- adds a new point class * point/ vector math (p + v = p, p - p = v, etc.) * points can be transformed by matrices/quats * wraps 'place vector' type vectors that have no magnitude - wrapped toXXX() methods work correctly * toXXX() will NOT wrap data (this is due to the fact that wrapped data cannot be converted) * added a 'wrapped' attribute to mathutils classes to determine wether the object is accessing python or blender data - added the ability to negate vectors/points with "-vec" * deprecated vector.negate() - added the ability to shorhand inverse matrices with "~mat" (tilde) - conversion between vector/point with toXXX() methods
		
			
				
	
	
		
			592 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * $Id$
 | 
						|
 *
 | 
						|
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version. The Blender
 | 
						|
 * Foundation also sells licenses for use in proprietary software under
 | 
						|
 * the Blender License.  See http://www.blender.org/BL/ for information
 | 
						|
 * about this.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * 
 | 
						|
 * Contributor(s): Joseph Gilbert
 | 
						|
 *
 | 
						|
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include "Mathutils.h"
 | 
						|
 | 
						|
#include "BLI_arithb.h"
 | 
						|
#include "BKE_utildefines.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "gen_utils.h"
 | 
						|
 | 
						|
 | 
						|
//-------------------------DOC STRINGS ---------------------------
 | 
						|
char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)";
 | 
						|
char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative";
 | 
						|
char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate";
 | 
						|
char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse";
 | 
						|
char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion";
 | 
						|
char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion";
 | 
						|
char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion";
 | 
						|
//-----------------------METHOD DEFINITIONS ----------------------
 | 
						|
struct PyMethodDef Quaternion_methods[] = {
 | 
						|
	{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
 | 
						|
	{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
 | 
						|
	{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
 | 
						|
	{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
 | 
						|
	{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
 | 
						|
	{"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc},
 | 
						|
	{"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
 | 
						|
	{NULL, NULL, 0, NULL}
 | 
						|
};
 | 
						|
//-----------------------------METHODS------------------------------
 | 
						|
//----------------------------Quaternion.toEuler()------------------
 | 
						|
//return the quat as a euler
 | 
						|
PyObject *Quaternion_ToEuler(QuaternionObject * self)
 | 
						|
{
 | 
						|
	float eul[3];
 | 
						|
	int x;
 | 
						|
 | 
						|
	QuatToEul(self->quat, eul);
 | 
						|
	for(x = 0; x < 3; x++) {
 | 
						|
		eul[x] *= (180 / (float)Py_PI);
 | 
						|
	}
 | 
						|
	return newEulerObject(eul, Py_NEW);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.toMatrix()------------------
 | 
						|
//return the quat as a matrix
 | 
						|
PyObject *Quaternion_ToMatrix(QuaternionObject * self)
 | 
						|
{
 | 
						|
	float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
 | 
						|
	QuatToMat3(self->quat, (float (*)[3]) mat);
 | 
						|
 | 
						|
	return newMatrixObject(mat, 3, 3, Py_NEW);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.normalize()----------------
 | 
						|
//normalize the axis of rotation of [theta,vector]
 | 
						|
PyObject *Quaternion_Normalize(QuaternionObject * self)
 | 
						|
{
 | 
						|
	NormalQuat(self->quat);
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.inverse()------------------
 | 
						|
//invert the quat
 | 
						|
PyObject *Quaternion_Inverse(QuaternionObject * self)
 | 
						|
{
 | 
						|
	double mag = 0.0f;
