This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_Matrix.c

2018 lines
58 KiB
C

/*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Michel Selten & Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/python/mathutils/mathutils_Matrix.c
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
static PyObject *Matrix_copy(MatrixObject *self);
static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value);
static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self);
/* matrix vector callbacks */
int mathutils_matrix_vector_cb_index= -1;
static int mathutils_matrix_vector_check(BaseMathObject *bmo)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
return BaseMath_ReadCallback(self);
}
static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
int index;
if (BaseMath_ReadCallback(self) == -1)
return -1;
for (index=0; index < self->col_size; index++) {
bmo->data[index] = MATRIX_ITEM(self, subtype, index);
}
return 0;
}
static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
int index;
if (BaseMath_ReadCallback(self) == -1)
return -1;
for (index=0; index < self->col_size; index++) {
MATRIX_ITEM(self, subtype, index) = bmo->data[index];
}
(void)BaseMath_WriteCallback(self);
return 0;
}
static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
if (BaseMath_ReadCallback(self) == -1)
return -1;
bmo->data[index]= MATRIX_ITEM(self, subtype, index);
return 0;
}
static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
if (BaseMath_ReadCallback(self) == -1)
return -1;
MATRIX_ITEM(self, subtype, index) = bmo->data[index];
(void)BaseMath_WriteCallback(self);
return 0;
}
Mathutils_Callback mathutils_matrix_vector_cb = {
mathutils_matrix_vector_check,
mathutils_matrix_vector_get,
mathutils_matrix_vector_set,
mathutils_matrix_vector_get_index,
mathutils_matrix_vector_set_index
};
/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
//----------------------------------mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc.
//create a new matrix type
static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
if (kwds && PyDict_Size(kwds)) {
PyErr_SetString(PyExc_TypeError,
"Matrix(): "
"takes no keyword args");
return NULL;
}
switch (PyTuple_GET_SIZE(args)) {
case 0:
return Matrix_CreatePyObject(NULL, 4, 4, Py_NEW, type);
case 1:
{
PyObject *arg= PyTuple_GET_ITEM(args, 0);
/* -1 is an error, size checks will accunt for this */
const unsigned short row_size= PySequence_Size(arg);
if (row_size >= 2 && row_size <= 4) {
PyObject *item= PySequence_GetItem(arg, 0);
const unsigned short col_size= PySequence_Size(item);
Py_XDECREF(item);
if (col_size >= 2 && col_size <= 4) {
/* sane row & col size, new matrix and assign as slice */
PyObject *matrix= Matrix_CreatePyObject(NULL, row_size, col_size, Py_NEW, type);
if (Matrix_ass_slice((MatrixObject *)matrix, 0, INT_MAX, arg) == 0) {
return matrix;
}
else { /* matrix ok, slice assignment not */
Py_DECREF(matrix);
}
}
}
}
}
/* will overwrite error */
PyErr_SetString(PyExc_TypeError,
"Matrix(): "
"expects no args or 2-4 numeric sequences");
return NULL;
}
static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self)
{
PyObject *ret= Matrix_copy(self);
PyObject *ret_dummy= matrix_func(ret);
if (ret_dummy) {
Py_DECREF(ret_dummy);
return (PyObject *)ret;
}
else { /* error */
Py_DECREF(ret);
return NULL;
}
}
/* when a matrix is 4x4 size but initialized as a 3x3, re-assign values for 4x4 */
static void matrix_3x3_as_4x4(float mat[16])
{
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
/*-----------------------CLASS-METHODS----------------------------*/
//mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc.
PyDoc_STRVAR(C_Matrix_Rotation_doc,
".. classmethod:: Rotation(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object\n"
" (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
{
PyObject *vec= NULL;
const char *axis= NULL;
int matSize;
double angle; /* use double because of precision problems at high values */
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if (!PyArg_ParseTuple(args, "di|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError,
"Matrix.Rotation(angle, size, axis): "
"expected float int and a string or vector");
return NULL;
}
if (vec && PyUnicode_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if (axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_ValueError,
"Matrix.Rotation(): "
"3rd argument axis value must be a 3D vector "
"or a string in 'X', 'Y', 'Z'");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
angle= angle_wrap_rad(angle);
if (matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_ValueError,
"Matrix.Rotation(): "
"can only return a 2x2 3x3 or 4x4 matrix");
return NULL;
}
if (matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_ValueError,
"Matrix.Rotation(): "
"cannot create a 2x2 rotation matrix around arbitrary axis");
return NULL;
}
if ((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_ValueError,
"Matrix.Rotation(): "
"axis of rotation for 3d and 4d matrices is required");
return NULL;
}
/* check for valid vector/axis above */
if (vec) {
float tvec[3];
if (mathutils_array_parse(tvec, 3, 3, vec, "Matrix.Rotation(angle, size, axis), invalid 'axis' arg") == -1)
return NULL;
axis_angle_to_mat3((float (*)[3])mat, tvec, angle);
}
else if (matSize == 2) {
const float angle_cos= cosf(angle);
const float angle_sin= sinf(angle);
//2D rotation matrix
mat[0] = angle_cos;
mat[1] = angle_sin;
mat[2] = -angle_sin;
mat[3] = angle_cos;
}
else {
/* valid axis checked above */
single_axis_angle_to_mat3((float (*)[3])mat, axis[0], angle);
}
if (matSize == 4) {
matrix_3x3_as_4x4(mat);
}
//pass to matrix creation
return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
PyDoc_STRVAR(C_Matrix_Translation_doc,
".. classmethod:: Translation(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *C_Matrix_Translation(PyObject *cls, PyObject *value)
{
float mat[16], tvec[3];
if (mathutils_array_parse(tvec, 3, 4, value, "mathutils.Matrix.Translation(vector), invalid vector arg") == -1)
return NULL;
/* create a identity matrix and add translation */
unit_m4((float(*)[4]) mat);
copy_v3_v3(mat + 12, tvec); /* 12, 13, 14 */
return Matrix_CreatePyObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.Matrix.Scale() -------------
//mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc.
