This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/io/usd/intern/usd_writer_mesh.cc
Michael Kowalski c85c52f2ce USD Preview Surface material export.
Add `USD Preview Surface From Nodes` export option, to convert a
Principled BSDF material node network to an approximate USD Preview
Surface shader representation. If this option is disabled, the original
material export behavior is maintained, where viewport setting are saved
to the Preview Surface shader.

Also added the following options for texture export.

  - `Export Textures`: If converting Preview Surface, export textures
    referenced by shader nodes to a 'textures' directory which is a
    sibling of the USD file.
  - `Overwrite Textures`: Allow overwriting existing texture files when
    exporting textures (this option is off by default).
  - `Relative Texture Paths`:  Make texture asset paths relative to the
    USD.

The entry point for the new functionality is
`create_usd_preview_surface_material()`, called from
`USDAbstractWriter::ensure_usd_material()`.  The material conversion
currently handles a small subset of Blender shading nodes,
`BSDF_DIFFUSE`, `BSDF_PRINCIPLED`, `TEX_IMAGE` and `UVMAP`.

Texture export is handled by copying texture files from their original
location to a `textures` folder in the same directory as the USD.
In-memory and packed textures are saved directly to the textures folder.

This patch is based, in part, on code in Tangent Animation's USD
exporter branch.

Reviewed By: sybren, HooglyBoogly

Differential Revision: https://developer.blender.org/D13647
2022-01-27 15:51:50 +01:00

488 lines
18 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2019 Blender Foundation.
* All rights reserved.
*/
#include "usd_writer_mesh.h"
#include "usd_hierarchy_iterator.h"
#include <pxr/usd/usdGeom/mesh.h>
#include <pxr/usd/usdShade/material.h>
#include <pxr/usd/usdShade/materialBindingAPI.h>
#include "BLI_assert.h"
#include "BLI_math_vector.h"
#include "BKE_attribute.h"
#include "BKE_customdata.h"
#include "BKE_lib_id.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "DEG_depsgraph.h"
#include "DNA_layer_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_fluidsim_types.h"
#include "DNA_particle_types.h"
#include <iostream>
namespace blender::io::usd {
USDGenericMeshWriter::USDGenericMeshWriter(const USDExporterContext &ctx) : USDAbstractWriter(ctx)
{
}
bool USDGenericMeshWriter::is_supported(const HierarchyContext *context) const
{
if (usd_export_context_.export_params.visible_objects_only) {
return context->is_object_visible(usd_export_context_.export_params.evaluation_mode);
}
return true;
}
void USDGenericMeshWriter::do_write(HierarchyContext &context)
{
Object *object_eval = context.object;
bool needsfree = false;
Mesh *mesh = get_export_mesh(object_eval, needsfree);
if (mesh == nullptr) {
return;
}
try {
write_mesh(context, mesh);
if (needsfree) {
free_export_mesh(mesh);
}
}
catch (...) {
if (needsfree) {
free_export_mesh(mesh);
}
throw;
}
}
void USDGenericMeshWriter::free_export_mesh(Mesh *mesh)
{
BKE_id_free(nullptr, mesh);
}
struct USDMeshData {
pxr::VtArray<pxr::GfVec3f> points;
pxr::VtIntArray face_vertex_counts;
pxr::VtIntArray face_indices;
std::map<short, pxr::VtIntArray> face_groups;
/* The length of this array specifies the number of creases on the surface. Each element gives
* the number of (must be adjacent) vertices in each crease, whose indices are linearly laid out
* in the 'creaseIndices' attribute. Since each crease must be at least one edge long, each
* element of this array should be greater than one. */
pxr::VtIntArray crease_lengths;
/* The indices of all vertices forming creased edges. The size of this array must be equal to the
* sum of all elements of the 'creaseLengths' attribute. */
pxr::VtIntArray crease_vertex_indices;
/* The per-crease or per-edge sharpness for all creases (Usd.Mesh.SHARPNESS_INFINITE for a
* perfectly sharp crease). Since 'creaseLengths' encodes the number of vertices in each crease,
* the number of elements in this array will be either 'len(creaseLengths)' or the sum over all X
* of '(creaseLengths[X] - 1)'. Note that while the RI spec allows each crease to have either a
* single sharpness or a value per-edge, USD will encode either a single sharpness per crease on
* a mesh, or sharpness's for all edges making up the creases on a mesh. */
pxr::VtFloatArray crease_sharpnesses;
/* The lengths of this array specifies the number of sharp corners (or vertex crease) on the
* surface. Each value is the index of a vertex in the mesh's vertex list. */
pxr::VtIntArray corner_indices;
/* The per-vertex sharpnesses. The lengths of this array must match that of `corner_indices`. */
pxr::VtFloatArray corner_sharpnesses;
};
void USDGenericMeshWriter::write_uv_maps(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
pxr::UsdTimeCode timecode = get_export_time_code();
const CustomData *ldata = &mesh->ldata;
for (int layer_idx = 0; layer_idx < ldata->totlayer; layer_idx++) {
const CustomDataLayer *layer = &ldata->layers[layer_idx];
if (layer->type != CD_MLOOPUV) {
continue;
}
/* UV coordinates are stored in a Primvar on the Mesh, and can be referenced from materials.
