This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/BLI_math_rotation.h
Campbell Barton 3d3bc74884 Cleanup: remove redundant const qualifiers for POD types
MSVC used to warn about const mismatch for arguments passed by value.
Remove these as newer versions of MSVC no longer show this warning.
2022-01-07 14:16:26 +11:00

427 lines
14 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*/
#pragma once
/** \file
* \ingroup bli
*/
#include "BLI_utildefines.h"
#include "DNA_vec_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/* -------------------------------------------------------------------- */
/** \name Conversion Defines
* \{ */
#define RAD2DEG(_rad) ((_rad) * (180.0 / M_PI))
#define DEG2RAD(_deg) ((_deg) * (M_PI / 180.0))
#define RAD2DEGF(_rad) ((_rad) * (float)(180.0 / M_PI))
#define DEG2RADF(_deg) ((_deg) * (float)(M_PI / 180.0))
/** \} */
/* -------------------------------------------------------------------- */
/** \name Quaternions
* Stored in (w, x, y, z) order.
* \{ */
/* Initialize */
/* Convenience, avoids setting Y axis everywhere. */
void unit_axis_angle(float axis[3], float *angle);
void unit_qt(float q[4]);
void copy_qt_qt(float q[4], const float a[4]);
/* Arithmetic. */
void mul_qt_qtqt(float q[4], const float a[4], const float b[4]);
/**
* \note
* Assumes a unit quaternion?
*
* in fact not, but you may want to use a unit quaternion read on...
*
* Shortcut for 'q v q*' when \a v is actually a quaternion.
* This removes the need for converting a vector to a quaternion,
* calculating q's conjugate and converting back to a vector.
* It also happens to be faster (17+,24* vs * 24+,32*).
* If \a q is not a unit quaternion, then \a v will be both rotated by
* the same amount as if q was a unit quaternion, and scaled by the square of
* the length of q.
*
* For people used to python mathutils, its like:
* def mul_qt_v3(q, v): (q * Quaternion((0.0, v[0], v[1], v[2])) * q.conjugated())[1:]
*
* \note Multiplying by 3x3 matrix is ~25% faster.
*/
void mul_qt_v3(const float q[4], float r[3]);
/**
* Simple multiply.
*/
void mul_qt_fl(float q[4], float f);
/**
* Raise a unit quaternion to the specified power.
*/
void pow_qt_fl_normalized(float q[4], float f);
void sub_qt_qtqt(float q[4], const float a[4], const float b[4]);
void invert_qt(float q[4]);
void invert_qt_qt(float q1[4], const float q2[4]);
/**
* This is just conjugate_qt for cases we know \a q is unit-length.
* we could use #conjugate_qt directly, but use this function to show intent,
* and assert if its ever becomes non-unit-length.
*/
void invert_qt_normalized(float q[4]);
void invert_qt_qt_normalized(float q1[4], const float q2[4]);
void conjugate_qt(float q[4]);
void conjugate_qt_qt(float q1[4], const float q2[4]);
float dot_qtqt(const float a[4], const float b[4]);
float normalize_qt(float q[4]);
float normalize_qt_qt(float r[4], const float q[4]);
/* Comparison. */
bool is_zero_qt(const float q[4]);
/* interpolation */
/**
* Generic function for implementing slerp
* (quaternions and spherical vector coords).
*
* \param t: factor in [0..1]
* \param cosom: dot product from normalized vectors/quats.
* \param r_w: calculated weights.
*/
void interp_dot_slerp(float t, float cosom, float r_w[2]);
void interp_qt_qtqt(float q[4], const float a[4], const float b[4], float t);
void add_qt_qtqt(float q[4], const float a[4], const float b[4], float t);
/* Conversion. */
void quat_to_mat3(float mat[3][3], const float q[4]);
void quat_to_mat4(float mat[4][4], const float q[4]);
/**
* Apply the rotation of \a a to \a q keeping the values compatible with \a old.
* Avoid axis flipping for animated f-curves for eg.
*/
void quat_to_compatible_quat(float q[4], const float a[4], const float old[4]);
void mat3_normalized_to_quat(float q[4], const float mat[3][3]);
void mat4_normalized_to_quat(float q[4], const float mat[4][4]);
void mat3_to_quat(float q[4], const float mat[3][3]);
void mat4_to_quat(float q[4], const float mat[4][4]);
/**
* Same as tri_to_quat() but takes pre-computed normal from the triangle
* used for ngons when we know their normal.
*/
void tri_to_quat_ex(float quat[4],
const float v1[3],
const float v2[3],
const float v3[3],
const float no_orig[3]);
/**
* \return the length of the normal, use to test for degenerate triangles.
*/
float tri_to_quat(float q[4], const float a[3], const float b[3], const float c[3]);
void vec_to_quat(float q[4], const float vec[3], short axis, short upflag);
/**
* Calculate a rotation matrix from 2 normalized vectors.