PyDoc_STRVAR(C_Matrix_Scale_doc,
".. classmethod:: Scale(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
{
PyObject *vec= NULL;
int vec_size;
float tvec[3];
float factor;
int matSize;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if (!PyArg_ParseTuple(args, "fi|O:Matrix.Scale", &factor, &matSize, &vec)) {
return NULL;
}
if (matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_ValueError,
"Matrix.Scale(): "
"can only return a 2x2 3x3 or 4x4 matrix");
return NULL;
}
if (vec) {
vec_size= (matSize == 2 ? 2 : 3);
if (mathutils_array_parse(tvec, vec_size, vec_size, vec, "Matrix.Scale(factor, size, axis), invalid 'axis' arg") == -1) {
return NULL;
}
}
if (vec == NULL) { //scaling along axis
if (matSize == 2) {
mat[0] = factor;
mat[3] = factor;
}
else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
}
else { //scaling in arbitrary direction
//normalize arbitrary axis
float norm = 0.0f;
int x;
for (x = 0; x < vec_size; x++) {
norm += tvec[x] * tvec[x];
}
norm = (float) sqrt(norm);
for (x = 0; x < vec_size; x++) {
tvec[x] /= norm;
}
if (matSize == 2) {
mat[0] = 1 + ((factor - 1) *(tvec[0] * tvec[0]));
mat[1] = ((factor - 1) *(tvec[0] * tvec[1]));
mat[2] = ((factor - 1) *(tvec[0] * tvec[1]));
mat[3] = 1 + ((factor - 1) *(tvec[1] * tvec[1]));
}
else {
mat[0] = 1 + ((factor - 1) *(tvec[0] * tvec[0]));
mat[1] = ((factor - 1) *(tvec[0] * tvec[1]));
mat[2] = ((factor - 1) *(tvec[0] * tvec[2]));
mat[3] = ((factor - 1) *(tvec[0] * tvec[1]));
mat[4] = 1 + ((factor - 1) *(tvec[1] * tvec[1]));
mat[5] = ((factor - 1) *(tvec[1] * tvec[2]));
mat[6] = ((factor - 1) *(tvec[0] * tvec[2]));
mat[7] = ((factor - 1) *(tvec[1] * tvec[2]));
mat[8] = 1 + ((factor - 1) *(tvec[2] * tvec[2]));
}
}
if (matSize == 4) {
matrix_3x3_as_4x4(mat);
}
//pass to matrix creation
return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.Matrix.OrthoProjection() ---
//mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc.
PyDoc_STRVAR(C_Matrix_OrthoProjection_doc,
".. classmethod:: OrthoProjection(axis, size)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg axis: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'],\n"
" where a single axis is for a 2D matrix.\n"
" Or a vector for an arbitrary axis\n"
" :type axis: string or :class:`Vector`\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
{
PyObject *axis;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if (!PyArg_ParseTuple(args, "Oi:Matrix.OrthoProjection", &axis, &matSize)) {
return NULL;
}
if (matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_ValueError,
"Matrix.OrthoProjection(): "
"can only return a 2x2 3x3 or 4x4 matrix");
return NULL;
}
if (PyUnicode_Check(axis)) { //ortho projection onto cardinal plane
Py_ssize_t plane_len;
const char *plane= _PyUnicode_AsStringAndSize(axis, &plane_len);
if (matSize == 2) {
if (plane_len == 1 && plane[0]=='X') {
mat[0]= 1.0f;
}
else if (plane_len == 1 && plane[0]=='Y') {
mat[3]= 1.0f;
}
else {
PyErr_Format(PyExc_ValueError,
"Matrix.OrthoProjection(): "
"unknown plane, expected: X, Y, not '%.200s'",
plane);
return NULL;
}
}
else {
if (plane_len == 2 && plane[0]=='X' && plane[1]=='Y') {
mat[0]= 1.0f;
mat[4]= 1.0f;
}
else if (plane_len == 2 && plane[0]=='X' && plane[1]=='Z') {
mat[0]= 1.0f;
mat[8]= 1.0f;
}
else if (plane_len == 2 && plane[0]=='Y' && plane[1]=='Z') {
mat[4]= 1.0f;
mat[8]= 1.0f;
}
else {
PyErr_Format(PyExc_ValueError,
"Matrix.OrthoProjection(): "
"unknown plane, expected: XY, XZ, YZ, not '%.200s'",
plane);
return NULL;
}
}
}
else {
//arbitrary plane
int vec_size= (matSize == 2 ? 2 : 3);
float tvec[4];
if (mathutils_array_parse(tvec, vec_size, vec_size, axis,
"Matrix.OrthoProjection(axis, size), invalid 'axis' arg") == -1)
{
return NULL;
}
//normalize arbitrary axis
for (x = 0; x < vec_size; x++) {
norm += tvec[x] * tvec[x];
}
norm = (float) sqrt(norm);
for (x = 0; x < vec_size; x++) {
tvec[x] /= norm;
}
if (matSize == 2) {
mat[0] = 1 - (tvec[0] * tvec[0]);
mat[1] = -(tvec[0] * tvec[1]);
mat[2] = -(tvec[0] * tvec[1]);
mat[3] = 1 - (tvec[1] * tvec[1]);
}
else if (matSize > 2) {
mat[0] = 1 - (tvec[0] * tvec[0]);
mat[1] = -(tvec[0] * tvec[1]);
mat[2] = -(tvec[0] * tvec[2]);
mat[3] = -(tvec[0] * tvec[1]);
mat[4] = 1 - (tvec[1] * tvec[1]);
mat[5] = -(tvec[1] * tvec[2]);
mat[6] = -(tvec[0] * tvec[2]);
mat[7] = -(tvec[1] * tvec[2]);
mat[8] = 1 - (tvec[2] * tvec[2]);
}
}
if (matSize == 4) {
matrix_3x3_as_4x4(mat);
}
//pass to matrix creation
return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
PyDoc_STRVAR(C_Matrix_Shear_doc,
".. classmethod:: Shear(plane, size, factor)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'],\n"
" where a single axis is for a 2D matrix only.\n"
" :type plane: string\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg factor: The factor of shear to apply. For a 3 or 4 *size* matrix\n"
" pass a pair of floats corrasponding with the *plane* axis.\n"
" :type factor: float or float pair\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
{
int matSize;
const char *plane;
PyObject *fac;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if (!PyArg_ParseTuple(args, "siO:Matrix.Shear", &plane, &matSize, &fac)) {
return NULL;
}
if (matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_ValueError,
"Matrix.Shear(): "
"can only return a 2x2 3x3 or 4x4 matrix");
return NULL;
}
if (matSize == 2) {
float const factor= PyFloat_AsDouble(fac);
if (factor==-1.0f && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError,
"Matrix.Shear(): "
"the factor to be a float");
return NULL;
}
/* unit */
mat[0] = 1.0f;
mat[3] = 1.0f;
if (strcmp(plane, "X") == 0) {
mat[2] = factor;
}
else if (strcmp(plane, "Y") == 0) {
mat[1] = factor;
}
else {
PyErr_SetString(PyExc_ValueError,
"Matrix.Shear(): "
"expected: X, Y or wrong matrix size for shearing plane");
return NULL;
}
}
else {
