This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/release/scripts/modules/rigify/spine.py
Campbell Barton ce49719a0c use the SUM driver type to avoid adding all values on each bone.
also avoids hitting the 255 string limit if you want to add 100's of values. eg.
>>> b05/max(0.001, [globals().update({"LOCALS":locals(), "ADD":float.__add__, "reduce":__import__("functools").reduce}), 0.0][1], max((, [LOCALS["b%.2d" % (i+1)] for i in range(5)])))

Since this more simple expression reaches the limit fairly quick...
>>> b05/max(0.001,b01+b02+b03+b04+b05)
2009-12-07 20:49:12 +00:00

492 lines
16 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from rigify import bone_class_instance, copy_bone_simple
from rna_prop_ui import rna_idprop_ui_prop_get
# not used, defined for completeness
METARIG_NAMES = ("pelvis", "ribcage")
def metarig_template():
bpy.ops.object.mode_set(mode='EDIT')
obj = bpy.context.object
arm = obj.data
bone = arm.edit_bones.new('pelvis')
bone.head[:] = -0.0000, -0.2559, 0.8673
bone.tail[:] = -0.0000, -0.2559, -0.1327
bone.roll = 0.0000
bone.connected = False
bone = arm.edit_bones.new('rib_cage')
bone.head[:] = -0.0000, -0.2559, 0.8673
bone.tail[:] = -0.0000, -0.2559, 1.8673
bone.roll = -0.0000
bone.connected = False
bone.parent = arm.edit_bones['pelvis']
bone = arm.edit_bones.new('spine.01')
bone.head[:] = -0.0000, -0.0000, 0.0000
bone.tail[:] = -0.0000, -0.2559, 0.8673
bone.roll = -0.0000
bone.connected = False
bone.parent = arm.edit_bones['rib_cage']
bone = arm.edit_bones.new('spine.02')
bone.head[:] = -0.0000, -0.2559, 0.8673
bone.tail[:] = -0.0000, -0.3321, 1.7080
bone.roll = -0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.01']
bone = arm.edit_bones.new('spine.03')
bone.head[:] = -0.0000, -0.3321, 1.7080
bone.tail[:] = -0.0000, -0.0787, 2.4160
bone.roll = 0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.02']
bone = arm.edit_bones.new('spine.04')
bone.head[:] = -0.0000, -0.0787, 2.4160
bone.tail[:] = -0.0000, 0.2797, 3.0016
bone.roll = 0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.03']
bone = arm.edit_bones.new('spine.05')
bone.head[:] = -0.0000, 0.2797, 3.0016
bone.tail[:] = -0.0000, 0.4633, 3.6135
bone.roll = 0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.04']
bone = arm.edit_bones.new('spine.06')
bone.head[:] = -0.0000, 0.4633, 3.6135
bone.tail[:] = -0.0000, 0.3671, 4.3477
bone.roll = -0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.05']
bone = arm.edit_bones.new('spine.07')
bone.head[:] = -0.0000, 0.3671, 4.3477
bone.tail[:] = -0.0000, 0.0175, 5.0033
bone.roll = -0.0000
bone.connected = True
bone.parent = arm.edit_bones['spine.06']
bpy.ops.object.mode_set(mode='OBJECT')
pbone = obj.pose.bones['rib_cage']
pbone['type'] = 'spine'
def metarig_definition(obj, orig_bone_name):
'''
The bone given is the second in a chain.
Expects at least 1 parent and a chain of children withe the same basename
eg.
pelvis -> rib_cage -> spine.01 -> spine.02 -> spine.03
note: same as neck.
'''
arm = obj.data
ribcage = arm.bones[orig_bone_name]
pelvis = ribcage.parent
if pelvis is None:
raise Exception("expected the ribcage bone:'%s' to have a parent (ribcage)." % ribcage.name)
children = ribcage.children
if len(children) != 1:
raise Exception("expected the ribcage to have only 1 child.")