* \note `v1` and `v2` must be normalized.
*/
void rotation_between_vecs_to_mat3(float m[3][3], const float v1[3], const float v2[3]);
/**
* \note Expects vectors to be normalized.
*/
void rotation_between_vecs_to_quat(float q[4], const float v1[3], const float v2[3]);
void rotation_between_quats_to_quat(float q[4], const float q1[4], const float q2[4]);
/**
* Decompose a quaternion into a swing rotation (quaternion with the selected
* axis component locked at zero), followed by a twist rotation around the axis.
*
* \param q: input quaternion.
* \param axis: twist axis in [0,1,2]
* \param r_swing: if not NULL, receives the swing quaternion.
* \param r_twist: if not NULL, receives the twist quaternion.
* \returns twist angle.
*/
float quat_split_swing_and_twist(const float q[4], int axis, float r_swing[4], float r_twist[4]);
float angle_normalized_qt(const float q[4]);
float angle_normalized_qtqt(const float q1[4], const float q2[4]);
float angle_qt(const float q[4]);
float angle_qtqt(const float q1[4], const float q2[4]);
float angle_signed_normalized_qt(const float q[4]);
float angle_signed_normalized_qtqt(const float q1[4], const float q2[4]);
float angle_signed_qt(const float q[4]);
float angle_signed_qtqt(const float q1[4], const float q2[4]);
/**
* TODO: don't what this is, but it's not the same as #mat3_to_quat.
*/
void mat3_to_quat_is_ok(float q[4], const float mat[3][3]);
/* Other. */
void print_qt(const char *str, const float q[4]);
#define print_qt_id(q) print_qt(STRINGIFY(q), q)
/** \} */
/* -------------------------------------------------------------------- */
/** \name Axis Angle
* \{ */
/* Conversion. */
void axis_angle_normalized_to_quat(float r[4], const float axis[3], float angle);
void axis_angle_to_quat(float r[4], const float axis[3], float angle);
/**
* Axis angle to 3x3 matrix - safer version (normalization of axis performed).
*/
void axis_angle_to_mat3(float R[3][3], const float axis[3], float angle);
/**
* axis angle to 3x3 matrix
*
* This takes the angle with sin/cos applied so we can avoid calculating it in some cases.
*
* \param axis: rotation axis (must be normalized).
* \param angle_sin: sin(angle)
* \param angle_cos: cos(angle)
*/
void axis_angle_normalized_to_mat3_ex(float mat[3][3],
const float axis[3],
float angle_sin,
float angle_cos);
void axis_angle_normalized_to_mat3(float R[3][3], const float axis[3], float angle);
/**
* Axis angle to 4x4 matrix - safer version (normalization of axis performed).
*/
void axis_angle_to_mat4(float R[4][4], const float axis[3], float angle);
/**
* 3x3 matrix to axis angle.
*/
void mat3_normalized_to_axis_angle(float axis[3], float *angle, const float M[3][3]);
/**
* 4x4 matrix to axis angle.
*/
void mat4_normalized_to_axis_angle(float axis[3], float *angle, const float M[4][4]);
void mat3_to_axis_angle(float axis[3], float *angle, const float M[3][3]);
/**
* 4x4 matrix to axis angle.
*/
void mat4_to_axis_angle(float axis[3], float *angle, const float M[4][4]);
/**
* Quaternions to Axis Angle.
*/
void quat_to_axis_angle(float axis[3], float *angle, const float q[4]);
void angle_to_mat2(float R[2][2], float angle);
/**
* Create a 3x3 rotation matrix from a single axis.
*/
void axis_angle_to_mat3_single(float R[3][3], char axis, float angle);
/**
* Create a 4x4 rotation matrix from a single axis.
