use float comparison from the "Ever Faster Float Comparisons" paper, tested with random values as well as random values converted to ints (where this existing code would fail).
724 lines
24 KiB
C
724 lines
24 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* This is a new part of Blender.
|
|
*
|
|
* Contributor(s): Joseph Gilbert, Campbell Barton
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/* Note: Changes to Mathutils since 2.4x
|
|
* use radians rather then degrees
|
|
* - Mathutils.MidpointVecs --> vector.lerp(other, fac)
|
|
* - Mathutils.AngleBetweenVecs --> vector.angle(other)
|
|
* - Mathutils.ProjectVecs --> vector.project(other)
|
|
* - Mathutils.DifferenceQuats --> quat.difference(other)
|
|
* - Mathutils.Slerp --> quat.slerp(other, fac)
|
|
* - Mathutils.Rand: removed, use pythons random module
|
|
* - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
|
|
* - Matrix.scalePart --> Matrix.scale_part
|
|
* - Matrix.translationPart --> Matrix.translation_part
|
|
* - Matrix.rotationPart --> Matrix.rotation_part
|
|
* - toMatrix --> to_matrix
|
|
* - toEuler --> to_euler
|
|
* - toQuat --> to_quat
|
|
* - Vector.toTrackQuat --> Vector.to_track_quat
|
|
*
|
|
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "PIL_time.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
//-------------------------DOC STRINGS ---------------------------
|
|
static char M_Mathutils_doc[] =
|
|
"This module provides access to matrices, eulers, quaternions and vectors.";
|
|
|
|
//-----------------------------METHODS----------------------------
|
|
//-----------------quat_rotation (internal)-----------
|
|
//This function multiplies a vector/point * quat or vice versa
|
|
//to rotate the point/vector by the quaternion
|
|
//arguments should all be 3D
|
|
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
|
|
{
|
|
float rot[3];
|
|
QuaternionObject *quat = NULL;
|
|
VectorObject *vec = NULL;
|
|
|
|
if(QuaternionObject_Check(arg1)){
|
|
quat = (QuaternionObject*)arg1;
|
|
if(!BaseMath_ReadCallback(quat))
|
|
return NULL;
|
|
|
|
if(VectorObject_Check(arg2)){
|
|
vec = (VectorObject*)arg2;
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
|
|
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
|
|
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
|
|
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
|
|
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
|
|
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
|
|
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
|
|
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
|
|
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
|
|
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
|
|
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
|
|
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
|
|
return newVectorObject(rot, 3, Py_NEW, NULL);
|
|
}
|
|
}else if(VectorObject_Check(arg1)){
|
|
vec = (VectorObject*)arg1;
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
if(QuaternionObject_Check(arg2)){
|
|
quat = (QuaternionObject*)arg2;
|
|
if(!BaseMath_ReadCallback(quat))
|
|
return NULL;
|
|
|
|
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
|
|
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
|
|
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
|
|
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
|
|
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
|
|
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
|
|
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
|
|
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
|
|
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
|
|
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
|
|
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
|
|
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
|
|
return newVectorObject(rot, 3, Py_NEW, NULL);
|
|
}
|
|
}
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
|
|
return NULL;
|
|
|
|
}
|
|
|
|