child = children[0]
bone_definition = [pelvis.name, ribcage.name, child.name]
bone_definition.extend([child.name for child in child.children_recursive_basename])
return bone_definition
def fk(*args):
main(*args)
def main(obj, bone_definition, base_names):
from Mathutils import Vector, RotationMatrix
from math import radians, pi
arm = obj.data
# Initialize container classes for convenience
mt = bone_class_instance(obj, ["pelvis", "ribcage"]) # meta
mt.pelvis = bone_definition[0]
mt.ribcage = bone_definition[1]
mt.update()
spine_chain_orig = tuple(bone_definition[2:])
spine_chain = [arm.edit_bones[child_name] for child_name in spine_chain_orig]
spine_chain_basename = base_names[spine_chain[0].name].rsplit(".", 1)[0] # probably 'ORG-spine.01' -> 'spine'
spine_chain_len = len(spine_chain_orig)
child = spine_chain[0]
spine_chain_segment_length = child.length
child.parent = mt.pelvis_e # was mt.ribcage
# The first bone in the chain happens to be the basis of others, create them now
ex = bone_class_instance(obj, ["pelvis", "ribcage", "ribcage_hinge", "spine_rotate"])
df = bone_class_instance(obj, ["pelvis", "ribcage"]) # DEF-wgt_pelvis, DEF-wgt_rib_cage
# copy the pelvis, offset to make MCH-spine_rotate and MCH-ribcage_hinge
ex.ribcage_hinge_e = copy_bone_simple(arm, mt.pelvis, "MCH-%s_hinge" % mt.ribcage)
ex.ribcage_hinge = ex.ribcage_hinge_e.name
ex.ribcage_hinge_e.translate(Vector(0.0, spine_chain_segment_length / 4.0, 0.0))
mt.ribcage_e.parent = ex.ribcage_hinge_e
ex.spine_rotate_e = copy_bone_simple(arm, mt.pelvis, "MCH-%s_rotate" % spine_chain_basename)
ex.spine_rotate = ex.spine_rotate_e.name
ex.spine_rotate_e.translate(Vector(0.0, spine_chain_segment_length / 2.0, 0.0))
# swap head/tail
ex.spine_rotate_e.head, ex.spine_rotate_e.tail = ex.spine_rotate_e.tail.copy(), ex.spine_rotate_e.head.copy()
ex.spine_rotate_e.parent = mt.pelvis_e
df.pelvis_e = copy_bone_simple(arm, child.name, "DEF-wgt_%s" % mt.pelvis)
df.pelvis = df.pelvis_e.name
df.pelvis_e.translate(Vector(spine_chain_segment_length * 2.0, - spine_chain_segment_length, 0.0))
ex.pelvis_e = copy_bone_simple(arm, child.name, "MCH-wgt_%s" % mt.pelvis)
ex.pelvis = ex.pelvis_e.name
ex.pelvis_e.translate(Vector(0.0, - spine_chain_segment_length, 0.0))
ex.pelvis_e.parent = mt.pelvis_e
# Copy the last bone now
child = spine_chain[-1]
df.ribcage_e = copy_bone_simple(arm, child.name, "DEF-wgt_%s" % mt.ribcage)
df.ribcage = df.ribcage_e.name
df.ribcage_e.translate(Vector(spine_chain_segment_length * 2.0, - df.ribcage_e.length / 2.0, 0.0))
ex.ribcage_e = copy_bone_simple(arm, child.name, "MCH-wgt_%s" % mt.ribcage)
ex.ribcage = ex.ribcage_e.name
ex.ribcage_e.translate(Vector(0.0, - ex.ribcage_e.length / 2.0, 0.0))
ex.ribcage_e.parent = mt.ribcage_e
spine_chain = [child.name for child in spine_chain]
# We have 3 spine chains
# - original (ORG_*)
# - copy (*use original name*)
# - reverse (MCH-rev_*)
spine_chain_attrs = [("spine_%.2d" % (i + 1)) for i in range(spine_chain_len)]
mt_chain = bone_class_instance(obj, spine_chain_attrs) # ORG_*
rv_chain = bone_class_instance(obj, spine_chain_attrs) # *
ex_chain = bone_class_instance(obj, spine_chain_attrs) # MCH-rev_*
del spine_chain_attrs
for i, child_name in enumerate(spine_chain):
child_name_orig = base_names[spine_chain_orig[i]]
attr = mt_chain.attr_names[i] # eg. spine_04
setattr(mt_chain, attr, spine_chain_orig[i]) # the original bone
ebone = copy_bone_simple(arm, child_name, child_name_orig) # use the original name
setattr(ex_chain, attr, ebone.name)
ebone = copy_bone_simple(arm, child_name, "MCH-rev_%s" % child_name_orig)
setattr(rv_chain, attr, ebone.name)
ebone.connected = False
mt_chain.update()
ex_chain.update()
rv_chain.update()
# Now we need to re-parent these chains
for i, child_name in enumerate(spine_chain_orig):
attr = ex_chain.attr_names[i] + "_e"
if i == 0:
getattr(ex_chain, attr).parent = mt.pelvis_e
else:
attr_parent = ex_chain.attr_names[i-1] + "_e"
getattr(ex_chain, attr).parent = getattr(ex_chain, attr_parent)
# intentional! get the parent from the other paralelle chain member
getattr(rv_chain, attr).parent = getattr(ex_chain, attr)
