_child(TaskPool *__restrict UNUSED(pool), void *taskdata)
{
ParticleTask *task = taskdata;
ParticleSystem *psys = task->ctx->sim.psys;
ChildParticle *cpa;
int p;
/* RNG skipping at the beginning */
cpa = psys->child;
for (p = 0; p < task->begin; p++, cpa++) {
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP);
}
for (; p < task->end; p++, cpa++) {
distribute_children_exec(task, cpa, p);
}
}
static int distribute_compare_orig_index(const void *p1, const void *p2, void *user_data)
{
int *orig_index = (int *)user_data;
int index1 = orig_index[*(const int *)p1];
int index2 = orig_index[*(const int *)p2];
if (index1 < index2) {
return -1;
}
if (index1 == index2) {
/* this pointer comparison appears to make qsort stable for glibc,
* and apparently on solaris too, makes the renders reproducible */
if (p1 < p2) {
return -1;
}
if (p1 == p2) {
return 0;
}
return 1;
}
return 1;
}
static void distribute_invalid(ParticleSimulationData *sim, int from)
{
Scene *scene = sim->scene;
ParticleSystem *psys = sim->psys;
const bool use_render_params = (DEG_get_mode(sim->depsgraph) == DAG_EVAL_RENDER);
if (from == PART_FROM_CHILD) {
ChildParticle *cpa;
int p, totchild = psys_get_tot_child(scene, psys, use_render_params);
if (psys->child && totchild) {
for (p = 0, cpa = psys->child; p < totchild; p++, cpa++) {
cpa->fuv[0] = cpa->fuv[1] = cpa->fuv[2] = cpa->fuv[3] = 0.0;
cpa->foffset = 0.0f;
cpa->parent = 0;
cpa->pa[0] = cpa->pa[1] = cpa->pa[2] = cpa->pa[3] = 0;
cpa->num = -1;
}
}
}
else {
PARTICLE_P;
LOOP_PARTICLES
{
pa->fuv[0] = pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
pa->foffset = 0.0f;
pa->num = -1;
}
}
}
/* Creates a distribution of coordinates on a Mesh */
static int psys_thread_context_init_distribute(ParticleThreadContext *ctx,
ParticleSimulationData *sim,
int from)
{
Scene *scene = sim->scene;
Mesh *final_mesh = sim->psmd->mesh_final;
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleData *pa = 0, *tpars = 0;
ParticleSettings *part;
ParticleSeam *seams = 0;
KDTree_3d *tree = 0;
Mesh *mesh = NULL;
float *jit = NULL;
int i, p = 0;
int cfrom = 0;
int totelem = 0, totpart, *particle_element = 0, children = 0, totseam = 0;
int jitlevel = 1, distr;
float *element_weight = NULL, *jitter_offset = NULL, *vweight = NULL;
float cur, maxweight = 0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3];
RNG *rng = NULL;
if (ELEM(NULL, ob, psys, psys->part)) {
return 0;
}
part = psys->part;
totpart = psys->totpart;
if (totpart == 0) {
return 0;
}
if (!final_mesh->runtime.deformed_only &&
!CustomData_get_layer(&final_mesh->fdata, CD_ORIGINDEX)) {
printf(
"Can't create particles with the current modifier stack, disable destructive modifiers\n");
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
/* XXX This distribution code is totally broken in case from == PART_FROM_CHILD,
* it's always using finaldm even if use_modifier_stack is unset...