//----------------------------------MATRIX FUNCTIONS--------------------
|
|
//----------------------------------Mathutils.RotationMatrix() ----------
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
static char M_Mathutils_RotationMatrix_doc[] =
|
|
".. function:: RotationMatrix(angle, size, axis)\n"
|
|
"\n"
|
|
" Create a matrix representing a rotation.\n"
|
|
"\n"
|
|
" :arg angle: The angle of rotation desired.\n"
|
|
" :type angle: float\n"
|
|
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
|
|
" :type size: int\n"
|
|
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
|
|
" :type axis: string or :class:`Vector`\n"
|
|
" :return: A new rotation matrix.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
|
|
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
|
|
{
|
|
VectorObject *vec= NULL;
|
|
char *axis= NULL;
|
|
int matSize;
|
|
float angle = 0.0f;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(vec && !VectorObject_Check(vec)) {
|
|
axis= _PyUnicode_AsString((PyObject *)vec);
|
|
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
|
|
return NULL;
|
|
}
|
|
else {
|
|
/* use the string */
|
|
vec= NULL;
|
|
}
|
|
}
|
|
|
|
while (angle<-(Py_PI*2))
|
|
angle+=(Py_PI*2);
|
|
while (angle>(Py_PI*2))
|
|
angle-=(Py_PI*2);
|
|
|
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
return NULL;
|
|
}
|
|
if(matSize == 2 && (vec != NULL)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
|
|
return NULL;
|
|
}
|
|
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
|
|
return NULL;
|
|
}
|
|
if(vec) {
|
|
if(vec->size != 3) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* check for valid vector/axis above */
|
|
if(vec) {
|
|
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
|
|
}
|
|
else if(matSize == 2) {
|
|
//2D rotation matrix
|
|
mat[0] = (float) cos (angle);
|
|
mat[1] = (float) sin (angle);
|
|
mat[2] = -((float) sin(angle));
|
|
mat[3] = (float) cos(angle);
|
|
} else if(strcmp(axis, "X") == 0) {
|
|
//rotation around X
|
|
mat[0] = 1.0f;
|
|
mat[4] = (float) cos(angle);
|
|
mat[5] = (float) sin(angle);
|
|
mat[7] = -((float) sin(angle));
|
|
mat[8] = (float) cos(angle);
|
|
} else if(strcmp(axis, "Y") == 0) {
|
|
//rotation around Y
|
|
mat[0] = (float) cos(angle);
|
|
mat[2] = -((float) sin(angle));
|
|
mat[4] = 1.0f;
|
|
mat[6] = (float) sin(angle);
|
|
mat[8] = (float) cos(angle);
|
|
} else if(strcmp(axis, "Z") == 0) {
|
|
//rotation around Z
|
|
mat[0] = (float) cos(angle);
|
|
mat[1] = (float) sin(angle);
|
|
mat[3] = -((float) sin(angle));
|
|
mat[4] = (float) cos(angle);
|
|
mat[8] = 1.0f;
|
|
}
|
|
else {
|
|
/* should never get here */
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unknown error\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(matSize == 4) {
|
|
//resize matrix
|
|
mat[10] = mat[8];
|
|
mat[9] = mat[7];
|
|
mat[8] = mat[6];
|
|
mat[7] = 0.0f;
|
|
mat[6] = mat[5];
|
|
mat[5] = mat[4];
|
|
mat[4] = mat[3];
|
|
mat[3] = 0.0f;
|
|
}
|
|
//pass to matrix creation
|
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
}
|
|
|
|
static char M_Mathutils_TranslationMatrix_doc[] =
|
|
".. function:: TranslationMatrix(vector)\n"
|
|
"\n"
|
|
" Create a matrix representing a translation.\n"
|
|
"\n"
|
|
" :arg vector: The translation vector.\n"
|
|
" :type vector: :class:`Vector`\n"
|
|
" :return: An identity matrix with a translation.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
|
|
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
|
|
{
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(!VectorObject_Check(vec)) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
|
|
return NULL;
|
|
}
|
|
if(vec->size != 3 && vec->size != 4) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
//create a identity matrix and add translation
|
|
unit_m4((float(*)[4]) mat);
|
|
mat[12] = vec->vec[0];
|
|
mat[13] = vec->vec[1];
|
|
mat[14] = vec->vec[2];
|
|
|
|
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
|
|
}
|
|
