This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_Quaternion.c

1255 lines
35 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/python/mathutils/mathutils_Quaternion.c
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#define QUAT_SIZE 4
static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self);
static void quat__axis_angle_sanitize(float axis[3], float *angle);
static PyObject *Quaternion_copy(QuaternionObject *self);
//-----------------------------METHODS------------------------------
/* note: BaseMath_ReadCallback must be called beforehand */
static PyObject *Quaternion_to_tuple_ext(QuaternionObject *self, int ndigits)
{
PyObject *ret;
int i;
ret= PyTuple_New(QUAT_SIZE);
if (ndigits >= 0) {
for (i= 0; i < QUAT_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
}
}
else {
for (i= 0; i < QUAT_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
}
}
return ret;
}
PyDoc_STRVAR(Quaternion_to_euler_doc,
".. method:: to_euler(order, euler_compat)\n"
"\n"
" Return Euler representation of the quaternion.\n"
"\n"
" :arg order: Optional rotation order argument in\n"
" ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
" :type order: string\n"
" :arg euler_compat: Optional euler argument the new euler will be made\n"
" compatible with (no axis flipping between them).\n"
" Useful for converting a series of matrices to animation curves.\n"
" :type euler_compat: :class:`Euler`\n"
" :return: Euler representation of the quaternion.\n"
" :rtype: :class:`Euler`\n"
);
static PyObject *Quaternion_to_euler(QuaternionObject *self, PyObject *args)
{
float tquat[4];
float eul[3];
const char *order_str= NULL;
short order= EULER_ORDER_XYZ;
EulerObject *eul_compat = NULL;
if (!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
return NULL;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (order_str) {
order= euler_order_from_string(order_str, "Matrix.to_euler()");
if (order == -1)
return NULL;
}
normalize_qt_qt(tquat, self->quat);
if (eul_compat) {
float mat[3][3];
if (BaseMath_ReadCallback(eul_compat) == -1)
return NULL;
quat_to_mat3(mat, tquat);
if (order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
}
else {
if (order == EULER_ORDER_XYZ) quat_to_eul(eul, tquat);
else quat_to_eulO(eul, order, tquat);
}
return Euler_CreatePyObject(eul, order, Py_NEW, NULL);
}
//----------------------------Quaternion.toMatrix()------------------
PyDoc_STRVAR(Quaternion_to_matrix_doc,
".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the quaternion.\n"
"\n"
" :return: A 3x3 rotation matrix representation of the quaternion.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Quaternion_to_matrix(QuaternionObject *self)
{
float mat[9]; /* all values are set */
if (BaseMath_ReadCallback(self) == -1)
return NULL;
quat_to_mat3((float (*)[3])mat, self->quat);
return Matrix_CreatePyObject(mat, 3, 3, Py_NEW, NULL);
}
//----------------------------Quaternion.toMatrix()------------------
PyDoc_STRVAR(Quaternion_to_axis_angle_doc,
".. method:: to_axis_angle()\n"
"\n"
" Return the axis, angle representation of the quaternion.\n"
"\n"
" :return: axis, angle.\n"
" :rtype: (:class:`Vector`, float) pair\n"
);
static PyObject *Quaternion_to_axis_angle(QuaternionObject *self)
{
PyObject *ret;
float tquat[4];
float axis[3];
float angle;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle, tquat);
quat__axis_angle_sanitize(axis, &angle);
ret= PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(axis, 3, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(angle));
return ret;
}
//----------------------------Quaternion.cross(other)------------------
PyDoc_STRVAR(Quaternion_cross_doc,
".. method:: cross(other)\n"
"\n"
" Return the cross product of this quaternion and another.\n"
"\n"
" :arg other: The other quaternion to perform the cross product with.\n"
" :type other: :class:`Quaternion`\n"
" :return: The cross product.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_cross(QuaternionObject *self, PyObject *value)
{
float quat[QUAT_SIZE], tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value, "Quaternion.cross(other), invalid 'other' arg") == -1)