/* 3 or 4, apply as 3x3, resize later if needed */
float factor[2];
if (mathutils_array_parse(factor, 2, 2, fac, "Matrix.Shear()") < 0) {
return NULL;
}
/* unit */
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[8] = 1.0f;
if (strcmp(plane, "XY") == 0) {
mat[6] = factor[0];
mat[7] = factor[1];
}
else if (strcmp(plane, "XZ") == 0) {
mat[3] = factor[0];
mat[5] = factor[1];
}
else if (strcmp(plane, "YZ") == 0) {
mat[1] = factor[0];
mat[2] = factor[1];
}
else {
PyErr_SetString(PyExc_ValueError,
"Matrix.Shear(): "
"expected: X, Y, XY, XZ, YZ");
return NULL;
}
}
if (matSize == 4) {
matrix_3x3_as_4x4(mat);
}
//pass to matrix creation
return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
void matrix_as_3x3(float mat[3][3], MatrixObject *self)
{
copy_v3_v3(mat[0], MATRIX_ROW_PTR(self, 0));
copy_v3_v3(mat[1], MATRIX_ROW_PTR(self, 1));
copy_v3_v3(mat[2], MATRIX_ROW_PTR(self, 2));
}
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant_internal(MatrixObject *self)
{
if (self->row_size == 2) {
return determinant_m2(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1),
MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1));
}
else if (self->row_size == 3) {
return determinant_m3(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1), MATRIX_ITEM(self, 0, 2),
MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1), MATRIX_ITEM(self, 1, 2),
MATRIX_ITEM(self, 2, 0), MATRIX_ITEM(self, 2, 1), MATRIX_ITEM(self, 2, 2));
}
else {
return determinant_m4((float (*)[4])self->contigPtr);
}
}
/*-----------------------------METHODS----------------------------*/
PyDoc_STRVAR(Matrix_to_quaternion_doc,
".. method:: to_quaternion()\n"
"\n"
" Return a quaternion representation of the rotation matrix.\n"
"\n"
" :return: Quaternion representation of the rotation matrix.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Matrix_to_quaternion(MatrixObject *self)
{
float quat[4];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3) || (self->col_size != self->row_size)) {
PyErr_SetString(PyExc_ValueError,
"Matrix.to_quat(): "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
if (self->col_size == 3) {
mat3_to_quat(quat, (float (*)[3])self->contigPtr);
}
else {
mat4_to_quat(quat, (float (*)[4])self->contigPtr);
}
return Quaternion_CreatePyObject(quat, Py_NEW, NULL);
}
/*---------------------------matrix.toEuler() --------------------*/
PyDoc_STRVAR(Matrix_to_euler_doc,
".. method:: to_euler(order, euler_compat)\n"
"\n"
" Return an Euler representation of the rotation matrix\n"
" (3x3 or 4x4 matrix only).\n"
"\n"
" :arg order: Optional rotation order argument in\n"
" ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
" :type order: string\n"
" :arg euler_compat: Optional euler argument the new euler will be made\n"
" compatible with (no axis flipping between them).\n"
" Useful for converting a series of matrices to animation curves.\n"
" :type euler_compat: :class:`Euler`\n"
" :return: Euler representation of the matrix.\n"
" :rtype: :class:`Euler`\n"
);
static PyObject *Matrix_to_euler(MatrixObject *self, PyObject *args)
{
const char *order_str= NULL;
short order= EULER_ORDER_XYZ;
float eul[3], eul_compatf[3];
EulerObject *eul_compat = NULL;
float tmat[3][3];
float (*mat)[3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
return NULL;
if (eul_compat) {
if (BaseMath_ReadCallback(eul_compat) == -1)
return NULL;
copy_v3_v3(eul_compatf, eul_compat->eul);
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size ==3 && self->row_size ==3) {
mat= (float (*)[3])self->contigPtr;
}
else if (self->col_size ==4 && self->row_size ==4) {
copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
mat= tmat;
}
else {
PyErr_SetString(PyExc_ValueError,
"Matrix.to_euler(): "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
if (order_str) {
order= euler_order_from_string(order_str, "Matrix.to_euler()");
if (order == -1)
return NULL;
}
if (eul_compat) {
if (order == 1) mat3_to_compatible_eul(eul, eul_compatf, mat);
else mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
}
else {
if (order == 1) mat3_to_eul(eul, mat);
else mat3_to_eulO(eul, order, mat);
}
return Euler_CreatePyObject(eul, order, Py_NEW, NULL);
}
PyDoc_STRVAR(Matrix_resize_4x4_doc,
".. method:: resize_4x4()\n"
"\n"
" Resize the matrix to 4x4.\n"
);
static PyObject *Matrix_resize_4x4(MatrixObject *self)
{
int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
if (self->wrapped==Py_WRAP) {
PyErr_SetString(PyExc_TypeError,
"Matrix.resize_4x4(): "
"cannot resize wrapped data - make a copy and resize that");
return NULL;
}
if (self->cb_user) {
PyErr_SetString(PyExc_TypeError,
"Matrix.resize_4x4(): "
"cannot resize owned data - make a copy and resize that");
return NULL;
}
self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
if (self->contigPtr == NULL) {
PyErr_SetString(PyExc_MemoryError,
"Matrix.resize_4x4(): "
"problem allocating pointer space");
return NULL;
}
/*move data to new spot in array + clean*/
for (blank_rows = (4 - self->row_size); blank_rows > 0; blank_rows--) {
for (x = 0; x < 4; x++) {
index = (4 * (self->row_size + (blank_rows - 1))) + x;
if (index == 10 || index == 15) {
self->contigPtr[index] = 1.0f;
}
else {
self->contigPtr[index] = 0.0f;
}
}
}
for (x = 1; x <= self->row_size; x++) {
first_row_elem = (self->col_size * (self->row_size - x));
curr_pos = (first_row_elem + (self->col_size -1));
new_pos = (4 * (self->row_size - x)) + (curr_pos - first_row_elem);
for (blank_columns = (4 - self->col_size); blank_columns > 0; blank_columns--) {
self->contigPtr[new_pos + blank_columns] = 0.0f;
}
for ( ; curr_pos >= first_row_elem; curr_pos--) {
self->contigPtr[new_pos] = self->contigPtr[curr_pos];
new_pos--;
}
}
self->row_size = 4;
self->col_size = 4;
Py_RETURN_NONE;
}
PyDoc_STRVAR(Matrix_to_4x4_doc,
".. method:: to_4x4()\n"
"\n"