 | 
						|
	int x;
 | 
						|
 | 
						|
	for(x = 1; x < 4; x++) {
 | 
						|
		self->quat[x] = -self->quat[x];
 | 
						|
	}
 | 
						|
	for(x = 0; x < 4; x++) {
 | 
						|
		mag += (self->quat[x] * self->quat[x]);
 | 
						|
	}
 | 
						|
	mag = sqrt(mag);
 | 
						|
	for(x = 0; x < 4; x++) {
 | 
						|
		self->quat[x] /= (float)(mag * mag);
 | 
						|
	}
 | 
						|
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.identity()-----------------
 | 
						|
//generate the identity quaternion
 | 
						|
PyObject *Quaternion_Identity(QuaternionObject * self)
 | 
						|
{
 | 
						|
	self->quat[0] = 1.0;
 | 
						|
	self->quat[1] = 0.0;
 | 
						|
	self->quat[2] = 0.0;
 | 
						|
	self->quat[3] = 0.0;
 | 
						|
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.negate()-------------------
 | 
						|
//negate the quat
 | 
						|
PyObject *Quaternion_Negate(QuaternionObject * self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	for(x = 0; x < 4; x++) {
 | 
						|
		self->quat[x] = -self->quat[x];
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
//----------------------------Quaternion.conjugate()----------------
 | 
						|
//negate the vector part
 | 
						|
PyObject *Quaternion_Conjugate(QuaternionObject * self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	for(x = 1; x < 4; x++) {
 | 
						|
		self->quat[x] = -self->quat[x];
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
//----------------------------dealloc()(internal) ------------------
 | 
						|
//free the py_object
 | 
						|
static void Quaternion_dealloc(QuaternionObject * self)
 | 
						|
{
 | 
						|
	//only free py_data
 | 
						|
	if(self->data.py_data){
 | 
						|
		PyMem_Free(self->data.py_data);
 | 
						|
	}
 | 
						|
	PyObject_DEL(self);
 | 
						|
}
 | 
						|
//----------------------------getattr()(internal) ------------------
 | 
						|
//object.attribute access (get)
 | 
						|
static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	double mag = 0.0f;
 | 
						|
	float vec[3];
 | 
						|
 | 
						|
	if(STREQ(name,"w")){
 | 
						|
		return PyFloat_FromDouble(self->quat[0]);
 | 
						|
	}else if(STREQ(name, "x")){
 | 
						|
		return PyFloat_FromDouble(self->quat[1]);
 | 
						|
	}else if(STREQ(name, "y")){
 | 
						|
		return PyFloat_FromDouble(self->quat[2]);
 | 
						|
	}else if(STREQ(name, "z")){
 | 
						|
		return PyFloat_FromDouble(self->quat[3]);
 | 
						|
	}
 | 
						|
	if(STREQ(name, "magnitude")) {
 | 
						|
		for(x = 0; x < 4; x++) {
 | 
						|
			mag += self->quat[x] * self->quat[x];
 | 
						|
		}
 | 
						|
		mag = sqrt(mag);
 | 
						|
		return PyFloat_FromDouble(mag);
 | 
						|
	}
 | 
						|
	if(STREQ(name, "angle")) {
 | 
						|
		mag = self->quat[0];
 | 
						|
		mag = 2 * (acos(mag));
 | 
						|
		mag *= (180 / Py_PI);
 | 
						|
		return PyFloat_FromDouble(mag);
 | 
						|
	}
 | 
						|
	if(STREQ(name, "axis")) {
 | 
						|
		mag = self->quat[0] * (Py_PI / 180);
 | 
						|
		mag = 2 * (acos(mag));
 | 
						|
		mag = sin(mag / 2);
 | 
						|
		for(x = 0; x < 3; x++) {
 | 
						|
			vec[x] = (float)(self->quat[x + 1] / mag);
 | 
						|
		}
 | 
						|
		Normalise(vec);
 | 
						|
		return (PyObject *) newVectorObject(vec, 3, Py_NEW);
 | 
						|
	}
 | 
						|
	if(STREQ(name, "wrapped")){
 | 
						|
		if(self->wrapped == Py_WRAP)
 | 
						|
			return EXPP_incr_ret((PyObject *)Py_True);
 | 
						|
		else 
 | 
						|
			return EXPP_incr_ret((PyObject *)Py_False);
 | 
						|
	}
 | 
						|
 | 
						|
	return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
 | 
						|
}
 | 
						|
//----------------------------setattr()(internal) ------------------
 | 
						|
//object.attribute access (set)
 | 
						|
static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q)
 | 
						|
{
 | 
						|
	PyObject *f = NULL;
 | 
						|
 | 
						|
	f = PyNumber_Float(q);
 | 
						|
	if(f == NULL) { // parsed item not a number
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"quaternion.attribute = x: argument not a number\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if(STREQ(name,"w")){