# ex_chain needs to interlace bones!
# Note, skip the first bone
for i in range(1, spine_chain_len): # similar to neck
child_name_orig = spine_chain_orig[i]
spine_e = getattr(mt_chain, mt_chain.attr_names[i] + "_e")
# dont store parent names, re-reference as each chain bones parent.
spine_e_parent = arm.edit_bones.new("MCH-rot_%s" % child_name_orig)
spine_e_parent.head = spine_e.head
spine_e_parent.tail = spine_e.head + ((mt.ribcage_e.tail - mt.ribcage_e.head).normalize() * spine_chain_segment_length / 2.0)
spine_e_parent.roll = mt.ribcage_e.roll
spine_e = getattr(ex_chain, ex_chain.attr_names[i] + "_e")
orig_parent = spine_e.parent
spine_e.connected = False
spine_e.parent = spine_e_parent
spine_e_parent.connected = False
spine_e_parent.parent = orig_parent
# Rotate the rev chain 180 about the by the first bones center point
pivot = (rv_chain.spine_01_e.head + rv_chain.spine_01_e.tail) * 0.5
matrix = RotationMatrix(radians(180), 3, 'X')
for i, attr in enumerate(rv_chain.attr_names): # similar to neck
spine_e = getattr(rv_chain, attr + "_e")
# use the first bone as the pivot
spine_e.head = ((spine_e.head - pivot) * matrix) + pivot
spine_e.tail = ((spine_e.tail - pivot) * matrix) + pivot
spine_e.roll += pi # 180d roll
del spine_e
bpy.ops.object.mode_set(mode='OBJECT')
# refresh pose bones
mt.update()
ex.update()
df.update()
mt_chain.update()
ex_chain.update()
rv_chain.update()
# df.pelvis_p / DEF-wgt_pelvis
con = df.pelvis_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = ex.pelvis
con.owner_space = 'LOCAL'
con.target_space = 'LOCAL'
con = df.pelvis_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = ex.pelvis
con.owner_space = 'LOCAL'
con.target_space = 'LOCAL'
# df.ribcage_p / DEF-wgt_rib_cage
con = df.ribcage_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = ex.ribcage
con.owner_space = 'LOCAL'
con.target_space = 'LOCAL'
con = df.ribcage_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = ex.ribcage
con.owner_space = 'LOCAL'
con.target_space = 'LOCAL'
con = ex.ribcage_hinge_p.constraints.new('COPY_ROTATION')
con.name = "hinge"
con.target = obj
con.subtarget = mt.pelvis
# add driver
hinge_driver_path = mt.ribcage_p.path_to_id() + '["hinge"]'
fcurve = con.driver_add("influence", 0)
driver = fcurve.driver
tar = driver.targets.new()
driver.type = 'AVERAGE'
tar.name = "var"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = hinge_driver_path
mod = fcurve.modifiers[0]
mod.poly_order = 1
mod.coefficients[0] = 1.0
mod.coefficients[1] = -1.0
con = ex.spine_rotate_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = mt.ribcage
# ex.pelvis_p / MCH-wgt_pelvis
con = ex.pelvis_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = mt_chain.spine_01
con.owner_space = 'WORLD'
con.target_space = 'WORLD'
con = ex.pelvis_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = mt_chain.spine_01
con.owner_space = 'WORLD'
con.target_space = 'WORLD'
# ex.ribcage_p / MCH-wgt_rib_cage
con = ex.ribcage_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = getattr(mt_chain, mt_chain.attr_names[-1])
con.head_tail = 0.0
con = ex.ribcage_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = getattr(mt_chain, mt_chain.attr_names[-1])
# mt.pelvis_p / rib_cage
con = mt.ribcage_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = mt.pelvis
con.head_tail = 0.0
# This stores all important ID props
prop = rna_idprop_ui_prop_get(mt.ribcage_p, "hinge", create=True)
mt.ribcage_p["hinge"] = 1.0
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
prop = rna_idprop_ui_prop_get(mt.ribcage_p, "pivot_slide", create=True)