" Return a 4x4 copy of this matrix.\n"
"\n"
" :return: a new matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_to_4x4(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->col_size==4 && self->row_size==4) {
return Matrix_CreatePyObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
}
else if (self->col_size==3 && self->row_size==3) {
float mat[4][4];
copy_m4_m3(mat, (float (*)[3])self->contigPtr);
return Matrix_CreatePyObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
}
/* TODO, 2x2 matrix */
PyErr_SetString(PyExc_TypeError,
"Matrix.to_4x4(): "
"inappropriate matrix size");
return NULL;
}
PyDoc_STRVAR(Matrix_to_3x3_doc,
".. method:: to_3x3()\n"
"\n"
" Return a 3x3 copy of this matrix.\n"
"\n"
" :return: a new matrix.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_to_3x3(MatrixObject *self)
{
float mat[3][3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if ((self->col_size < 3) || (self->row_size < 3)) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_3x3(): inappropriate matrix size");
return NULL;
}
matrix_as_3x3(mat, self);
return Matrix_CreatePyObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
}
PyDoc_STRVAR(Matrix_to_translation_doc,
".. method:: to_translation()\n"
"\n"
" Return a the translation part of a 4 row matrix.\n"
"\n"
" :return: Return a the translation of a matrix.\n"
" :rtype: :class:`Vector`\n"
);
static PyObject *Matrix_to_translation(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if ((self->col_size < 3) || self->row_size < 4) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_translation(): "
"inappropriate matrix size");
return NULL;
}
return Vector_CreatePyObject(MATRIX_ROW_PTR(self, 3), 3, Py_NEW, NULL);
}
PyDoc_STRVAR(Matrix_to_scale_doc,
".. method:: to_scale()\n"
"\n"
" Return a the scale part of a 3x3 or 4x4 matrix.\n"
"\n"
" :return: Return a the scale of a matrix.\n"
" :rtype: :class:`Vector`\n"
"\n"
" .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n"
);
static PyObject *Matrix_to_scale(MatrixObject *self)
{
float rot[3][3];
float mat[3][3];
float size[3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3)) {
PyErr_SetString(PyExc_TypeError,
"Matrix.to_scale(): "
"inappropriate matrix size, 3x3 minimum size");
return NULL;
}
matrix_as_3x3(mat, self);
/* compatible mat4_to_loc_rot_size */
mat3_to_rot_size(rot, size, mat);
return Vector_CreatePyObject(size, 3, Py_NEW, NULL);
}
/*---------------------------matrix.invert() ---------------------*/
PyDoc_STRVAR(Matrix_invert_doc,
".. method:: invert()\n"
"\n"
" Set the matrix to its inverse.\n"
"\n"
" .. note:: :exc:`ValueError` exception is raised.\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n"
);
static PyObject *Matrix_invert(MatrixObject *self)
{
int x, y, z = 0;
float det = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix.invert(ed): "
"only square matrices are supported");
return NULL;
}
/*calculate the determinant*/
det = matrix_determinant_internal(self);
if (det != 0) {
/*calculate the classical adjoint*/
if (self->row_size == 2) {
mat[0] = MATRIX_ITEM(self, 1, 1);
mat[1] = -MATRIX_ITEM(self, 0, 1);
mat[2] = -MATRIX_ITEM(self, 1, 0);
mat[3] = MATRIX_ITEM(self, 0, 0);
}
else if (self->row_size == 3) {
adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
}
else if (self->row_size == 4) {
adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
}
/*divide by determinate*/
for (x = 0; x < (self->row_size * self->col_size); x++) {
mat[x] /= det;
}
/*set values*/
for (x = 0; x < self->row_size; x++) {
for (y = 0; y < self->col_size; y++) {
MATRIX_ITEM(self, x, y) = mat[z];
z++;
}
}
/*transpose
Matrix_transpose(self);*/
}
else {
PyErr_SetString(PyExc_ValueError,
"Matrix.invert(ed): "
"matrix does not have an inverse");
return NULL;
}
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Matrix_inverted_doc,
".. method:: inverted()\n"
"\n"
" Return an inverted copy of the matrix.\n"
"\n"
" :return: the inverted matrix.\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. note:: :exc:`ValueError` exception is raised.\n"
);
static PyObject *Matrix_inverted(MatrixObject *self)
{
return matrix__apply_to_copy((PyNoArgsFunction)Matrix_invert, self);
}
PyDoc_STRVAR(Matrix_rotate_doc,
".. method:: rotate(other)\n"
"\n"
" Rotates the matrix a by another mathutils value.\n"
"\n"
" :arg other: rotation component of mathutils value\n"
" :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"
"\n"
" .. note:: If any of the columns are not unit length this may not have desired results.\n"
);
static PyObject *Matrix_rotate(MatrixObject *self, PyObject *value)
{
float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_any_to_rotmat(other_rmat, value, "matrix.rotate(value)") == -1)
return NULL;
if (self->col_size != 3 || self->row_size != 3) {
PyErr_SetString(PyExc_TypeError,
"Matrix.rotate(): "
"must have 3x3 dimensions");
return NULL;
}
matrix_as_3x3(self_rmat, self);
mul_m3_m3m3(rmat, other_rmat, self_rmat);
copy_m3_m3((float (*)[3])(self->contigPtr), rmat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
/*---------------------------matrix.decompose() ---------------------*/
PyDoc_STRVAR(Matrix_decompose_doc,
".. method:: decompose()\n"
"\n"
" Return the location, rotaion and scale components of this matrix.\n"
"\n"
" :return: loc, rot, scale triple.\n"
" :rtype: (:class:`Vector`, :class:`Quaternion`, :class:`Vector`)"
);
static PyObject *Matrix_decompose(MatrixObject *self)
{
PyObject *ret;
float loc[3];
float rot[3][3];
float quat[4];
float size[3];
if (self->col_size != 4 || self->row_size != 4) {
PyErr_SetString(PyExc_TypeError,
"Matrix.decompose(): "
"inappropriate matrix size - expects 4x4 matrix");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1)
return NULL;
mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->contigPtr);
mat3_to_quat(quat, rot);