return NULL;
mul_qt_qtqt(quat, self->quat, tquat);
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(self));
}
//----------------------------Quaternion.dot(other)------------------
PyDoc_STRVAR(Quaternion_dot_doc,
".. method:: dot(other)\n"
"\n"
" Return the dot product of this quaternion and another.\n"
"\n"
" :arg other: The other quaternion to perform the dot product with.\n"
" :type other: :class:`Quaternion`\n"
" :return: The dot product.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_dot(QuaternionObject *self, PyObject *value)
{
float tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value,
"Quaternion.dot(other), invalid 'other' arg") == -1)
{
return NULL;
}
return PyFloat_FromDouble(dot_qtqt(self->quat, tquat));
}
PyDoc_STRVAR(Quaternion_rotation_difference_doc,
".. function:: rotation_difference(other)\n"
"\n"
" Returns a quaternion representing the rotational difference.\n"
"\n"
" :arg other: second quaternion.\n"
" :type other: :class:`Quaternion`\n"
" :return: the rotational difference between the two quat rotations.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_rotation_difference(QuaternionObject *self, PyObject *value)
{
float tquat[QUAT_SIZE], quat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value,
"Quaternion.difference(other), invalid 'other' arg") == -1)
{
return NULL;
}
rotation_between_quats_to_quat(quat, self->quat, tquat);
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(self));
}
PyDoc_STRVAR(Quaternion_slerp_doc,
".. function:: slerp(other, factor)\n"
"\n"
" Returns the interpolation of two quaternions.\n"
"\n"
" :arg other: value to interpolate with.\n"
" :type other: :class:`Quaternion`\n"
" :arg factor: The interpolation value in [0.0, 1.0].\n"
" :type factor: float\n"
" :return: The interpolated rotation.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_slerp(QuaternionObject *self, PyObject *args)
{
PyObject *value;
float tquat[QUAT_SIZE], quat[QUAT_SIZE], fac;
if (!PyArg_ParseTuple(args, "Of:slerp", &value, &fac)) {
PyErr_SetString(PyExc_TypeError,
"quat.slerp(): "
"expected Quaternion types and float");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_array_parse(tquat, QUAT_SIZE, QUAT_SIZE, value,
"Quaternion.slerp(other), invalid 'other' arg") == -1)
{
return NULL;
}
if (fac > 1.0f || fac < 0.0f) {
PyErr_SetString(PyExc_ValueError,
"quat.slerp(): "
"interpolation factor must be between 0.0 and 1.0");
return NULL;
}
interp_qt_qtqt(quat, self->quat, tquat, fac);
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(self));
}
PyDoc_STRVAR(Quaternion_rotate_doc,
".. method:: rotate(other)\n"
"\n"
" Rotates the quaternion a by another mathutils value.\n"
"\n"
" :arg other: rotation component of mathutils value\n"
" :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"
);
static PyObject *Quaternion_rotate(QuaternionObject *self, PyObject *value)
{
float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
float tquat[4], length;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_any_to_rotmat(other_rmat, value, "Quaternion.rotate(value)") == -1)
return NULL;
length= normalize_qt_qt(tquat, self->quat);
quat_to_mat3(self_rmat, tquat);
mul_m3_m3m3(rmat, other_rmat, self_rmat);
mat3_to_quat(self->quat, rmat);
mul_qt_fl(self->quat, length); /* maintain length after rotating */
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
//----------------------------Quaternion.normalize()----------------
//normalize the axis of rotation of [theta, vector]
PyDoc_STRVAR(Quaternion_normalize_doc,
".. function:: normalize()\n"
"\n"
" Normalize the quaternion.\n"
);
static PyObject *Quaternion_normalize(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
normalize_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_normalized_doc,
".. function:: normalized()\n"
"\n"
" Return a new normalized quaternion.\n"
"\n"
" :return: a normalized copy.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_normalized(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_normalize, self);