* But making things consistent here break all existing edited
* hair systems, so better wait for complete rewrite. */
psys_thread_context_init(ctx, sim);
const bool use_render_params = (DEG_get_mode(sim->depsgraph) == DAG_EVAL_RENDER);
/* First handle special cases */
if (from == PART_FROM_CHILD) {
/* Simple children */
if (part->childtype != PART_CHILD_FACES) {
distribute_simple_children(
scene, ob, final_mesh, sim->psmd->mesh_original, psys, use_render_params);
return 0;
}
}
else {
/* Grid distribution */
if (part->distr == PART_DISTR_GRID && from != PART_FROM_VERT) {
if (psys->part->use_modifier_stack) {
mesh = final_mesh;
}
else {
mesh = (Mesh *)BKE_id_copy_ex(NULL, ob->data, NULL, LIB_ID_COPY_LOCALIZE);
}
BKE_mesh_tessface_ensure(mesh);
distribute_grid(mesh, psys);
if (mesh != final_mesh) {
BKE_id_free(NULL, mesh);
}
return 0;
}
}
/* Create trees and original coordinates if needed */
if (from == PART_FROM_CHILD) {
distr = PART_DISTR_RAND;
rng = BLI_rng_new_srandom(31415926 + psys->seed + psys->child_seed);
mesh = final_mesh;
/* BMESH ONLY */
BKE_mesh_tessface_ensure(mesh);
children = 1;
tree = BLI_kdtree_3d_new(totpart);
for (p = 0, pa = psys->particles; p < totpart; p++, pa++) {
psys_particle_on_dm(
mesh, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, orco);
BKE_mesh_orco_verts_transform(ob->data, &orco, 1, 1);
BLI_kdtree_3d_insert(tree, p, orco);
}
BLI_kdtree_3d_balance(tree);
totpart = psys_get_tot_child(scene, psys, use_render_params);
cfrom = from = PART_FROM_FACE;
}
else {
distr = part->distr;
rng = BLI_rng_new_srandom(31415926 + psys->seed);
if (psys->part->use_modifier_stack) {
mesh = final_mesh;
}
else {
mesh = (Mesh *)BKE_id_copy_ex(NULL, ob->data, NULL, LIB_ID_COPY_LOCALIZE);
}
BKE_mesh_tessface_ensure(mesh);
/* we need orco for consistent distributions */
BKE_mesh_orco_ensure(ob, mesh);
if (from == PART_FROM_VERT) {
MVert *mv = mesh->mvert;
float(*orcodata)[3] = CustomData_get_layer(&mesh->vdata, CD_ORCO);
int totvert = mesh->totvert;
tree = BLI_kdtree_3d_new(totvert);
for (p = 0; p < totvert; p++) {
if (orcodata) {
copy_v3_v3(co, orcodata[p]);
BKE_mesh_orco_verts_transform(ob->data, &co, 1, 1);
}
else {
copy_v3_v3(co, mv[p].co);
}
BLI_kdtree_3d_insert(tree, p, co);
}
BLI_kdtree_3d_balance(tree);
}
}
/* Get total number of emission elements and allocate needed arrays */
totelem = (from == PART_FROM_VERT) ? mesh->totvert : mesh->totface;
if (totelem == 0) {
distribute_invalid(sim, children ? PART_FROM_CHILD : 0);
if (G.debug & G_DEBUG) {
fprintf(stderr, "Particle distribution error: Nothing to emit from!\n");
}
if (mesh != final_mesh) {
BKE_id_free(NULL, mesh);
}
BLI_kdtree_3d_free(tree);
BLI_rng_free(rng);
return 0;
}
element_weight = MEM_callocN(sizeof(float) * totelem, "particle_distribution_weights");
particle_element = MEM_callocN(sizeof(int) * totpart, "particle_distribution_indexes");
jitter_offset = MEM_callocN(sizeof(float) * totelem, "particle_distribution_jitoff");
/* Calculate weights from face areas */
if ((part->flag & PART_EDISTR || children) && from != PART_FROM_VERT) {
MVert *v1, *v2, *v3, *v4;
float totarea = 0.0f, co1[3], co2[3], co3[3], co4[3];
float(*orcodata)[3];
orcodata = CustomData_get_layer(&mesh->vdata, CD_ORCO);
for (i = 0; i < totelem; i++) {
MFace *mf = &mesh->mface[i];
if (orcodata) {
/* Transform orcos from normalized 0..1 to object space. */
copy_v3_v3(co1, orcodata[mf->v1]);
copy_v3_v3(co2, orcodata[mf->v2]);
copy_v3_v3(co3, orcodata[mf->v3]);
BKE_mesh_orco_verts_transform(ob->data, &co1, 1, 1);
BKE_mesh_orco_verts_transform(ob->data, &co2, 1, 1);
BKE_mesh_orco_verts_transform(ob->data, &co3, 1, 1);
if (mf->v4) {
copy_v3_v3(co4, orcodata[mf->v4]);
BKE_mesh_orco_verts_transform(ob->data, &co4, 1, 1);