ret= PyTuple_New(3);
PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(loc, 3, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, Quaternion_CreatePyObject(quat, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 2, Vector_CreatePyObject(size, 3, Py_NEW, NULL));
return ret;
}
PyDoc_STRVAR(Matrix_lerp_doc,
".. function:: lerp(other, factor)\n"
"\n"
" Returns the interpolation of two matrices.\n"
"\n"
" :arg other: value to interpolate with.\n"
" :type other: :class:`Matrix`\n"
" :arg factor: The interpolation value in [0.0, 1.0].\n"
" :type factor: float\n"
" :return: The interpolated rotation.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args)
{
MatrixObject *mat2 = NULL;
float fac, mat[MATRIX_MAX_DIM*MATRIX_MAX_DIM];
if (!PyArg_ParseTuple(args, "O!f:lerp", &matrix_Type, &mat2, &fac))
return NULL;
if (self->row_size != mat2->row_size || self->col_size != mat2->col_size) {
PyErr_SetString(PyExc_ValueError,
"Matrix.lerp(): "
"expects both matrix objects of the same dimensions");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1 || BaseMath_ReadCallback(mat2) == -1)
return NULL;
/* TODO, different sized matrix */
if (self->row_size==4 && self->col_size==4) {
blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->contigPtr, (float (*)[4])mat2->contigPtr, fac);
}
else if (self->row_size==3 && self->col_size==3) {
blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->contigPtr, (float (*)[3])mat2->contigPtr, fac);
}
else {
PyErr_SetString(PyExc_ValueError,
"Matrix.lerp(): "
"only 3x3 and 4x4 matrices supported");
return NULL;
}
return Matrix_CreatePyObject(mat, self->row_size, self->col_size, Py_NEW, Py_TYPE(self));
}
/*---------------------------matrix.determinant() ----------------*/
PyDoc_STRVAR(Matrix_determinant_doc,
".. method:: determinant()\n"
"\n"
" Return the determinant of a matrix.\n"
"\n"
" :return: Return a the determinant of a matrix.\n"
" :rtype: float\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n"
);
static PyObject *Matrix_determinant(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix.determinant(): "
"only square matrices are supported");
return NULL;
}
return PyFloat_FromDouble((double)matrix_determinant_internal(self));
}
/*---------------------------matrix.transpose() ------------------*/
PyDoc_STRVAR(Matrix_transpose_doc,
".. method:: transpose()\n"
"\n"
" Set the matrix to its transpose.\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n"
);
static PyObject *Matrix_transpose(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix.transpose(d): "
"only square matrices are supported");
return NULL;
}
if (self->row_size == 2) {
const float t = MATRIX_ITEM(self, 1, 0);
MATRIX_ITEM(self, 1, 0) = MATRIX_ITEM(self, 0, 1);
MATRIX_ITEM(self, 0, 1) = t;
}
else if (self->row_size == 3) {
transpose_m3((float (*)[3])self->contigPtr);
}
else {
transpose_m4((float (*)[4])self->contigPtr);
}
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Matrix_transposed_doc,
".. method:: transposed()\n"
"\n"
" Return a new, transposed matrix.\n"
"\n"
" :return: a transposed matrix\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_transposed(MatrixObject *self)
{
return matrix__apply_to_copy((PyNoArgsFunction)Matrix_transpose, self);
}
/*---------------------------matrix.zero() -----------------------*/
PyDoc_STRVAR(Matrix_zero_doc,
".. method:: zero()\n"
"\n"
" Set all the matrix values to zero.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_zero(MatrixObject *self)
{
fill_vn_fl(self->contigPtr, self->row_size * self->col_size, 0.0f);
if (BaseMath_WriteCallback(self) == -1)
return NULL;
Py_RETURN_NONE;
}
/*---------------------------matrix.identity(() ------------------*/
PyDoc_STRVAR(Matrix_identity_doc,
".. method:: identity()\n"
"\n"
" Set the matrix to the identity matrix.\n"
"\n"
" .. note:: An object with zero location and rotation, a scale of one,\n"
" will have an identity matrix.\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n"
);
static PyObject *Matrix_identity(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (self->row_size != self->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix.identity(): "
"only square matrices are supported");
return NULL;
}
if (self->row_size == 2) {
MATRIX_ITEM(self, 0, 0) = 1.0f;
MATRIX_ITEM(self, 0, 1) = 0.0f;
MATRIX_ITEM(self, 1, 0) = 0.0f;
MATRIX_ITEM(self, 1, 1) = 1.0f;
}
else if (self->row_size == 3) {
unit_m3((float (*)[3])self->contigPtr);
}
else {
unit_m4((float (*)[4])self->contigPtr);
}
if (BaseMath_WriteCallback(self) == -1)
return NULL;
Py_RETURN_NONE;
}
/*---------------------------Matrix.copy() ------------------*/
PyDoc_STRVAR(Matrix_copy_doc,
".. method:: copy()\n"
"\n"
" Returns a copy of this matrix.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Matrix_copy(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return Matrix_CreatePyObject((float (*))self->contigPtr, self->row_size, self->col_size, Py_NEW, Py_TYPE(self));
}
/*----------------------------print object (internal)-------------*/
/*print the object to screen*/
static PyObject *Matrix_repr(MatrixObject *self)
{
int x, y;
PyObject *rows[MATRIX_MAX_DIM]= {NULL};
if (BaseMath_ReadCallback(self) == -1)
return NULL;
for (x = 0; x < self->row_size; x++) {
rows[x]= PyTuple_New(self->col_size);
for (y = 0; y < self->col_size; y++) {
PyTuple_SET_ITEM(rows[x], y, PyFloat_FromDouble(MATRIX_ITEM(self, x, y)));
}
}
switch (self->row_size) {
case 2: return PyUnicode_FromFormat("Matrix((%R,\n"
" %R))", rows[0], rows[1]);
case 3: return PyUnicode_FromFormat("Matrix((%R,\n"
" %R,\n"
" %R))", rows[0], rows[1], rows[2]);
case 4: return PyUnicode_FromFormat("Matrix((%R,\n"
" %R,\n"
" %R,\n"
" %R))", rows[0], rows[1], rows[2], rows[3]);
}
Py_FatalError("Matrix(): invalid row size!");
return NULL;
}