}
//----------------------------Quaternion.invert()------------------
PyDoc_STRVAR(Quaternion_invert_doc,
".. function:: invert()\n"
"\n"
" Set the quaternion to its inverse.\n"
);
static PyObject *Quaternion_invert(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
invert_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_inverted_doc,
".. function:: inverted()\n"
"\n"
" Return a new, inverted quaternion.\n"
"\n"
" :return: the inverted value.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_inverted(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_invert, self);
}
//----------------------------Quaternion.identity()-----------------
PyDoc_STRVAR(Quaternion_identity_doc,
".. function:: identity()\n"
"\n"
" Set the quaternion to an identity quaternion.\n"
"\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_identity(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
unit_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
//----------------------------Quaternion.negate()-------------------
PyDoc_STRVAR(Quaternion_negate_doc,
".. function:: negate()\n"
"\n"
" Set the quaternion to its negative.\n"
"\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_negate(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
mul_qt_fl(self->quat, -1.0f);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
//----------------------------Quaternion.conjugate()----------------
PyDoc_STRVAR(Quaternion_conjugate_doc,
".. function:: conjugate()\n"
"\n"
" Set the quaternion to its conjugate (negate x, y, z).\n"
);
static PyObject *Quaternion_conjugate(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
conjugate_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_conjugated_doc,
".. function:: conjugated()\n"
"\n"
" Return a new conjugated quaternion.\n"
"\n"
" :return: a new quaternion.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Quaternion_conjugated(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_conjugate, self);
}
//----------------------------Quaternion.copy()----------------
PyDoc_STRVAR(Quaternion_copy_doc,
".. function:: copy()\n"
"\n"
" Returns a copy of this quaternion.\n"
"\n"
" :return: A copy of the quaternion.\n"
" :rtype: :class:`Quaternion`\n"
"\n"
" .. note:: use this to get a copy of a wrapped quaternion with\n"
" no reference to the original data.\n"
);
static PyObject *Quaternion_copy(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return Quaternion_CreatePyObject(self->quat, Py_NEW, Py_TYPE(self));
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Quaternion_repr(QuaternionObject *self)
{
PyObject *ret, *tuple;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
tuple= Quaternion_to_tuple_ext(self, -1);
ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
Py_DECREF(tuple);
return ret;
}
static PyObject* Quaternion_richcmpr(PyObject *a, PyObject *b, int op)
{
PyObject *res;
int ok= -1; /* zero is true */
if (QuaternionObject_Check(a) && QuaternionObject_Check(b)) {
QuaternionObject *quatA= (QuaternionObject *)a;
QuaternionObject *quatB= (QuaternionObject *)b;
if (BaseMath_ReadCallback(quatA) == -1 || BaseMath_ReadCallback(quatB) == -1)
return NULL;
ok= (EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1)) ? 0 : -1;
}
switch (op) {
case Py_NE:
ok = !ok; /* pass through */
case Py_EQ:
res = ok ? Py_False : Py_True;
break;
case Py_LT:
case Py_LE:
case Py_GT:
case Py_GE:
res = Py_NotImplemented;
break;
default:
PyErr_BadArgument();
return NULL;
}
return Py_INCREF(res), res;
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Quaternion_len(QuaternionObject *UNUSED(self))
{
return QUAT_SIZE;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Quaternion_item(QuaternionObject *self, int i)
{
if (i<0) i= QUAT_SIZE-i;
if (i < 0 || i >= QUAT_SIZE) {
PyErr_SetString(PyExc_IndexError,
"quaternion[attribute]: "
"array index out of range");
return NULL;
}
if (BaseMath_ReadIndexCallback(self, i) == -1)
return NULL;
return PyFloat_FromDouble(self->quat[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Quaternion_ass_item(QuaternionObject *self, int i, PyObject *ob)