}
}
else {
v1 = &mesh->mvert[mf->v1];
v2 = &mesh->mvert[mf->v2];
v3 = &mesh->mvert[mf->v3];
copy_v3_v3(co1, v1->co);
copy_v3_v3(co2, v2->co);
copy_v3_v3(co3, v3->co);
if (mf->v4) {
v4 = &mesh->mvert[mf->v4];
copy_v3_v3(co4, v4->co);
}
}
cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
if (cur > maxweight) {
maxweight = cur;
}
element_weight[i] = cur;
totarea += cur;
}
for (i = 0; i < totelem; i++) {
element_weight[i] /= totarea;
}
maxweight /= totarea;
}
else {
float min = 1.0f / (float)(MIN2(totelem, totpart));
for (i = 0; i < totelem; i++) {
element_weight[i] = min;
}
maxweight = min;
}
/* Calculate weights from vgroup */
vweight = psys_cache_vgroup(mesh, psys, PSYS_VG_DENSITY);
if (vweight) {
if (from == PART_FROM_VERT) {
for (i = 0; i < totelem; i++) {
element_weight[i] *= vweight[i];
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for (i = 0; i < totelem; i++) {
MFace *mf = &mesh->mface[i];
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if (mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0f;
}
else {
tweight /= 3.0f;
}
element_weight[i] *= tweight;
}
}
MEM_freeN(vweight);
}
/* Calculate total weight of all elements */
int totmapped = 0;
totweight = 0.0f;
for (i = 0; i < totelem; i++) {
if (element_weight[i] > 0.0f) {
totmapped++;
totweight += element_weight[i];
}
}
if (totmapped == 0) {
/* We are not allowed to distribute particles anywhere... */
if (mesh != final_mesh) {
BKE_id_free(NULL, mesh);
}
BLI_kdtree_3d_free(tree);
BLI_rng_free(rng);
MEM_freeN(element_weight);
MEM_freeN(particle_element);
MEM_freeN(jitter_offset);
return 0;
}
inv_totweight = 1.0f / totweight;
/* Calculate cumulative weights.
* We remove all null-weighted elements from element_sum, and create a new mapping
* 'activ'_elem_index -> orig_elem_index.
* This simplifies greatly the filtering of zero-weighted items - and can be much more efficient
* especially in random case (reducing a lot the size of binary-searched array)...
*/
float *element_sum = MEM_mallocN(sizeof(*element_sum) * totmapped, __func__);
int *element_map = MEM_mallocN(sizeof(*element_map) * totmapped, __func__);
int i_mapped = 0;
for (i = 0; i < totelem && element_weight[i] == 0.0f; i++) {
/* pass */
}
element_sum[i_mapped] = element_weight[i] * inv_totweight;
element_map[i_mapped] = i;
i_mapped++;
for (i++; i < totelem; i++) {
if (element_weight[i] > 0.0f) {
element_sum[i_mapped] = element_sum[i_mapped - 1] + element_weight[i] * inv_totweight;
/* Skip elements which weight is so small that it does not affect the sum. */
if (element_sum[i_mapped] > element_sum[i_mapped - 1]) {
element_map[i_mapped] = i;
i_mapped++;
}
}
}
totmapped = i_mapped;
/* Finally assign elements to particles */
if (part->flag & PART_TRAND) {
for (p = 0; p < totpart; p++) {
/* In theory element_sum[totmapped - 1] should be 1.0,
* but due to float errors this is not necessarily always true, so scale pos accordingly. */
const float pos = BLI_rng_get_float(rng) * element_sum[totmapped - 1];
const int eidx = distribute_binary_search(element_sum, totmapped, pos);
particle_element[p] = element_map[eidx];
BLI_assert(pos <= element_sum[eidx]);
BLI_assert(eidx ? (pos > element_sum[eidx - 1]) : (pos >= 0.0f));
jitter_offset[particle_element[p]] = pos;
}
}
else {
double step, pos;
step = (totpart < 2) ? 0.5 : 1.0 / (double)totpart;
/* This is to address tricky issues with vertex-emitting when user tries
* (and expects) exact 1-1 vert/part distribution (see T47983 and its two example files).
* It allows us to consider pos as 'midpoint between v and v+1'
* (or 'p and p+1', depending whether we have more vertices than particles or not),
* and avoid stumbling over float impression in element_sum.