//----------------------------------Mathutils.ScaleMatrix() -------------
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
static char M_Mathutils_ScaleMatrix_doc[] =
|
|
".. function:: ScaleMatrix(factor, size, axis)\n"
|
|
"\n"
|
|
" Create a matrix representing a scaling.\n"
|
|
"\n"
|
|
" :arg factor: The factor of scaling to apply.\n"
|
|
" :type factor: float\n"
|
|
" :arg size: The size of the scale matrix to construct [2, 4].\n"
|
|
" :type size: int\n"
|
|
" :arg axis: Direction to influence scale. (optional).\n"
|
|
" :type axis: :class:`Vector`\n"
|
|
" :return: A new scale matrix.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
|
|
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
|
|
{
|
|
VectorObject *vec = NULL;
|
|
float norm = 0.0f, factor;
|
|
int matSize, x;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
|
|
return NULL;
|
|
}
|
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
return NULL;
|
|
}
|
|
if(vec) {
|
|
if(vec->size > 2 && matSize == 2) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
}
|
|
if(vec == NULL) { //scaling along axis
|
|
if(matSize == 2) {
|
|
mat[0] = factor;
|
|
mat[3] = factor;
|
|
} else {
|
|
mat[0] = factor;
|
|
mat[4] = factor;
|
|
mat[8] = factor;
|
|
}
|
|
} else { //scaling in arbitrary direction
|
|
//normalize arbitrary axis
|
|
for(x = 0; x < vec->size; x++) {
|
|
norm += vec->vec[x] * vec->vec[x];
|
|
}
|
|
norm = (float) sqrt(norm);
|
|
for(x = 0; x < vec->size; x++) {
|
|
vec->vec[x] /= norm;
|
|
}
|
|
if(matSize == 2) {
|
|
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
|
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
|
} else {
|
|
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
|
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
|
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
|
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
|
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
|
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
|
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
|
|
}
|
|
}
|
|
if(matSize == 4) {
|
|
//resize matrix
|
|
mat[10] = mat[8];
|
|
mat[9] = mat[7];
|
|
mat[8] = mat[6];
|
|
mat[7] = 0.0f;
|
|
mat[6] = mat[5];
|
|
mat[5] = mat[4];
|
|
mat[4] = mat[3];
|
|
mat[3] = 0.0f;
|
|
}
|
|
//pass to matrix creation
|
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
}
|
|
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
|
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
|
|
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
|
|
"\n"
|
|
" Create a matrix to represent an orthographic projection.\n"
|
|
"\n"
|
|
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
|
|
" :type plane: string\n"
|
|
" :arg size: The size of the projection matrix to construct [2, 4].\n"
|
|
" :type size: int\n"
|
|
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
|
|
" :type axis: :class:`Vector`\n"
|
|
" :return: A new projection matrix.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
|
|
{
|
|
VectorObject *vec = NULL;
|
|
char *plane;
|
|
int matSize, x;
|
|
float norm = 0.0f;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
|
|
return NULL;
|
|
}
|
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
return NULL;
|
|
}
|
|
if(vec) {
|
|
if(vec->size > 2 && matSize == 2) {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return NULL;
|
|
|
|
}
|
|
if(vec == NULL) { //ortho projection onto cardinal plane
|
|
if((strcmp(plane, "X") == 0) && matSize == 2) {
|
|
mat[0] = 1.0f;
|
|
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
|
mat[3] = 1.0f;
|
|
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
|
mat[0] = 1.0f;
|
|
mat[4] = 1.0f;
|
|
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
|
mat[0] = 1.0f;
|
|
mat[8] = 1.0f;
|
|
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
|
mat[4] = 1.0f;
|
|
mat[8] = 1.0f;
|
|
} else {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
|
|
return NULL;
|
|
}
|
|
} else { //arbitrary plane
|
|