 | 
						|
		self->quat[0] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else if(STREQ(name, "x")){
 | 
						|
		self->quat[1] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else if(STREQ(name, "y")){
 | 
						|
		self->quat[2] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else if(STREQ(name, "z")){
 | 
						|
		self->quat[3] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else{
 | 
						|
		Py_DECREF(f);
 | 
						|
		return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"quaternion.attribute = x: unknown attribute\n");
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(f);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
//----------------------------print object (internal)--------------
 | 
						|
//print the object to screen
 | 
						|
static PyObject *Quaternion_repr(QuaternionObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	char buffer[48], str[1024];
 | 
						|
 | 
						|
	BLI_strncpy(str,"[",1024);
 | 
						|
	for(i = 0; i < 4; i++){
 | 
						|
		if(i < (3)){
 | 
						|
			sprintf(buffer, "%.6f, ", self->quat[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}else{
 | 
						|
			sprintf(buffer, "%.6f", self->quat[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	strcat(str, "](quaternion)");
 | 
						|
 | 
						|
	return EXPP_incr_ret(PyString_FromString(str));
 | 
						|
}
 | 
						|
//---------------------SEQUENCE PROTOCOLS------------------------
 | 
						|
//----------------------------len(object)------------------------
 | 
						|
//sequence length
 | 
						|
static int Quaternion_len(QuaternionObject * self)
 | 
						|
{
 | 
						|
	return 4;
 | 
						|
}
 | 
						|
//----------------------------object[]---------------------------
 | 
						|
//sequence accessor (get)
 | 
						|
static PyObject *Quaternion_item(QuaternionObject * self, int i)
 | 
						|
{
 | 
						|
	if(i < 0 || i >= 4)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | 
						|
		"quaternion[attribute]: array index out of range\n");
 | 
						|
 | 
						|
	return Py_BuildValue("f", self->quat[i]);
 | 
						|
 | 
						|
}
 | 
						|
//----------------------------object[]-------------------------
 | 
						|
//sequence accessor (set)
 | 
						|
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
 | 
						|
{
 | 
						|
	PyObject *f = NULL;
 | 
						|
 | 
						|
	f = PyNumber_Float(ob);
 | 
						|
	if(f == NULL) { // parsed item not a number
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"quaternion[attribute] = x: argument not a number\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if(i < 0 || i >= 4){
 | 
						|
		Py_DECREF(f);
 | 
						|
		return EXPP_ReturnIntError(PyExc_IndexError,
 | 
						|
			"quaternion[attribute] = x: array assignment index out of range\n");
 | 
						|
	}
 | 
						|
	self->quat[i] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	Py_DECREF(f);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
//----------------------------object[z:y]------------------------
 | 
						|
//sequence slice (get)
 | 
						|
static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
 | 
						|
{
 | 
						|
	PyObject *list = NULL;
 | 
						|
	int count;
 | 
						|
 | 
						|
	CLAMP(begin, 0, 4);
 | 
						|
	CLAMP(end, 0, 4);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	list = PyList_New(end - begin);
 | 
						|
	for(count = begin; count < end; count++) {
 | 
						|
		PyList_SetItem(list, count - begin,
 | 
						|
				PyFloat_FromDouble(self->quat[count]));
 | 
						|
	}
 | 
						|
 | 
						|
	return list;
 | 
						|
}
 | 
						|
//----------------------------object[z:y]------------------------
 | 
						|
//sequence slice (set)
 | 
						|
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
 | 
						|
			     PyObject * seq)
 | 
						|
{
 | 
						|
	int i, y, size = 0;
 | 
						|
	float quat[4];
 | 
						|
 | 
						|
	CLAMP(begin, 0, 4);
 | 
						|
	CLAMP(end, 0, 4);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	size = PySequence_Length(seq);