static PyObject* Matrix_richcmpr(PyObject *a, PyObject *b, int op)
{
PyObject *res;
int ok= -1; /* zero is true */
if (MatrixObject_Check(a) && MatrixObject_Check(b)) {
MatrixObject *matA= (MatrixObject*)a;
MatrixObject *matB= (MatrixObject*)b;
if (BaseMath_ReadCallback(matA) == -1 || BaseMath_ReadCallback(matB) == -1)
return NULL;
ok= ( (matA->col_size == matB->col_size) &&
(matA->row_size == matB->row_size) &&
EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr, (matA->row_size * matA->col_size), 1)
) ? 0 : -1;
}
switch (op) {
case Py_NE:
ok = !ok; /* pass through */
case Py_EQ:
res = ok ? Py_False : Py_True;
break;
case Py_LT:
case Py_LE:
case Py_GT:
case Py_GE:
res = Py_NotImplemented;
break;
default:
PyErr_BadArgument();
return NULL;
}
return Py_INCREF(res), res;
}
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
static int Matrix_len(MatrixObject *self)
{
return (self->row_size);
}
/*----------------------------object[]---------------------------
sequence accessor (get)
the wrapped vector gives direct access to the matrix data*/
static PyObject *Matrix_item(MatrixObject *self, int i)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (i < 0 || i >= self->row_size) {
PyErr_SetString(PyExc_IndexError,
"matrix[attribute]: "
"array index out of range");
return NULL;
}
return Vector_CreatePyObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, i);
}
/*----------------------------object[]-------------------------
sequence accessor (set) */
static int Matrix_ass_item(MatrixObject *self, int i, PyObject *value)
{
float vec[4];
if (BaseMath_ReadCallback(self) == -1)
return -1;
if (i >= self->row_size || i < 0) {
PyErr_SetString(PyExc_IndexError,
"matrix[attribute] = x: bad column");
return -1;
}
if (mathutils_array_parse(vec, self->col_size, self->col_size, value, "matrix[i] = value assignment") < 0) {
return -1;
}
memcpy(MATRIX_ROW_PTR(self, i), vec, self->col_size * sizeof(float));
(void)BaseMath_WriteCallback(self);
return 0;
}
/*----------------------------object[z:y]------------------------
sequence slice (get)*/
static PyObject *Matrix_slice(MatrixObject *self, int begin, int end)
{
PyObject *tuple;
int count;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
CLAMP(begin, 0, self->row_size);
CLAMP(end, 0, self->row_size);
begin= MIN2(begin, end);
tuple= PyTuple_New(end - begin);
for (count= begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin,
Vector_CreatePyObject_cb((PyObject *)self, self->col_size, mathutils_matrix_vector_cb_index, count));
}
return tuple;
}
/*----------------------------object[z:y]------------------------
sequence slice (set)*/
static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value)
{
PyObject *value_fast= NULL;
if (BaseMath_ReadCallback(self) == -1)
return -1;
CLAMP(begin, 0, self->row_size);
CLAMP(end, 0, self->row_size);
begin = MIN2(begin, end);
/* non list/tuple cases */
if (!(value_fast=PySequence_Fast(value, "matrix[begin:end] = value"))) {
/* PySequence_Fast sets the error */
return -1;
}
else {
const int size= end - begin;
int i;
float mat[16];
if (PySequence_Fast_GET_SIZE(value_fast) != size) {
Py_DECREF(value_fast);
PyErr_SetString(PyExc_ValueError,
"matrix[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
/*parse sub items*/
for (i = 0; i < size; i++) {
/*parse each sub sequence*/
PyObject *item= PySequence_Fast_GET_ITEM(value_fast, i);
if (mathutils_array_parse(&mat[i * self->col_size], self->col_size, self->col_size, item,
"matrix[begin:end] = value assignment") < 0)
{
return -1;
}
}
Py_DECREF(value_fast);
/*parsed well - now set in matrix*/
memcpy(self->contigPtr + (begin * self->col_size), mat, sizeof(float) * (size * self->col_size));
(void)BaseMath_WriteCallback(self);
return 0;
}
}
/*------------------------NUMERIC PROTOCOLS----------------------
------------------------obj + obj------------------------------*/
static PyObject *Matrix_add(PyObject *m1, PyObject *m2)
{
float mat[16];
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if (!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_Format(PyExc_TypeError,
"Matrix addition: (%s + %s) "
"invalid type for this operation",
Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name);
return NULL;
}
if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
return NULL;
if (mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix addition: "
"matrices must have the same dimensions for this operation");
return NULL;
}
add_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size);
return Matrix_CreatePyObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
}
/*------------------------obj - obj------------------------------
subtraction*/
static PyObject *Matrix_sub(PyObject *m1, PyObject *m2)
{
float mat[16];
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if (!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_Format(PyExc_TypeError,
"Matrix subtraction: (%s - %s) "
"invalid type for this operation",
Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name
);
return NULL;
}
if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
return NULL;
if (mat1->row_size != mat2->row_size || mat1->col_size != mat2->col_size) {
PyErr_SetString(PyExc_TypeError,
"Matrix addition: "
"matrices must have the same dimensions for this operation");
return NULL;
}
sub_vn_vnvn(mat, mat1->contigPtr, mat2->contigPtr, mat1->row_size * mat1->col_size);
return Matrix_CreatePyObject(mat, mat1->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
}
/*------------------------obj * obj------------------------------
mulplication*/
static PyObject *matrix_mul_float(MatrixObject *mat, const float scalar)
{
float tmat[16];
mul_vn_vn_fl(tmat, mat->contigPtr, mat->row_size * mat->col_size, scalar);
return Matrix_CreatePyObject(tmat, mat->row_size, mat->col_size, Py_NEW, Py_TYPE(mat));
}
static PyObject *Matrix_mul(PyObject *m1, PyObject *m2)