* The primvar name is the same as the UV Map name. This is to allow the standard name "st"
* for texture coordinates by naming the UV Map as such, without having to guess which UV Map
* is the "standard" one. */
pxr::TfToken primvar_name(pxr::TfMakeValidIdentifier(layer->name));
pxr::UsdGeomPrimvar uv_coords_primvar = usd_mesh.CreatePrimvar(
primvar_name, pxr::SdfValueTypeNames->TexCoord2fArray, pxr::UsdGeomTokens->faceVarying);
MLoopUV *mloopuv = static_cast<MLoopUV *>(layer->data);
pxr::VtArray<pxr::GfVec2f> uv_coords;
for (int loop_idx = 0; loop_idx < mesh->totloop; loop_idx++) {
uv_coords.push_back(pxr::GfVec2f(mloopuv[loop_idx].uv));
}
if (!uv_coords_primvar.HasValue()) {
uv_coords_primvar.Set(uv_coords, pxr::UsdTimeCode::Default());
}
const pxr::UsdAttribute &uv_coords_attr = uv_coords_primvar.GetAttr();
usd_value_writer_.SetAttribute(uv_coords_attr, pxr::VtValue(uv_coords), timecode);
}
}
void USDGenericMeshWriter::write_mesh(HierarchyContext &context, Mesh *mesh)
{
pxr::UsdTimeCode timecode = get_export_time_code();
pxr::UsdTimeCode defaultTime = pxr::UsdTimeCode::Default();
pxr::UsdStageRefPtr stage = usd_export_context_.stage;
const pxr::SdfPath &usd_path = usd_export_context_.usd_path;
pxr::UsdGeomMesh usd_mesh = pxr::UsdGeomMesh::Define(stage, usd_path);
write_visibility(context, timecode, usd_mesh);
USDMeshData usd_mesh_data;
get_geometry_data(mesh, usd_mesh_data);
if (usd_export_context_.export_params.use_instancing && context.is_instance()) {
if (!mark_as_instance(context, usd_mesh.GetPrim())) {
return;
}
/* The material path will be of the form </_materials/{material name}>, which is outside the
* sub-tree pointed to by ref_path. As a result, the referenced data is not allowed to point
* out of its own sub-tree. It does work when we override the material with exactly the same
* path, though. */
if (usd_export_context_.export_params.export_materials) {
assign_materials(context, usd_mesh, usd_mesh_data.face_groups);
}
return;
}
pxr::UsdAttribute attr_points = usd_mesh.CreatePointsAttr(pxr::VtValue(), true);
pxr::UsdAttribute attr_face_vertex_counts = usd_mesh.CreateFaceVertexCountsAttr(pxr::VtValue(),
true);
pxr::UsdAttribute attr_face_vertex_indices = usd_mesh.CreateFaceVertexIndicesAttr(pxr::VtValue(),
true);
if (!attr_points.HasValue()) {
/* Provide the initial value as default. This makes USD write the value as constant if they
* don't change over time. */
attr_points.Set(usd_mesh_data.points, defaultTime);
attr_face_vertex_counts.Set(usd_mesh_data.face_vertex_counts, defaultTime);
attr_face_vertex_indices.Set(usd_mesh_data.face_indices, defaultTime);
}
usd_value_writer_.SetAttribute(attr_points, pxr::VtValue(usd_mesh_data.points), timecode);
usd_value_writer_.SetAttribute(
attr_face_vertex_counts, pxr::VtValue(usd_mesh_data.face_vertex_counts), timecode);
usd_value_writer_.SetAttribute(
attr_face_vertex_indices, pxr::VtValue(usd_mesh_data.face_indices), timecode);
if (!usd_mesh_data.crease_lengths.empty()) {
pxr::UsdAttribute attr_crease_lengths = usd_mesh.CreateCreaseLengthsAttr(pxr::VtValue(), true);