 | 
						|
	if(size != (end - begin)){
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError,
 | 
						|
			"quaternion[begin:end] = []: size mismatch in slice assignment\n");
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		PyObject *q, *f;
 | 
						|
 | 
						|
		q = PySequence_GetItem(seq, i);
 | 
						|
		if (q == NULL) { // Failed to read sequence
 | 
						|
			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | 
						|
				"quaternion[begin:end] = []: unable to read sequence\n");
 | 
						|
		}
 | 
						|
		f = PyNumber_Float(q);
 | 
						|
		if(f == NULL) { // parsed item not a number
 | 
						|
			Py_DECREF(q);
 | 
						|
			return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
				"quaternion[begin:end] = []: sequence argument not a number\n");
 | 
						|
		}
 | 
						|
		quat[i] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
		EXPP_decr2(f,q);
 | 
						|
	}
 | 
						|
	//parsed well - now set in vector
 | 
						|
	for(y = 0; y < size; y++){
 | 
						|
		self->quat[begin + y] = quat[y];
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
//------------------------NUMERIC PROTOCOLS----------------------
 | 
						|
//------------------------obj + obj------------------------------
 | 
						|
//addition
 | 
						|
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	float quat[4];
 | 
						|
	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | 
						|
 | 
						|
	EXPP_incr2(q1, q2);
 | 
						|
	quat1 = (QuaternionObject*)q1;
 | 
						|
	quat2 = (QuaternionObject*)q2;
 | 
						|
 | 
						|
	if(quat1->coerced_object || quat2->coerced_object){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Quaternion addition: arguments not valid for this operation....\n");
 | 
						|
	}
 | 
						|
	for(x = 0; x < 4; x++) {
 | 
						|
		quat[x] = quat1->quat[x] + quat2->quat[x];
 | 
						|
	}
 | 
						|
 | 
						|
	EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
	return (PyObject *) newQuaternionObject(quat, Py_NEW);
 | 
						|
}
 | 
						|
//------------------------obj - obj------------------------------
 | 
						|
//subtraction
 | 
						|
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	float quat[4];
 | 
						|
	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | 
						|
 | 
						|
	EXPP_incr2(q1, q2);
 | 
						|
	quat1 = (QuaternionObject*)q1;
 | 
						|
	quat2 = (QuaternionObject*)q2;
 | 
						|
 | 
						|
	if(quat1->coerced_object || quat2->coerced_object){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Quaternion addition: arguments not valid for this operation....\n");
 | 
						|
	}
 | 
						|
	for(x = 0; x < 4; x++) {
 | 
						|
		quat[x] = quat1->quat[x] - quat2->quat[x];
 | 
						|
	}
 | 
						|
 | 
						|
	EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
	return (PyObject *) newQuaternionObject(quat, Py_NEW);
 | 
						|
}
 | 
						|
//------------------------obj * obj------------------------------
 | 
						|
//mulplication
 | 
						|
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	float quat[4], scalar;
 | 
						|
	double dot = 0.0f;
 | 
						|
	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | 
						|
	PyObject *f = NULL, *retObj = NULL;
 | 
						|
	VectorObject *vec = NULL;
 | 
						|
	PointObject *pt = NULL;
 | 
						|
 | 
						|
	EXPP_incr2(q1, q2);
 | 
						|
	quat1 = (QuaternionObject*)q1;
 | 
						|
	quat2 = (QuaternionObject*)q2;
 | 
						|
 | 
						|
	if(quat1->coerced_object){
 | 
						|
		if (PyFloat_Check(quat1->coerced_object) || 
 | 
						|
			PyInt_Check(quat1->coerced_object)){	// FLOAT/INT * QUAT
 | 
						|
			f = PyNumber_Float(quat1->coerced_object);
 | 
						|
			if(f == NULL) { // parsed item not a number
 | 
						|
				EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);	
 | 
						|
				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
					"Quaternion multiplication: arguments not acceptable for this operation\n");
 | 
						|
			}
 | 
						|
			scalar = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