{
float scalar;
MatrixObject *mat1 = NULL, *mat2 = NULL;
if (MatrixObject_Check(m1)) {
mat1 = (MatrixObject*)m1;
if (BaseMath_ReadCallback(mat1) == -1)
return NULL;
}
if (MatrixObject_Check(m2)) {
mat2 = (MatrixObject*)m2;
if (BaseMath_ReadCallback(mat2) == -1)
return NULL;
}
if (mat1 && mat2) {
/*MATRIX * MATRIX*/
float mat[16]= {0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
double dot = 0.0f;
int x, y, z;
for (x = 0; x < mat2->row_size; x++) {
for (y = 0; y < mat1->col_size; y++) {
for (z = 0; z < mat1->row_size; z++) {
dot += MATRIX_ITEM(mat1, z, y) * MATRIX_ITEM(mat2, x, z);
}
mat[((x * mat1->col_size) + y)] = (float)dot;
dot = 0.0f;
}
}
return Matrix_CreatePyObject(mat, mat2->row_size, mat1->col_size, Py_NEW, Py_TYPE(mat1));
}
else if (mat2) {
/*FLOAT/INT * MATRIX */
if (((scalar= PyFloat_AsDouble(m1)) == -1.0f && PyErr_Occurred())==0) {
return matrix_mul_float(mat2, scalar);
}
}
else if (mat1) {
/*VEC * MATRIX */
if (VectorObject_Check(m2)) {
VectorObject *vec2= (VectorObject *)m2;
float tvec[4];
if (BaseMath_ReadCallback(vec2) == -1)
return NULL;
if (column_vector_multiplication(tvec, vec2, mat1) == -1) {
return NULL;
}
return Vector_CreatePyObject(tvec, vec2->size, Py_NEW, Py_TYPE(m2));
}
/*FLOAT/INT * MATRIX */
else if (((scalar= PyFloat_AsDouble(m2)) == -1.0f && PyErr_Occurred())==0) {
return matrix_mul_float(mat1, scalar);
}
}
else {
BLI_assert(!"internal error");
}
PyErr_Format(PyExc_TypeError,
"Matrix multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name);
return NULL;
}
static PyObject* Matrix_inv(MatrixObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return Matrix_invert(self);
}
/*-----------------PROTOCOL DECLARATIONS--------------------------*/
static PySequenceMethods Matrix_SeqMethods = {
(lenfunc) Matrix_len, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(ssizeargfunc) NULL, /* sq_repeat */
(ssizeargfunc) Matrix_item, /* sq_item */
(ssizessizeargfunc) NULL, /* sq_slice, deprecated */
(ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
(objobjproc) NULL, /* sq_contains */
(binaryfunc) NULL, /* sq_inplace_concat */
(ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += self->row_size;
return Matrix_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
return Matrix_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with matrices");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"matrix indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += self->row_size;
return Matrix_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, self->row_size, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Matrix_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with matrices");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"matrix indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return -1;
}
}
static PyMappingMethods Matrix_AsMapping = {
(lenfunc)Matrix_len,
(binaryfunc)Matrix_subscript,
(objobjargproc)Matrix_ass_subscript
};
static PyNumberMethods Matrix_NumMethods = {
(binaryfunc) Matrix_add, /*nb_add*/
(binaryfunc) Matrix_sub, /*nb_subtract*/
(binaryfunc) Matrix_mul, /*nb_multiply*/
NULL, /*nb_remainder*/
NULL, /*nb_divmod*/
NULL, /*nb_power*/
(unaryfunc) 0, /*nb_negative*/
(unaryfunc) 0, /*tp_positive*/
(unaryfunc) 0, /*tp_absolute*/
(inquiry) 0, /*tp_bool*/
(unaryfunc) Matrix_inv, /*nb_invert*/
NULL, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
NULL, /*nb_and*/
NULL, /*nb_xor*/
NULL, /*nb_or*/
NULL, /*nb_int*/
NULL, /*nb_reserved*/
NULL, /*nb_float*/
NULL, /* nb_inplace_add */
NULL, /* nb_inplace_subtract */
NULL, /* nb_inplace_multiply */
NULL, /* nb_inplace_remainder */
NULL, /* nb_inplace_power */
NULL, /* nb_inplace_lshift */
NULL, /* nb_inplace_rshift */
NULL, /* nb_inplace_and */
NULL, /* nb_inplace_xor */
NULL, /* nb_inplace_or */
NULL, /* nb_floor_divide */
NULL, /* nb_true_divide */
NULL, /* nb_inplace_floor_divide */
NULL, /* nb_inplace_true_divide */
NULL, /* nb_index */
};
static PyObject *Matrix_getRowSize(MatrixObject *self, void *UNUSED(closure))
{
return PyLong_FromLong((long) self->row_size);
}
static PyObject *Matrix_getColSize(MatrixObject *self, void *UNUSED(closure))
{
return PyLong_FromLong((long) self->col_size);
}
static PyObject *Matrix_median_scale_get(MatrixObject *self, void *UNUSED(closure))
{
float mat[3][3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if ((self->col_size < 3) || (self->row_size < 3)) {
PyErr_SetString(PyExc_AttributeError,
"Matrix.median_scale: "
"inappropriate matrix size, 3x3 minimum");
return NULL;
}
matrix_as_3x3(mat, self);
return PyFloat_FromDouble(mat3_to_scale(mat));
}
static PyObject *Matrix_is_negative_get(MatrixObject *self, void *UNUSED(closure))
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size == 4 && self->row_size == 4)
return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
else if (self->col_size == 3 && self->row_size == 3)
return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_negative: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
}
static PyObject *Matrix_is_orthogonal_get(MatrixObject *self, void *UNUSED(closure))
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if (self->col_size == 4 && self->row_size == 4)
return PyBool_FromLong(is_orthogonal_m4((float (*)[4])self->contigPtr));
else if (self->col_size == 3 && self->row_size == 3)
return PyBool_FromLong(is_orthogonal_m3((float (*)[3])self->contigPtr));
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Matrix_getseters[] = {
{(char *)"row_size", (getter)Matrix_getRowSize, (setter)NULL, (char *)"The row size of the matrix (readonly).\n\n:type: int", NULL},
{(char *)"col_size", (getter)Matrix_getColSize, (setter)NULL, (char *)"The column size of the matrix (readonly).\n\n:type: int", NULL},