pxr::UsdAttribute attr_crease_indices = usd_mesh.CreateCreaseIndicesAttr(pxr::VtValue(), true);
pxr::UsdAttribute attr_crease_sharpness = usd_mesh.CreateCreaseSharpnessesAttr(pxr::VtValue(),
true);
if (!attr_crease_lengths.HasValue()) {
attr_crease_lengths.Set(usd_mesh_data.crease_lengths, defaultTime);
attr_crease_indices.Set(usd_mesh_data.crease_vertex_indices, defaultTime);
attr_crease_sharpness.Set(usd_mesh_data.crease_sharpnesses, defaultTime);
}
usd_value_writer_.SetAttribute(
attr_crease_lengths, pxr::VtValue(usd_mesh_data.crease_lengths), timecode);
usd_value_writer_.SetAttribute(
attr_crease_indices, pxr::VtValue(usd_mesh_data.crease_vertex_indices), timecode);
usd_value_writer_.SetAttribute(
attr_crease_sharpness, pxr::VtValue(usd_mesh_data.crease_sharpnesses), timecode);
}
if (!usd_mesh_data.corner_indices.empty() &&
usd_mesh_data.corner_indices.size() == usd_mesh_data.corner_sharpnesses.size()) {
pxr::UsdAttribute attr_corner_indices = usd_mesh.CreateCornerIndicesAttr(pxr::VtValue(), true);
pxr::UsdAttribute attr_corner_sharpnesses = usd_mesh.CreateCornerSharpnessesAttr(
pxr::VtValue(), true);
if (!attr_corner_indices.HasValue()) {
attr_corner_indices.Set(usd_mesh_data.corner_indices, defaultTime);
attr_corner_sharpnesses.Set(usd_mesh_data.corner_sharpnesses, defaultTime);
}
usd_value_writer_.SetAttribute(
attr_corner_indices, pxr::VtValue(usd_mesh_data.corner_indices), timecode);
usd_value_writer_.SetAttribute(
attr_corner_sharpnesses, pxr::VtValue(usd_mesh_data.crease_sharpnesses), timecode);
}
if (usd_export_context_.export_params.export_uvmaps) {
write_uv_maps(mesh, usd_mesh);
}
if (usd_export_context_.export_params.export_normals) {
write_normals(mesh, usd_mesh);
}
write_surface_velocity(mesh, usd_mesh);
/* TODO(Sybren): figure out what happens when the face groups change. */
if (frame_has_been_written_) {
return;
}
usd_mesh.CreateSubdivisionSchemeAttr().Set(pxr::UsdGeomTokens->none);
if (usd_export_context_.export_params.export_materials) {
assign_materials(context, usd_mesh, usd_mesh_data.face_groups);
}
}
static void get_vertices(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
usd_mesh_data.points.reserve(mesh->totvert);
const MVert *verts = mesh->mvert;
for (int i = 0; i < mesh->totvert; ++i) {
usd_mesh_data.points.push_back(pxr::GfVec3f(verts[i].co));
}
}
static void get_loops_polys(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
/* Only construct face groups (a.k.a. geometry subsets) when we need them for material
* assignments. */
bool construct_face_groups = mesh->totcol > 1;
usd_mesh_data.face_vertex_counts.reserve(mesh->totpoly);
usd_mesh_data.face_indices.reserve(mesh->totloop);
MLoop *mloop = mesh->mloop;
MPoly *mpoly = mesh->mpoly;
for (int i = 0; i < mesh->totpoly; ++i, ++mpoly) {
MLoop *loop = mloop + mpoly->loopstart;
usd_mesh_data.face_vertex_counts.push_back(mpoly->totloop);
for (int j = 0; j < mpoly->totloop; ++j, ++loop) {
usd_mesh_data.face_indices.push_back(loop->v);
}
if (construct_face_groups) {
usd_mesh_data.face_groups[mpoly->mat_nr].push_back(i);
}
}
}
static void get_edge_creases(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