mt.ribcage_p["pivot_slide"] = 0.5
prop["soft_min"] = 1.0 / spine_chain_len
prop["soft_max"] = 1.0
# Create a fake connected parent/child relationship with bone location constraints
# positioned at the tip.
# reverse bones / MCH-rev_spine.##
for i in range(1, spine_chain_len):
spine_p = getattr(rv_chain, rv_chain.attr_names[i] + "_p")
spine_fake_parent_name = getattr(rv_chain, rv_chain.attr_names[i - 1])
con = spine_p.constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = spine_fake_parent_name
con.head_tail = 1.0
del spine_p, spine_fake_parent_name, con
# Constrain 'inbetween' bones
target_names = [("b%.2d" % (i + 1)) for i in range(spine_chain_len - 1)]
rib_driver_path = mt.ribcage_p.path_to_id()
mt.ribcage_p["bend_tot"] = 0.0
fcurve = mt.ribcage_p.driver_add('["bend_tot"]', 0)
driver = fcurve.driver
driver.type = 'SUM'
fcurve.modifiers.remove(0) # grr dont need a modifier
for i in range(spine_chain_len - 1):
tar = driver.targets.new()
tar.name = target_names[i]
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = rib_driver_path + ('["bend_%.2d"]' % (i + 1))
print(rib_driver_path)
for i in range(1, spine_chain_len):
# Add bend prop
prop_name = "bend_%.2d" % i
prop = rna_idprop_ui_prop_get(mt.ribcage_p, prop_name, create=True)
mt.ribcage_p[prop_name] = 1.0
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
spine_p = getattr(ex_chain, ex_chain.attr_names[i] + "_p")
spine_p_parent = spine_p.parent # interlaced bone
con = spine_p_parent.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = ex.spine_rotate
con.owner_space = 'LOCAL'
con.target_space = 'LOCAL'
del spine_p
# add driver
fcurve = con.driver_add("influence", 0)
driver = fcurve.driver
driver.type = 'SCRIPTED'
driver.expression = "bend/bend_tot"
fcurve.modifiers.remove(0) # grr dont need a modifier
# add target
tar = driver.targets.new()
tar.name = "bend_tot"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = rib_driver_path + ('["bend_tot"]')
tar = driver.targets.new()
tar.name = "bend"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = rib_driver_path + ('["%s"]' % prop_name)
# original bone drivers
# note: the first bone has a lot more constraints, but also this simple one is first.
for i, attr in enumerate(mt_chain.attr_names):
spine_p = getattr(mt_chain, attr + "_p")
con = spine_p.constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = getattr(ex_chain, attr) # lock to the copy's rotation
del spine_p
# pivot slide: - lots of copy location constraints.
con = mt_chain.spine_01_p.constraints.new('COPY_LOCATION')
con.name = "base"
con.target = obj
con.subtarget = rv_chain.spine_01 # lock to the reverse location
for i in range(1, spine_chain_len + 1):
con = mt_chain.spine_01_p.constraints.new('COPY_LOCATION')
con.name = "slide_%d" % i
con.target = obj
if i == spine_chain_len:
attr = mt_chain.attr_names[i - 1]
else:
attr = mt_chain.attr_names[i]
con.subtarget = getattr(rv_chain, attr) # lock to the reverse location
if i == spine_chain_len:
con.head_tail = 1.0
fcurve = con.driver_add("influence", 0)
driver = fcurve.driver
tar = driver.targets.new()
driver.type = 'AVERAGE'
tar.name = "var"
tar.id_type = 'OBJECT'
tar.id = obj
tar.rna_path = rib_driver_path + '["pivot_slide"]'
mod = fcurve.modifiers[0]
mod.poly_order = 1
mod.coefficients[0] = - (i - 1)
mod.coefficients[1] = spine_chain_len
# no support for blending chains
return None