			for(x = 0; x < 4; x++) {
 | 
						|
				quat[x] = quat2->quat[x] * scalar;
 | 
						|
			}
 | 
						|
			EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
			return (PyObject *) newQuaternionObject(quat, Py_NEW);
 | 
						|
		}
 | 
						|
	}else{
 | 
						|
		if(quat2->coerced_object){
 | 
						|
			if (PyFloat_Check(quat2->coerced_object) || 
 | 
						|
				PyInt_Check(quat2->coerced_object)){	// QUAT * FLOAT/INT
 | 
						|
				f = PyNumber_Float(quat2->coerced_object);
 | 
						|
				if(f == NULL) { // parsed item not a number
 | 
						|
					EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
						"Quaternion multiplication: arguments not acceptable for this operation\n");
 | 
						|
				}
 | 
						|
				scalar = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
				for(x = 0; x < 4; x++) {
 | 
						|
					quat[x] = quat1->quat[x] * scalar;
 | 
						|
				}
 | 
						|
				EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
				return (PyObject *) newQuaternionObject(quat, Py_NEW);
 | 
						|
			}else if(VectorObject_Check(quat2->coerced_object)){  //QUAT * VEC
 | 
						|
				vec = (VectorObject*)EXPP_incr_ret(quat2->coerced_object);
 | 
						|
				if(vec->size != 3){
 | 
						|
					EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
						"Quaternion multiplication: only 3D vector rotations currently supported\n");
 | 
						|
				}
 | 
						|
				retObj = quat_rotation((PyObject*)quat1, (PyObject*)vec);
 | 
						|
				EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)vec);
 | 
						|
				return retObj;
 | 
						|
			}else if(PointObject_Check(quat2->coerced_object)){  //QUAT * POINT
 | 
						|
				pt = (PointObject*)EXPP_incr_ret(quat2->coerced_object);
 | 
						|
				if(pt->size != 3){
 | 
						|
					EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
						"Quaternion multiplication: only 3D point rotations currently supported\n");
 | 
						|
				}
 | 
						|
				retObj = quat_rotation((PyObject*)quat1, (PyObject*)pt);
 | 
						|
				EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)pt);
 | 
						|
				return retObj;
 | 
						|
			}
 | 
						|
		}else{  //QUAT * QUAT (dot product)
 | 
						|
			for(x = 0; x < 4; x++) {
 | 
						|
				dot += quat1->quat[x] * quat1->quat[x];
 | 
						|
			}
 | 
						|
			EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
			return PyFloat_FromDouble(dot);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
		"Quaternion multiplication: arguments not acceptable for this operation\n");
 | 
						|
}
 | 
						|
//------------------------coerce(obj, obj)-----------------------
 | 
						|
//coercion of unknown types to type QuaternionObject for numeric protocols
 | 
						|
/*Coercion() is called whenever a math operation has 2 operands that
 | 
						|
 it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | 
						|
 evaluate some of these operations like: (vector * 2), however, for math
 | 
						|
 to proceed, the unknown operand must be cast to a type that python math will
 | 
						|
 understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | 
						|
 then call vector.multiply(vector, scalar_cast_as_vector)*/
 | 
						|
static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
 | 
						|
{
 | 
						|
	PyObject *coerced = NULL;
 | 
						|
 | 
						|
	if(!QuaternionObject_Check(*q2)) {
 | 
						|
		if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2) ||
 | 
						|
			PointObject_Check(*q2)) {
 | 
						|
			coerced = EXPP_incr_ret(*q2);
 | 
						|
			*q2 = newQuaternionObject(NULL,Py_NEW);
 | 
						|
			((QuaternionObject*)*q2)->coerced_object = coerced;
 | 
						|
		}else{
 | 
						|
			return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
				"quaternion.coerce(): unknown operand - can't coerce for numeric protocols\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
	EXPP_incr2(*q1, *q2);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
//-----------------PROTCOL DECLARATIONS--------------------------
 | 
						|
static PySequenceMethods Quaternion_SeqMethods = {