//normalize arbitrary axis
|
|
for(x = 0; x < vec->size; x++) {
|
|
norm += vec->vec[x] * vec->vec[x];
|
|
}
|
|
norm = (float) sqrt(norm);
|
|
for(x = 0; x < vec->size; x++) {
|
|
vec->vec[x] /= norm;
|
|
}
|
|
if((strcmp(plane, "R") == 0) && matSize == 2) {
|
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
|
mat[2] = -(vec->vec[0] * vec->vec[1]);
|
|
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
|
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
|
mat[2] = -(vec->vec[0] * vec->vec[2]);
|
|
mat[3] = -(vec->vec[0] * vec->vec[1]);
|
|
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
mat[5] = -(vec->vec[1] * vec->vec[2]);
|
|
mat[6] = -(vec->vec[0] * vec->vec[2]);
|
|
mat[7] = -(vec->vec[1] * vec->vec[2]);
|
|
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
|
|
} else {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
if(matSize == 4) {
|
|
//resize matrix
|
|
mat[10] = mat[8];
|
|
mat[9] = mat[7];
|
|
mat[8] = mat[6];
|
|
mat[7] = 0.0f;
|
|
mat[6] = mat[5];
|
|
mat[5] = mat[4];
|
|
mat[4] = mat[3];
|
|
mat[3] = 0.0f;
|
|
}
|
|
//pass to matrix creation
|
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
}
|
|
|
|
static char M_Mathutils_ShearMatrix_doc[] =
|
|
".. function:: ShearMatrix(plane, factor, size)\n"
|
|
"\n"
|
|
" Create a matrix to represent an shear transformation.\n"
|
|
"\n"
|
|
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
|
|
" :type plane: string\n"
|
|
" :arg factor: The factor of shear to apply.\n"
|
|
" :type factor: float\n"
|
|
" :arg size: The size of the shear matrix to construct [2, 4].\n"
|
|
" :type size: int\n"
|
|
" :return: A new shear matrix.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
|
|
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
|
|
{
|
|
int matSize;
|
|
char *plane;
|
|
float factor;
|
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
|
|
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
|
|
PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
|
|
return NULL;
|
|
}
|
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
return NULL;
|
|
}
|
|
|
|
if((strcmp(plane, "X") == 0)
|
|
&& matSize == 2) {
|
|
mat[0] = 1.0f;
|
|
mat[2] = factor;
|
|
mat[3] = 1.0f;
|
|
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
|
mat[0] = 1.0f;
|
|
mat[1] = factor;
|
|
mat[3] = 1.0f;
|
|
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
|
mat[0] = 1.0f;
|
|
mat[4] = 1.0f;
|
|
mat[6] = factor;
|
|
mat[7] = factor;
|
|
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
|
mat[0] = 1.0f;
|
|
mat[3] = factor;
|
|
mat[4] = 1.0f;
|
|
mat[5] = factor;
|
|
mat[8] = 1.0f;
|
|
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
|
mat[0] = 1.0f;
|
|
mat[1] = factor;
|
|
mat[2] = factor;
|
|
mat[4] = 1.0f;
|
|
mat[8] = 1.0f;
|
|
} else {
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
|
|
return NULL;
|
|
}
|
|
if(matSize == 4) {
|
|
//resize matrix
|
|
mat[10] = mat[8];
|
|
mat[9] = mat[7];
|
|
mat[8] = mat[6];
|
|
mat[7] = 0.0f;
|
|
mat[6] = mat[5];
|
|
mat[5] = mat[4];
|
|
mat[4] = mat[3];
|
|
mat[3] = 0.0f;
|
|
}
|
|
//pass to matrix creation
|
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
}
|
|
|
|
/* Utility functions */
|
|
|
|
// LomontRRDCompare4, Ever Faster Float Comparisons by Randy Dillon
|
|
#define SIGNMASK(i) (-(int)(((unsigned int)(i))>>31))
|
|
|
|
int EXPP_FloatsAreEqual(float af, float bf, int maxDiff)
|
|
{ // solid, fast routine across all platforms
|
|
// with constant time behavior
|
|
int ai = *(int *)(&af);
|
|
int bi = *(int *)(&bf);
|
|
int test = SIGNMASK(ai^bi);
|
|
int diff, v1, v2;
|
|
|
|
assert((0 == test) || (0xFFFFFFFF == test));
|
|
diff = (ai ^ (test & 0x7fffffff)) - bi;
|
|
v1 = maxDiff + diff;
|
|
v2 = maxDiff - diff;
|
|
return (v1|v2) >= 0;
|
|
}
|
|
|
|
/*---------------------- EXPP_VectorsAreEqual -------------------------
|
|
Builds on EXPP_FloatsAreEqual to test vectors */
|
|
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
|
|
{
|
|
int x;
|
|
for (x=0; x< size; x++){