const float factor = 1.0f / 255.0f;
MEdge *edge = mesh->medge;
float sharpness;
for (int edge_idx = 0, totedge = mesh->totedge; edge_idx < totedge; ++edge_idx, ++edge) {
if (edge->crease == 0) {
continue;
}
if (edge->crease == 255) {
sharpness = pxr::UsdGeomMesh::SHARPNESS_INFINITE;
}
else {
sharpness = static_cast<float>(edge->crease) * factor;
}
usd_mesh_data.crease_vertex_indices.push_back(edge->v1);
usd_mesh_data.crease_vertex_indices.push_back(edge->v2);
usd_mesh_data.crease_lengths.push_back(2);
usd_mesh_data.crease_sharpnesses.push_back(sharpness);
}
}
static void get_vert_creases(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
const float *creases = static_cast<const float *>(CustomData_get_layer(&mesh->vdata, CD_CREASE));
if (!creases) {
return;
}
for (int i = 0, v = mesh->totvert; i < v; i++) {
const float sharpness = creases[i];
if (sharpness != 0.0f) {
usd_mesh_data.corner_indices.push_back(i);
usd_mesh_data.corner_sharpnesses.push_back(sharpness);
}
}
}
void USDGenericMeshWriter::get_geometry_data(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
get_vertices(mesh, usd_mesh_data);
get_loops_polys(mesh, usd_mesh_data);
get_edge_creases(mesh, usd_mesh_data);
get_vert_creases(mesh, usd_mesh_data);
}
void USDGenericMeshWriter::assign_materials(const HierarchyContext &context,
pxr::UsdGeomMesh usd_mesh,
const MaterialFaceGroups &usd_face_groups)
{
if (context.object->totcol == 0) {
return;
}
/* Binding a material to a geometry subset isn't supported by the Hydra GL viewport yet,
* which is why we always bind the first material to the entire mesh. See
* https://github.com/PixarAnimationStudios/USD/issues/542 for more info. */
bool mesh_material_bound = false;
pxr::UsdShadeMaterialBindingAPI material_binding_api(usd_mesh.GetPrim());
for (int mat_num = 0; mat_num < context.object->totcol; mat_num++) {
Material *material = BKE_object_material_get(context.object, mat_num + 1);
if (material == nullptr) {
continue;
}
pxr::UsdShadeMaterial usd_material = ensure_usd_material(context, material);
material_binding_api.Bind(usd_material);
/* USD seems to support neither per-material nor per-face-group double-sidedness, so we just
* use the flag from the first non-empty material slot. */
usd_mesh.CreateDoubleSidedAttr(
pxr::VtValue((material->blend_flag & MA_BL_CULL_BACKFACE) == 0));
mesh_material_bound = true;
break;
}
if (!mesh_material_bound) {
/* Blender defaults to double-sided, but USD to single-sided. */
usd_mesh.CreateDoubleSidedAttr(pxr::VtValue(true));
}
if (!mesh_material_bound || usd_face_groups.size() < 2) {
/* Either all material slots were empty or there is only one material in use. As geometry
* subsets are only written when actually used to assign a material, and the mesh already has
* the material assigned, there is no need to continue. */
return;
}
/* Define a geometry subset per material. */
for (const MaterialFaceGroups::value_type &face_group : usd_face_groups) {
short material_number = face_group.first;
const pxr::VtIntArray &face_indices = face_group.second;
Material *material = BKE_object_material_get(context.object, material_number + 1);