 | 
						|
	(inquiry) Quaternion_len,					/* sq_length */
 | 
						|
	(binaryfunc) 0,								/* sq_concat */
 | 
						|
	(intargfunc) 0,								/* sq_repeat */
 | 
						|
	(intargfunc) Quaternion_item,				/* sq_item */
 | 
						|
	(intintargfunc) Quaternion_slice,			/* sq_slice */
 | 
						|
	(intobjargproc) Quaternion_ass_item,		/* sq_ass_item */
 | 
						|
	(intintobjargproc) Quaternion_ass_slice,	/* sq_ass_slice */
 | 
						|
};
 | 
						|
static PyNumberMethods Quaternion_NumMethods = {
 | 
						|
	(binaryfunc) Quaternion_add,				/* __add__ */
 | 
						|
	(binaryfunc) Quaternion_sub,				/* __sub__ */
 | 
						|
	(binaryfunc) Quaternion_mul,				/* __mul__ */
 | 
						|
	(binaryfunc) 0,								/* __div__ */
 | 
						|
	(binaryfunc) 0,								/* __mod__ */
 | 
						|
	(binaryfunc) 0,								/* __divmod__ */
 | 
						|
	(ternaryfunc) 0,							/* __pow__ */
 | 
						|
	(unaryfunc) 0,								/* __neg__ */
 | 
						|
	(unaryfunc) 0,								/* __pos__ */
 | 
						|
	(unaryfunc) 0,								/* __abs__ */
 | 
						|
	(inquiry) 0,								/* __nonzero__ */
 | 
						|
	(unaryfunc) 0,								/* __invert__ */
 | 
						|
	(binaryfunc) 0,								/* __lshift__ */
 | 
						|
	(binaryfunc) 0,								/* __rshift__ */
 | 
						|
	(binaryfunc) 0,								/* __and__ */
 | 
						|
	(binaryfunc) 0,								/* __xor__ */
 | 
						|
	(binaryfunc) 0,								/* __or__ */
 | 
						|
	(coercion)  Quaternion_coerce,				/* __coerce__ */
 | 
						|
	(unaryfunc) 0,								/* __int__ */
 | 
						|
	(unaryfunc) 0,								/* __long__ */
 | 
						|
	(unaryfunc) 0,								/* __float__ */
 | 
						|
	(unaryfunc) 0,								/* __oct__ */
 | 
						|
	(unaryfunc) 0,								/* __hex__ */
 | 
						|
 | 
						|
};
 | 
						|
//------------------PY_OBECT DEFINITION--------------------------
 | 
						|
PyTypeObject quaternion_Type = {
 | 
						|
	PyObject_HEAD_INIT(NULL) 
 | 
						|
	0,											/*ob_size */
 | 
						|
	"quaternion",								/*tp_name */
 | 
						|
	sizeof(QuaternionObject),					/*tp_basicsize */
 | 
						|
	0,											/*tp_itemsize */
 | 
						|
	(destructor) Quaternion_dealloc,			/*tp_dealloc */
 | 
						|
	(printfunc) 0,								/*tp_print */
 | 
						|
	(getattrfunc) Quaternion_getattr,			/*tp_getattr */
 | 
						|
	(setattrfunc) Quaternion_setattr,			/*tp_setattr */
 | 
						|
	0,											/*tp_compare */
 | 
						|
	(reprfunc) Quaternion_repr,					/*tp_repr */
 | 
						|
	&Quaternion_NumMethods,						/*tp_as_number */
 | 
						|
	&Quaternion_SeqMethods,						/*tp_as_sequence */
 | 
						|
};
 | 
						|
//------------------------newQuaternionObject (internal)-------------
 | 
						|
//creates a new quaternion object
 | 
						|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | 
						|
 (i.e. it was allocated elsewhere by MEM_mallocN())
 | 
						|
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | 
						|
 (i.e. it must be created here with PyMEM_malloc())*/
 | 
						|
PyObject *newQuaternionObject(float *quat, int type)
 | 
						|
{
 | 
						|
	QuaternionObject *self;
 | 
						|
	int x;
 | 
						|
 | 
						|
	quaternion_Type.ob_type = &PyType_Type;
 | 
						|
	self = PyObject_NEW(QuaternionObject, &quaternion_Type);
 | 
						|
	self->data.blend_data = NULL;
 | 
						|
	self->data.py_data = NULL;
 | 
						|
	self->coerced_object = NULL;
 | 
						|
 | 
						|
	if(type == Py_WRAP){
 | 
						|
		self->data.blend_data = quat;
 | 
						|
		self->quat = self->data.blend_data;
 | 
						|
		self->wrapped = Py_WRAP;
 | 
						|
	}else if (type == Py_NEW){
 | 
						|
		self->data.py_data = PyMem_Malloc(4 * sizeof(float));
 | 
						|
		self->quat = self->data.py_data;
 | 
						|
		if(!quat) { //new empty
 | 
						|
			Quaternion_Identity(self);
 | 
						|
		}else{
 | 
						|
			for(x = 0; x < 4; x++){
 | 
						|
				self->quat[x] = quat[x];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		self->wrapped = Py_NEW;
 | 
						|
	}else{ //bad type
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return (PyObject *) EXPP_incr_ret((PyObject *)self);
 | 
						|
}
 |