{(char *)"median_scale", (getter)Matrix_median_scale_get, (setter)NULL, (char *)"The average scale applied to each axis (readonly).\n\n:type: float", NULL},
{(char *)"is_negative", (getter)Matrix_is_negative_get, (setter)NULL, (char *)"True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL},
{(char *)"is_orthogonal", (getter)Matrix_is_orthogonal_get, (setter)NULL, (char *)"True if this matrix is orthogonal, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL},
{(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL},
{(char *)"owner",(getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL},
{NULL, NULL, NULL, NULL, NULL} /* Sentinel */
};
/*-----------------------METHOD DEFINITIONS ----------------------*/
static struct PyMethodDef Matrix_methods[] = {
/* derived values */
{"determinant", (PyCFunction) Matrix_determinant, METH_NOARGS, Matrix_determinant_doc},
{"decompose", (PyCFunction) Matrix_decompose, METH_NOARGS, Matrix_decompose_doc},
/* in place only */
{"zero", (PyCFunction) Matrix_zero, METH_NOARGS, Matrix_zero_doc},
{"identity", (PyCFunction) Matrix_identity, METH_NOARGS, Matrix_identity_doc},
/* operate on original or copy */
{"transpose", (PyCFunction) Matrix_transpose, METH_NOARGS, Matrix_transpose_doc},
{"transposed", (PyCFunction) Matrix_transposed, METH_NOARGS, Matrix_transposed_doc},
{"invert", (PyCFunction) Matrix_invert, METH_NOARGS, Matrix_invert_doc},
{"inverted", (PyCFunction) Matrix_inverted, METH_NOARGS, Matrix_inverted_doc},
{"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
// TODO. {"resize_3x3", (PyCFunction) Matrix_resize3x3, METH_NOARGS, Matrix_resize3x3_doc},
{"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
{"resize_4x4", (PyCFunction) Matrix_resize_4x4, METH_NOARGS, Matrix_resize_4x4_doc},
{"rotate", (PyCFunction) Matrix_rotate, METH_O, Matrix_rotate_doc},
/* return converted representation */
{"to_euler", (PyCFunction) Matrix_to_euler, METH_VARARGS, Matrix_to_euler_doc},
{"to_quaternion", (PyCFunction) Matrix_to_quaternion, METH_NOARGS, Matrix_to_quaternion_doc},
{"to_scale", (PyCFunction) Matrix_to_scale, METH_NOARGS, Matrix_to_scale_doc},
{"to_translation", (PyCFunction) Matrix_to_translation, METH_NOARGS, Matrix_to_translation_doc},
/* operation between 2 or more types */
{"lerp", (PyCFunction) Matrix_lerp, METH_VARARGS, Matrix_lerp_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
/* class methods */
{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
{NULL, NULL, 0, NULL}
};
/*------------------PY_OBECT DEFINITION--------------------------*/
PyDoc_STRVAR(matrix_doc,
"This object gives access to Matrices in Blender."
);
PyTypeObject matrix_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mathutils.Matrix", /*tp_name*/
sizeof(MatrixObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)BaseMathObject_dealloc, /*tp_dealloc*/
NULL, /*tp_print*/
NULL, /*tp_getattr*/
NULL, /*tp_setattr*/
NULL, /*tp_compare*/
(reprfunc) Matrix_repr, /*tp_repr*/
&Matrix_NumMethods, /*tp_as_number*/
&Matrix_SeqMethods, /*tp_as_sequence*/
&Matrix_AsMapping, /*tp_as_mapping*/
NULL, /*tp_hash*/
NULL, /*tp_call*/
NULL, /*tp_str*/
NULL, /*tp_getattro*/
NULL, /*tp_setattro*/
NULL, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/
matrix_doc, /*tp_doc*/
(traverseproc)BaseMathObject_traverse, //tp_traverse
(inquiry)BaseMathObject_clear, //tp_clear
(richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
NULL, /*tp_iter*/
NULL, /*tp_iternext*/
Matrix_methods, /*tp_methods*/
NULL, /*tp_members*/
Matrix_getseters, /*tp_getset*/
NULL, /*tp_base*/
NULL, /*tp_dict*/
NULL, /*tp_descr_get*/
NULL, /*tp_descr_set*/
0, /*tp_dictoffset*/
NULL, /*tp_init*/
NULL, /*tp_alloc*/
Matrix_new, /*tp_new*/
NULL, /*tp_free*/
NULL, /*tp_is_gc*/
NULL, /*tp_bases*/
NULL, /*tp_mro*/
NULL, /*tp_cache*/
NULL, /*tp_subclasses*/
NULL, /*tp_weaklist*/
NULL /*tp_del*/
};
/* pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
* (i.e. it was allocated elsewhere by MEM_mallocN())
* pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
* (i.e. it must be created here with PyMEM_malloc()) */
PyObject *Matrix_CreatePyObject(float *mat,
const unsigned short row_size, const unsigned short col_size,
int type, PyTypeObject *base_type)
{
MatrixObject *self;
/* matrix objects can be any 2-4row x 2-4col matrix */
if (row_size < 2 || row_size > 4 || col_size < 2 || col_size > 4) {
PyErr_SetString(PyExc_RuntimeError,
"Matrix(): "
"row and column sizes must be between 2 and 4");
return NULL;
}
self= base_type ? (MatrixObject *)base_type->tp_alloc(base_type, 0) :
(MatrixObject *)PyObject_GC_New(MatrixObject, &matrix_Type);
if (self) {
self->row_size = row_size;
self->col_size = col_size;
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if (type == Py_WRAP) {
self->contigPtr = mat;
self->wrapped = Py_WRAP;
}
else if (type == Py_NEW) {
self->contigPtr = PyMem_Malloc(row_size * col_size * sizeof(float));
if (self->contigPtr == NULL) { /*allocation failure*/
PyErr_SetString(PyExc_MemoryError,
"Matrix(): "
"problem allocating pointer space");
return NULL;
}
if (mat) { /*if a float array passed*/
memcpy(self->contigPtr, mat, row_size * col_size * sizeof(float));
}
else if (row_size == col_size) {
/* or if no arguments are passed return identity matrix for square matrices */
PyObject *ret_dummy= Matrix_identity(self);
Py_DECREF(ret_dummy);
}
else {
/* otherwise zero everything */
memset(self->contigPtr, 0, row_size * col_size * sizeof(float));
}
self->wrapped = Py_NEW;
}
else {
Py_FatalError("Matrix(): invalid type!");
return NULL;
}
}
return (PyObject *) self;
}
PyObject *Matrix_CreatePyObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
{
MatrixObject *self= (MatrixObject *)Matrix_CreatePyObject(NULL, rowSize, colSize, Py_NEW, NULL);
if (self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
PyObject_GC_Track(self);
}
return (PyObject *) self;
}