|
|
if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Mathutils Callbacks */
|
|
|
|
/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
|
|
Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
|
|
|
|
int Mathutils_RegisterCallback(Mathutils_Callback *cb)
|
|
{
|
|
int i;
|
|
|
|
/* find the first free slot */
|
|
for(i= 0; mathutils_callbacks[i]; i++) {
|
|
if(mathutils_callbacks[i]==cb) /* alredy registered? */
|
|
return i;
|
|
}
|
|
|
|
mathutils_callbacks[i] = cb;
|
|
return i;
|
|
}
|
|
|
|
/* use macros to check for NULL */
|
|
int _BaseMathObject_ReadCallback(BaseMathObject *self)
|
|
{
|
|
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
|
if(cb->get(self->cb_user, self->cb_subtype, self->data))
|
|
return 1;
|
|
|
|
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
|
return 0;
|
|
}
|
|
|
|
int _BaseMathObject_WriteCallback(BaseMathObject *self)
|
|
{
|
|
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
|
if(cb->set(self->cb_user, self->cb_subtype, self->data))
|
|
return 1;
|
|
|
|
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
|
return 0;
|
|
}
|
|
|
|
int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
|
|
{
|
|
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
|
if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
|
|
return 1;
|
|
|
|
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
|
return 0;
|
|
}
|
|
|
|
int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
|
|
{
|
|
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
|
if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
|
|
return 1;
|
|
|
|
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
|
return 0;
|
|
}
|
|
|
|
/* BaseMathObject generic functions for all mathutils types */
|
|
char BaseMathObject_Owner_doc[] = "The item this is wrapping or None (readonly).";
|
|
PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
|
|
{
|
|
PyObject *ret= self->cb_user ? self->cb_user : Py_None;
|
|
Py_INCREF(ret);
|
|
return ret;
|
|
}
|
|
|
|
char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
|
|
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
|
|
{
|
|
return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
|
|
}
|
|
|
|
void BaseMathObject_dealloc(BaseMathObject * self)
|
|
{
|
|
/* only free non wrapped */
|
|
if(self->wrapped != Py_WRAP)
|
|
PyMem_Free(self->data);
|
|
|
|
Py_XDECREF(self->cb_user);
|
|
Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
|
|
}
|
|
|
|
/*----------------------------MODULE INIT-------------------------*/
|
|
struct PyMethodDef M_Mathutils_methods[] = {
|
|
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
|
|
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
|
|
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
|
|
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
|
|
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef M_Mathutils_module_def = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"Mathutils", /* m_name */
|
|
M_Mathutils_doc, /* m_doc */
|
|
0, /* m_size */
|
|
M_Mathutils_methods, /* m_methods */
|
|
0, /* m_reload */
|
|
0, /* m_traverse */
|
|
0, /* m_clear */
|
|
0, /* m_free */
|
|
};
|
|
|
|
PyObject *Mathutils_Init(void)
|
|
{
|
|
PyObject *submodule;
|
|
|
|
if( PyType_Ready( &vector_Type ) < 0 )
|
|
return NULL;
|
|
if( PyType_Ready( &matrix_Type ) < 0 )
|
|
return NULL;
|
|
if( PyType_Ready( &euler_Type ) < 0 )
|
|
return NULL;
|
|
if( PyType_Ready( &quaternion_Type ) < 0 )
|
|
return NULL;
|
|
|
|
submodule = PyModule_Create(&M_Mathutils_module_def);
|
|
PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
|
|
|
|
/* each type has its own new() function */
|
|
PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
|
|
PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
|
|
PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
|
|
PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
|
|
|
|
mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
|
|
|
|
return (submodule);
|
|
}
|