{
float scalar= (float)PyFloat_AsDouble(ob);
if (scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"quaternion[index] = x: "
"index argument not a number");
return -1;
}
if (i<0) i= QUAT_SIZE-i;
if (i < 0 || i >= QUAT_SIZE) {
PyErr_SetString(PyExc_IndexError,
"quaternion[attribute] = x: "
"array assignment index out of range");
return -1;
}
self->quat[i] = scalar;
if (BaseMath_WriteIndexCallback(self, i) == -1)
return -1;
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Quaternion_slice(QuaternionObject *self, int begin, int end)
{
PyObject *tuple;
int count;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
CLAMP(begin, 0, QUAT_SIZE);
if (end<0) end= (QUAT_SIZE + 1) + end;
CLAMP(end, 0, QUAT_SIZE);
begin= MIN2(begin, end);
tuple= PyTuple_New(end - begin);
for (count= begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->quat[count]));
}
return tuple;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Quaternion_ass_slice(QuaternionObject *self, int begin, int end, PyObject *seq)
{
int i, size;
float quat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return -1;
CLAMP(begin, 0, QUAT_SIZE);
if (end<0) end= (QUAT_SIZE + 1) + end;
CLAMP(end, 0, QUAT_SIZE);
begin = MIN2(begin, end);
if ((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
return -1;
if (size != (end - begin)) {
PyErr_SetString(PyExc_ValueError,
"quaternion[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
/* parsed well - now set in vector */
for (i= 0; i < size; i++)
self->quat[begin + i] = quat[i];
(void)BaseMath_WriteCallback(self);
return 0;
}
static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += QUAT_SIZE;
return Quaternion_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
return Quaternion_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with quaternions");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"quaternion indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += QUAT_SIZE;
return Quaternion_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((void *)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Quaternion_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with quaternion");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"quaternion indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return -1;
}
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Quaternion_add(PyObject *q1, PyObject *q2)
{
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
PyErr_Format(PyExc_TypeError,
"Quaternion addition: (%s + %s) "
"invalid type for this operation",
Py_TYPE(q1)->tp_name, Py_TYPE(q2)->tp_name);
return NULL;
}
quat1 = (QuaternionObject*)q1;
quat2 = (QuaternionObject*)q2;
if (BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1)
return NULL;
add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(q1));
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Quaternion_sub(PyObject *q1, PyObject *q2)
{
int x;
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
PyErr_Format(PyExc_TypeError,
"Quaternion subtraction: (%s - %s) "
"invalid type for this operation",
Py_TYPE(q1)->tp_name, Py_TYPE(q2)->tp_name);
return NULL;
}
quat1 = (QuaternionObject*)q1;
quat2 = (QuaternionObject*)q2;
if (BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1)
return NULL;
for (x = 0; x < QUAT_SIZE; x++) {
quat[x] = quat1->quat[x] - quat2->quat[x];
}
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(q1));
}
static PyObject *quat_mul_float(QuaternionObject *quat, const float scalar)
{
float tquat[4];
copy_qt_qt(tquat, quat->quat);
mul_qt_fl(tquat, scalar);
return Quaternion_CreatePyObject(tquat, Py_NEW, Py_TYPE(quat));
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Quaternion_mul(PyObject *q1, PyObject *q2)
{
float quat[QUAT_SIZE], scalar;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (QuaternionObject_Check(q1)) {
quat1 = (QuaternionObject*)q1;
if (BaseMath_ReadCallback(quat1) == -1)
return NULL;
}
if (QuaternionObject_Check(q2)) {
quat2 = (QuaternionObject*)q2;
if (BaseMath_ReadCallback(quat2) == -1)
return NULL;