if (material == nullptr) {
continue;
}
pxr::UsdShadeMaterial usd_material = ensure_usd_material(context, material);
pxr::TfToken material_name = usd_material.GetPath().GetNameToken();
pxr::UsdGeomSubset usd_face_subset = material_binding_api.CreateMaterialBindSubset(
material_name, face_indices);
pxr::UsdShadeMaterialBindingAPI(usd_face_subset.GetPrim()).Bind(usd_material);
}
}
void USDGenericMeshWriter::write_normals(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
pxr::UsdTimeCode timecode = get_export_time_code();
const float(*lnors)[3] = static_cast<float(*)[3]>(CustomData_get_layer(&mesh->ldata, CD_NORMAL));
pxr::VtVec3fArray loop_normals;
loop_normals.reserve(mesh->totloop);
if (lnors != nullptr) {
/* Export custom loop normals. */
for (int loop_idx = 0, totloop = mesh->totloop; loop_idx < totloop; ++loop_idx) {
loop_normals.push_back(pxr::GfVec3f(lnors[loop_idx]));
}
}
else {
/* Compute the loop normals based on the 'smooth' flag. */
const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh);
const float(*face_normals)[3] = BKE_mesh_poly_normals_ensure(mesh);
MPoly *mpoly = mesh->mpoly;
for (int poly_idx = 0, totpoly = mesh->totpoly; poly_idx < totpoly; ++poly_idx, ++mpoly) {
MLoop *mloop = mesh->mloop + mpoly->loopstart;
if ((mpoly->flag & ME_SMOOTH) == 0) {
/* Flat shaded, use common normal for all verts. */
pxr::GfVec3f pxr_normal(face_normals[poly_idx]);
for (int loop_idx = 0; loop_idx < mpoly->totloop; ++loop_idx) {
loop_normals.push_back(pxr_normal);
}
}
else {
/* Smooth shaded, use individual vert normals. */
for (int loop_idx = 0; loop_idx < mpoly->totloop; ++loop_idx, ++mloop) {
loop_normals.push_back(pxr::GfVec3f(vert_normals[mloop->v]));
}
}
}
}
pxr::UsdAttribute attr_normals = usd_mesh.CreateNormalsAttr(pxr::VtValue(), true);
if (!attr_normals.HasValue()) {
attr_normals.Set(loop_normals, pxr::UsdTimeCode::Default());
}
usd_value_writer_.SetAttribute(attr_normals, pxr::VtValue(loop_normals), timecode);
usd_mesh.SetNormalsInterpolation(pxr::UsdGeomTokens->faceVarying);
}
void USDGenericMeshWriter::write_surface_velocity(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
/* Export velocity attribute output by fluid sim, sequence cache modifier
* and geometry nodes. */
CustomDataLayer *velocity_layer = BKE_id_attribute_find(
&mesh->id, "velocity", CD_PROP_FLOAT3, ATTR_DOMAIN_POINT);
if (velocity_layer == nullptr) {
return;
}
const float(*velocities)[3] = reinterpret_cast<float(*)[3]>(velocity_layer->data);
/* Export per-vertex velocity vectors. */
pxr::VtVec3fArray usd_velocities;
usd_velocities.reserve(mesh->totvert);
for (int vertex_idx = 0, totvert = mesh->totvert; vertex_idx < totvert; ++vertex_idx) {
usd_velocities.push_back(pxr::GfVec3f(velocities[vertex_idx]));
}
pxr::UsdTimeCode timecode = get_export_time_code();
usd_mesh.CreateVelocitiesAttr().Set(usd_velocities, timecode);
}
USDMeshWriter::USDMeshWriter(const USDExporterContext &ctx) : USDGenericMeshWriter(ctx)
{
}
Mesh *USDMeshWriter::get_export_mesh(Object *object_eval, bool & /*r_needsfree*/)
{
return BKE_object_get_evaluated_mesh(object_eval);
}
} // namespace blender::io::usd