*/
void axis_angle_to_mat4_single(float R[4][4], char axis, float angle);
void axis_angle_to_quat_single(float q[4], char axis, float angle);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Exponential Map
* \{ */
void quat_to_expmap(float expmap[3], const float q[4]);
void quat_normalized_to_expmap(float expmap[3], const float q[4]);
void expmap_to_quat(float r[4], const float expmap[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name XYZ Eulers
* \{ */
void eul_to_quat(float quat[4], const float eul[3]);
void eul_to_mat3(float mat[3][3], const float eul[3]);
void eul_to_mat4(float mat[4][4], const float eul[3]);
void mat3_normalized_to_eul(float eul[3], const float mat[3][3]);
void mat4_normalized_to_eul(float eul[3], const float mat[4][4]);
void mat3_to_eul(float eul[3], const float mat[3][3]);
void mat4_to_eul(float eul[3], const float mat[4][4]);
void quat_to_eul(float eul[3], const float quat[4]);
void mat3_normalized_to_compatible_eul(float eul[3], const float old[3], float mat[3][3]);
void mat3_to_compatible_eul(float eul[3], const float old[3], float mat[3][3]);
void quat_to_compatible_eul(float eul[3], const float oldrot[3], const float quat[4]);
void rotate_eul(float eul[3], char axis, float angle);
/* Order independent. */
void compatible_eul(float eul[3], const float old[3]);
void add_eul_euleul(float r_eul[3], float a[3], float b[3], short order);
void sub_eul_euleul(float r_eul[3], float a[3], float b[3], short order);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Arbitrary Order Eulers
* \{ */
/* WARNING: must match the #eRotationModes in `DNA_action_types.h`
* order matters - types are saved to file. */
typedef enum eEulerRotationOrders {
EULER_ORDER_DEFAULT = 1, /* blender classic = XYZ */
EULER_ORDER_XYZ = 1,
EULER_ORDER_XZY,
EULER_ORDER_YXZ,
EULER_ORDER_YZX,
EULER_ORDER_ZXY,
EULER_ORDER_ZYX,
/* There are 6 more entries with duplicate entries included. */
} eEulerRotationOrders;
/**
* Construct quaternion from Euler angles (in radians).
*/
void eulO_to_quat(float quat[4], const float eul[3], short order);
/**
* Construct 3x3 matrix from Euler angles (in radians).
*/
void eulO_to_mat3(float mat[3][3], const float eul[3], short order);
/**
* Construct 4x4 matrix from Euler angles (in radians).
*/
void eulO_to_mat4(float mat[4][4], const float eul[3], short order);
/**
* Euler Rotation to Axis Angle.
*/
void eulO_to_axis_angle(float axis[3], float *angle, const float eul[3], short order);
/**
* The matrix is written to as 3 axis vectors.
*/
void eulO_to_gimbal_axis(float gmat[3][3], const float eul[3], short order);
/**
* Convert 3x3 matrix to Euler angles (in radians).
*/
void mat3_normalized_to_eulO(float eul[3], short order, const float mat[3][3]);
/**
* Convert 4x4 matrix to Euler angles (in radians).
*/
void mat4_normalized_to_eulO(float eul[3], short order, const float mat[4][4]);
void mat3_to_eulO(float eul[3], short order, const float mat[3][3]);
void mat4_to_eulO(float eul[3], short order, const float mat[4][4]);
/**
* Convert quaternion to Euler angles (in radians).
*/
void quat_to_eulO(float eul[3], short order, const float quat[4]);
/**
* Axis Angle to Euler Rotation.
*/
void axis_angle_to_eulO(float eul[3], short order, const float axis[3], float angle);
/* Uses 2 methods to retrieve eulers, and picks the closest. */
void mat3_normalized_to_compatible_eulO(float eul[3],
const float old[3],
short order,
const float mat[3][3]);
void mat4_normalized_to_compatible_eulO(float eul[3],
const float old[3],
short order,
const float mat[4][4]);
void mat3_to_compatible_eulO(float eul[3], const float old[3], short order, const float mat[3][3]);
void mat4_to_compatible_eulO(float eul[3], const float old[3], short order, const float mat[4][4]);
void quat_to_compatible_eulO(float eul[3], const float old[3], short order, const float quat[4]);
void rotate_eulO(float eul[3], short order, char axis, float angle);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dual Quaternions
* \{ */
void copy_dq_dq(DualQuat *r, const DualQuat *dq);
void normalize_dq(DualQuat *dq, float totw);
void add_weighted_dq_dq(DualQuat *dq_sum, const DualQuat *dq, float weight);
void mul_v3m3_dq(float r[3], float R[3][3], DualQuat *dq);
void mat4_to_dquat(DualQuat *dq, const float basemat[4][4], const float mat[4][4]);
void dquat_to_mat4(float R[4][4], const DualQuat *dq);
/**
* Axis matches #eTrackToAxis_Modes.
*/
void quat_apply_track(float quat[4], short axis, short upflag);
void vec_apply_track(float vec[3], short axis);
/**
* Lens/angle conversion (radians).
*/
float focallength_to_fov(float focal_length, float sensor);
float fov_to_focallength(float fov, float sensor);
float angle_wrap_rad(float angle);
float angle_wrap_deg(float angle);
/**
* Returns an angle compatible with angle_compat.
*/
float angle_compat_rad(float angle, float angle_compat);
/**
* Each argument us an axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z']
* where the first 2 are a source and the second 2 are the target.
*/
bool mat3_from_axis_conversion(
int src_forward, int src_up, int dst_forward, int dst_up, float r_mat[3][3]);
/**
* Use when the second axis can be guessed.
*/
bool mat3_from_axis_conversion_single(int src_axis, int dst_axis, float r_mat[3][3]);
/** \} */
#ifdef __cplusplus
}
#endif