}
if (quat1 && quat2) { /* QUAT*QUAT (cross product) */
mul_qt_qtqt(quat, quat1->quat, quat2->quat);
return Quaternion_CreatePyObject(quat, Py_NEW, Py_TYPE(q1));
}
/* the only case this can happen (for a supported type is "FLOAT*QUAT") */
else if (quat2) { /* FLOAT*QUAT */
if (((scalar= PyFloat_AsDouble(q1)) == -1.0f && PyErr_Occurred())==0) {
return quat_mul_float(quat2, scalar);
}
}
else if (quat1) {
/* QUAT * VEC */
if (VectorObject_Check(q2)) {
VectorObject *vec2 = (VectorObject *)q2;
float tvec[3];
if (vec2->size != 3) {
PyErr_SetString(PyExc_ValueError,
"Vector multiplication: "
"only 3D vector rotations (with quats) "
"currently supported");
return NULL;
}
if (BaseMath_ReadCallback(vec2) == -1) {
return NULL;
}
copy_v3_v3(tvec, vec2->vec);
mul_qt_v3(quat1->quat, tvec);
return Vector_CreatePyObject(tvec, 3, Py_NEW, Py_TYPE(vec2));
}
/* QUAT * FLOAT */
else if ((((scalar= PyFloat_AsDouble(q2)) == -1.0f && PyErr_Occurred())==0)) {
return quat_mul_float(quat1, scalar);
}
}
else {
BLI_assert(!"internal error");
}
PyErr_Format(PyExc_TypeError,
"Quaternion multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name, Py_TYPE(q2)->tp_name);
return NULL;
}
/* -obj
returns the negative of this object*/
static PyObject *Quaternion_neg(QuaternionObject *self)
{
float tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
negate_v4_v4(tquat, self->quat);
return Quaternion_CreatePyObject(tquat, Py_NEW, Py_TYPE(self));
}
//-----------------PROTOCOL DECLARATIONS--------------------------
static PySequenceMethods Quaternion_SeqMethods = {
(lenfunc) Quaternion_len, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(ssizeargfunc) NULL, /* sq_repeat */
(ssizeargfunc) Quaternion_item, /* sq_item */
(ssizessizeargfunc) NULL, /* sq_slice, deprecated */
(ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
(objobjproc) NULL, /* sq_contains */
(binaryfunc) NULL, /* sq_inplace_concat */
(ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyMappingMethods Quaternion_AsMapping = {
(lenfunc)Quaternion_len,
(binaryfunc)Quaternion_subscript,
(objobjargproc)Quaternion_ass_subscript
};
static PyNumberMethods Quaternion_NumMethods = {
(binaryfunc) Quaternion_add, /*nb_add*/
(binaryfunc) Quaternion_sub, /*nb_subtract*/
(binaryfunc) Quaternion_mul, /*nb_multiply*/
NULL, /*nb_remainder*/
NULL, /*nb_divmod*/
NULL, /*nb_power*/
(unaryfunc) Quaternion_neg, /*nb_negative*/
(unaryfunc) 0, /*tp_positive*/
(unaryfunc) 0, /*tp_absolute*/
(inquiry) 0, /*tp_bool*/
(unaryfunc) 0, /*nb_invert*/
NULL, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
NULL, /*nb_and*/
NULL, /*nb_xor*/
NULL, /*nb_or*/
NULL, /*nb_int*/
NULL, /*nb_reserved*/
NULL, /*nb_float*/
NULL, /* nb_inplace_add */
NULL, /* nb_inplace_subtract */
NULL, /* nb_inplace_multiply */
NULL, /* nb_inplace_remainder */
NULL, /* nb_inplace_power */
NULL, /* nb_inplace_lshift */
NULL, /* nb_inplace_rshift */
NULL, /* nb_inplace_and */
NULL, /* nb_inplace_xor */
NULL, /* nb_inplace_or */
NULL, /* nb_floor_divide */
NULL, /* nb_true_divide */
NULL, /* nb_inplace_floor_divide */
NULL, /* nb_inplace_true_divide */
NULL, /* nb_index */
};
static PyObject *Quaternion_getAxis(QuaternionObject *self, void *type)
{
return Quaternion_item(self, GET_INT_FROM_POINTER(type));
}
static int Quaternion_setAxis(QuaternionObject *self, PyObject *value, void *type)
{
return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
static PyObject *Quaternion_getMagnitude(QuaternionObject *self, void *UNUSED(closure))
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
}
static PyObject *Quaternion_getAngle(QuaternionObject *self, void *UNUSED(closure))
{
float tquat[4];
float angle;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
normalize_qt_qt(tquat, self->quat);
angle= 2.0f * saacos(tquat[0]);
quat__axis_angle_sanitize(NULL, &angle);
return PyFloat_FromDouble(angle);
}
static int Quaternion_setAngle(QuaternionObject *self, PyObject *value, void *UNUSED(closure))
{
float tquat[4];
float len;
float axis[3], angle_dummy;
float angle;
if (BaseMath_ReadCallback(self) == -1)
return -1;
len= normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle_dummy, tquat);
angle= PyFloat_AsDouble(value);
if (angle==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"Quaternion.angle = value: float expected");
return -1;
}
angle= angle_wrap_rad(angle);
quat__axis_angle_sanitize(axis, &angle);
axis_angle_to_quat(self->quat, axis, angle);
mul_qt_fl(self->quat, len);
if (BaseMath_WriteCallback(self) == -1)
return -1;
return 0;
}
static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *UNUSED(closure))
{
float tquat[4];
float axis[3];
float angle_dummy;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle_dummy, tquat);
quat__axis_angle_sanitize(axis, NULL);
return Vector_CreatePyObject(axis, 3, Py_NEW, NULL);
}
static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *UNUSED(closure))
{
float tquat[4];
float len;
float axis[3];
float angle;
if (BaseMath_ReadCallback(self) == -1)
return -1;
len= normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle, tquat); /* axis value is unused */
if (mathutils_array_parse(axis, 3, 3, value, "quat.axis = other") == -1)
return -1;
quat__axis_angle_sanitize(axis, &angle);
axis_angle_to_quat(self->quat, axis, angle);
mul_qt_fl(self->quat, len);
if (BaseMath_WriteCallback(self) == -1)
return -1;
return 0;
}
//----------------------------------mathutils.Quaternion() --------------
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *seq= NULL;
double angle = 0.0f;
float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
if (kwds && PyDict_Size(kwds)) {
PyErr_SetString(PyExc_TypeError,
"mathutils.Quaternion(): "
"takes no keyword args");
return NULL;
}
if (!PyArg_ParseTuple(args, "|Od:mathutils.Quaternion", &seq, &angle))
return NULL;
switch (PyTuple_GET_SIZE(args)) {
case 0:
break;
case 1:
if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
return NULL;
break;
case 2:
if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
return NULL;
angle= angle_wrap_rad(angle); /* clamp because of precision issues */
axis_angle_to_quat(quat, quat, angle);
break;
/* PyArg_ParseTuple assures no more then 2 */
}
return Quaternion_CreatePyObject(quat, Py_NEW, type);
}
static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self)
{
PyObject *ret= Quaternion_copy(self);
PyObject *ret_dummy= quat_func(ret);
if (ret_dummy) {
Py_DECREF(ret_dummy);
return ret;
}
else { /* error */
Py_DECREF(ret);
return NULL;
}
}
/* axis vector suffers from precission errors, use this function to ensure */
static void quat__axis_angle_sanitize(float axis[3], float *angle)
{
if (axis) {
if ( !finite(axis[0]) ||
!finite(axis[1]) ||
!finite(axis[2]))
{
axis[0]= 1.0f;
axis[1]= 0.0f;
axis[2]= 0.0f;
}
else if ( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
EXPP_FloatsAreEqual(axis[2], 0.0f, 10))
{
axis[0] = 1.0f;
}
}
if (angle) {
if (!finite(*angle)) {
*angle= 0.0f;
}
}
}
//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Quaternion_methods[] = {
/* in place only */
{"identity", (PyCFunction) Quaternion_identity, METH_NOARGS, Quaternion_identity_doc},
{"negate", (PyCFunction) Quaternion_negate, METH_NOARGS, Quaternion_negate_doc},
/* operate on original or copy */
{"conjugate", (PyCFunction) Quaternion_conjugate, METH_NOARGS, Quaternion_conjugate_doc},
{"conjugated", (PyCFunction) Quaternion_conjugated, METH_NOARGS, Quaternion_conjugated_doc},
{"invert", (PyCFunction) Quaternion_invert, METH_NOARGS, Quaternion_invert_doc},
{"inverted", (PyCFunction) Quaternion_inverted, METH_NOARGS, Quaternion_inverted_doc},
{"normalize", (PyCFunction) Quaternion_normalize, METH_NOARGS, Quaternion_normalize_doc},
{"normalized", (PyCFunction) Quaternion_normalized, METH_NOARGS, Quaternion_normalized_doc},
/* return converted representation */
{"to_euler", (PyCFunction) Quaternion_to_euler, METH_VARARGS, Quaternion_to_euler_doc},
{"to_matrix", (PyCFunction) Quaternion_to_matrix, METH_NOARGS, Quaternion_to_matrix_doc},
{"to_axis_angle", (PyCFunction) Quaternion_to_axis_angle, METH_NOARGS, Quaternion_to_axis_angle_doc},
/* operation between 2 or more types */