* NOTE: moved face and volume distribution to this as well (instead of starting at zero),
* for the same reasons, see T52682. */
pos = (totpart < totmapped) ? 0.5 / (double)totmapped :
step * 0.5; /* We choose the smaller step. */
for (i = 0, p = 0; p < totpart; p++, pos += step) {
for (; (i < totmapped - 1) && (pos > (double)element_sum[i]); i++) {
/* pass */
}
particle_element[p] = element_map[i];
jitter_offset[particle_element[p]] = pos;
}
}
MEM_freeN(element_sum);
MEM_freeN(element_map);
/* For hair, sort by origindex (allows optimization's in rendering), */
/* however with virtual parents the children need to be in random order. */
if (part->type == PART_HAIR && !(part->childtype == PART_CHILD_FACES && part->parents != 0.0f)) {
int *orig_index = NULL;
if (from == PART_FROM_VERT) {
if (mesh->totvert) {
orig_index = CustomData_get_layer(&mesh->vdata, CD_ORIGINDEX);
}
}
else {
if (mesh->totface) {
orig_index = CustomData_get_layer(&mesh->fdata, CD_ORIGINDEX);
}
}
if (orig_index) {
BLI_qsort_r(
particle_element, totpart, sizeof(int), distribute_compare_orig_index, orig_index);
}
}
/* Create jittering if needed */
if (distr == PART_DISTR_JIT && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
jitlevel = part->userjit;
if (jitlevel == 0) {
jitlevel = totpart / totelem;
if (part->flag & PART_EDISTR) {
jitlevel *= 2; /* looks better in general, not very scientific */
}
if (jitlevel < 3) {
jitlevel = 3;
}
}
jit = MEM_callocN((2 + jitlevel * 2) * sizeof(float), "jit");
/* for small amounts of particles we use regular jitter since it looks
* a bit better, for larger amounts we switch to hammersley sequence
* because it is much faster */
if (jitlevel < 25) {
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
}
else {
hammersley_create(jit, jitlevel + 1, psys->seed, part->jitfac);
}
BLI_array_randomize(
jit, sizeof(float[2]), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* Setup things for threaded distribution */
ctx->tree = tree;
ctx->seams = seams;
ctx->totseam = totseam;
ctx->sim.psys = psys;
ctx->index = particle_element;
ctx->jit = jit;
ctx->jitlevel = jitlevel;
ctx->jitoff = jitter_offset;
ctx->weight = element_weight;
ctx->maxweight = maxweight;
ctx->cfrom = cfrom;
ctx->distr = distr;
ctx->mesh = mesh;
ctx->tpars = tpars;
if (children) {
alloc_child_particles(psys, totpart);
}
BLI_rng_free(rng);
return 1;
}
static void psys_task_init_distribute(ParticleTask *task, ParticleSimulationData *sim)
{
/* init random number generator */
int seed = 31415926 + sim->psys->seed;
task->rng = BLI_rng_new(seed);
}
static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
{
TaskPool *task_pool;
ParticleThreadContext ctx;
ParticleTask *tasks;
Mesh *final_mesh = sim->psmd->mesh_final;
int i, totpart, numtasks;
/* create a task pool for distribution tasks */
if (!psys_thread_context_init_distribute(&ctx, sim, from)) {
return;
}
task_pool = BLI_task_pool_create(&ctx, TASK_PRIORITY_LOW);
totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
psys_tasks_create(&ctx, 0, totpart, &tasks, &numtasks);
for (i = 0; i < numtasks; i++) {
ParticleTask *task = &tasks[i];
psys_task_init_distribute(task, sim);
if (from == PART_FROM_CHILD) {
BLI_task_pool_push(task_pool, exec_distribute_child, task, false, NULL);
}
else {
BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, NULL);
}
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
psys_calc_dmcache(sim->ob, final_mesh, sim->psmd->mesh_original, sim->psys);
if (ctx.mesh != final_mesh) {
BKE_id_free(NULL, ctx.mesh);
}
psys_tasks_free(tasks, numtasks);
psys_thread_context_free(&ctx);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
{
distribute_invalid(sim, 0);
fprintf(stderr, "Shape emission not yet possible!\n");
}
void distribute_particles(ParticleSimulationData *sim, int from)
{
PARTICLE_PSMD;
int distr_error = 0;
if (psmd) {
if (psmd->mesh_final) {
distribute_particles_on_dm(sim, from);
}
else {
distr_error = 1;
}
}
else {
distribute_particles_on_shape(sim, from);
}
if (distr_error) {
distribute_invalid(sim, from);
fprintf(stderr, "Particle distribution error!\n");
}
}