{"cross", (PyCFunction) Quaternion_cross, METH_O, Quaternion_cross_doc},
{"dot", (PyCFunction) Quaternion_dot, METH_O, Quaternion_dot_doc},
{"rotation_difference", (PyCFunction) Quaternion_rotation_difference, METH_O, Quaternion_rotation_difference_doc},
{"slerp", (PyCFunction) Quaternion_slerp, METH_VARARGS, Quaternion_slerp_doc},
{"rotate", (PyCFunction) Quaternion_rotate, METH_O, Quaternion_rotate_doc},
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Quaternion_getseters[] = {
{(char *)"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion W value.\n\n:type: float", (void *)0},
{(char *)"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion X axis.\n\n:type: float", (void *)1},
{(char *)"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Y axis.\n\n:type: float", (void *)2},
{(char *)"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, (char *)"Quaternion Z axis.\n\n:type: float", (void *)3},
{(char *)"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, (char *)"Size of the quaternion (readonly).\n\n:type: float", NULL},
{(char *)"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, (char *)"angle of the quaternion.\n\n:type: float", NULL},
{(char *)"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, (char *)"quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL},
{(char *)"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, (char *)BaseMathObject_Wrapped_doc, NULL},
{(char *)"owner", (getter)BaseMathObject_getOwner, (setter)NULL, (char *)BaseMathObject_Owner_doc, NULL},
{NULL, NULL, NULL, NULL, NULL} /* Sentinel */
};
//------------------PY_OBECT DEFINITION--------------------------
PyDoc_STRVAR(quaternion_doc,
"This object gives access to Quaternions in Blender."
);
PyTypeObject quaternion_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mathutils.Quaternion", //tp_name
sizeof(QuaternionObject), //tp_basicsize
0, //tp_itemsize
(destructor)BaseMathObject_dealloc, //tp_dealloc
NULL, //tp_print
NULL, //tp_getattr
NULL, //tp_setattr
NULL, //tp_compare
(reprfunc) Quaternion_repr, //tp_repr
&Quaternion_NumMethods, //tp_as_number
&Quaternion_SeqMethods, //tp_as_sequence
&Quaternion_AsMapping, //tp_as_mapping
NULL, //tp_hash
NULL, //tp_call
NULL, //tp_str
NULL, //tp_getattro
NULL, //tp_setattro
NULL, //tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, //tp_flags
quaternion_doc, //tp_doc
(traverseproc)BaseMathObject_traverse, //tp_traverse
(inquiry)BaseMathObject_clear, //tp_clear
(richcmpfunc)Quaternion_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
NULL, //tp_iter
NULL, //tp_iternext
Quaternion_methods, //tp_methods
NULL, //tp_members
Quaternion_getseters, //tp_getset
NULL, //tp_base
NULL, //tp_dict
NULL, //tp_descr_get
NULL, //tp_descr_set
0, //tp_dictoffset
NULL, //tp_init
NULL, //tp_alloc
Quaternion_new, //tp_new
NULL, //tp_free
NULL, //tp_is_gc
NULL, //tp_bases
NULL, //tp_mro
NULL, //tp_cache
NULL, //tp_subclasses
NULL, //tp_weaklist
NULL, //tp_del
};
//------------------------Quaternion_CreatePyObject (internal)-------------
//creates a new quaternion object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *Quaternion_CreatePyObject(float *quat, int type, PyTypeObject *base_type)
{
QuaternionObject *self;
self= base_type ? (QuaternionObject *)base_type->tp_alloc(base_type, 0) :
(QuaternionObject *)PyObject_GC_New(QuaternionObject, &quaternion_Type);
if (self) {
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if (type == Py_WRAP) {
self->quat = quat;
self->wrapped = Py_WRAP;
}
else if (type == Py_NEW) {
self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
if (!quat) { //new empty
unit_qt(self->quat);
}
else {
copy_qt_qt(self->quat, quat);
}
self->wrapped = Py_NEW;
}
else {
Py_FatalError("Quaternion(): invalid type!");
}
}
return (PyObject *) self;
}
PyObject *Quaternion_CreatePyObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
{
QuaternionObject *self= (QuaternionObject *)Quaternion_CreatePyObject(NULL, Py_NEW, NULL);
if (self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
PyObject_GC_Track(self);
}
return (PyObject *)self;
}