This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/blender_interface/BlenderFileLoader.cpp
Hans Goudey 5876573e14 Mesh: Move face shade smooth flag to a generic attribute
Currently the shade smooth status for mesh faces is stored as part of
`MPoly::flag`. As described in #95967, this moves that information
to a separate boolean attribute. It also flips its status, so the
attribute is now called `sharp_face`, which mirrors the existing
`sharp_edge` attribute. The attribute doesn't need to be allocated
when all faces are smooth. Forward compatibility is kept until
4.0 like the other mesh refactors.

This will reduce memory bandwidth requirements for some operations,
since the array of booleans uses 12 times less memory than `MPoly`.
It also allows faces to be stored more efficiently in the future, since
the flag is now unused. It's also possible to use generic functions to
process the values. For example, finding whether there is a sharp face
is just `sharp_faces.contains(true)`.

The `shade_smooth` attribute is no longer accessible with geometry nodes.
Since there were dedicated accessor nodes for that data, that shouldn't
be a problem. That's difficult to version automatically since the named
attribute nodes could be used in arbitrary combinations.

**Implementation notes:**
- The attribute and array variables in the code use the `sharp_faces`
  term, to be consistent with the user-facing "sharp faces" wording,
  and to avoid requiring many renames when #101689 is implemented.
- Cycles now accesses smooth face status with the generic attribute,
  to avoid overhead.
- Changing the zero-value from "smooth" to "flat" takes some care to
  make sure defaults are the same.
  - Versioning for the edge mode extrude node is particularly complex.
    New nodes are added by versioning to propagate the attribute in its
    old inverted state.
- A lot of access is still done through the `CustomData` API rather
  than the attribute API because of a few functions. That can be
  cleaned up easily in the future.
- In the future we would benefit from a way to store attributes as a
  single value for when all faces are sharp.

Pull Request: blender/blender#104422
2023-03-08 15:36:18 +01:00

811 lines
23 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
*/
#include "BlenderFileLoader.h"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_global.h"
#include "BKE_object.h"
#include <sstream>
using blender::float3;
using blender::Span;
namespace Freestyle {
BlenderFileLoader::BlenderFileLoader(Render *re, ViewLayer *view_layer, Depsgraph *depsgraph)
{
_re = re;
_depsgraph = depsgraph;
_Scene = nullptr;
_numFacesRead = 0;
#if 0
_minEdgeSize = DBL_MAX;
#endif
_smooth = (view_layer->freestyle_config.flags & FREESTYLE_FACE_SMOOTHNESS_FLAG) != 0;
_pRenderMonitor = nullptr;
}
BlenderFileLoader::~BlenderFileLoader()
{
_Scene = nullptr;
}
NodeGroup *BlenderFileLoader::Load()
{
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "\n=== Importing triangular meshes into Blender ===" << endl;
}
// creation of the scene root node
_Scene = new NodeGroup;
if (_re->clip_start < 0.0f) {
// Adjust clipping start/end and set up a Z offset when the viewport preview
// is used with the orthographic view. In this case, _re->clip_start is negative,
// while Freestyle assumes that imported mesh data are in the camera coordinate
// system with the view point located at origin [bug #36009].
_z_near = -0.001f;
_z_offset = _re->clip_start + _z_near;
_z_far = -_re->clip_end + _z_offset;
}
else {
_z_near = -_re->clip_start;
_z_far = -_re->clip_end;
_z_offset = 0.0f;
}
int id = 0;
const eEvaluationMode eval_mode = DEG_get_mode(_depsgraph);
DEGObjectIterSettings deg_iter_settings{};
deg_iter_settings.depsgraph = _depsgraph;
deg_iter_settings.flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY |
DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET | DEG_ITER_OBJECT_FLAG_VISIBLE |
DEG_ITER_OBJECT_FLAG_DUPLI;
DEG_OBJECT_ITER_BEGIN (&deg_iter_settings, ob) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
if ((ob->base_flag & (BASE_HOLDOUT | BASE_INDIRECT_ONLY)) ||
(ob->visibility_flag & OB_HOLDOUT)) {
continue;
}
if (!(BKE_object_visibility(ob, eval_mode) & OB_VISIBLE_SELF)) {
continue;
}
/* Evaluated metaballs will appear as mesh objects in the iterator. */
if (ob->type == OB_MBALL) {
continue;
}
Mesh *mesh = BKE_object_to_mesh(nullptr, ob, false);
if (mesh) {
insertShapeNode(ob, mesh, ++id);
BKE_object_to_mesh_clear(ob);
}
}
DEG_OBJECT_ITER_END;
// Return the built scene.
return _Scene;
}
#define CLIPPED_BY_NEAR -1
#define NOT_CLIPPED 0
#define CLIPPED_BY_FAR 1
// check if each vertex of a triangle (V1, V2, V3) is clipped by the near/far plane
// and calculate the number of triangles to be generated by clipping
int BlenderFileLoader::countClippedFaces(float v1[3], float v2[3], float v3[3], int clip[3])
{
float *v[3];
int numClipped, sum, numTris = 0;
v[0] = v1;
v[1] = v2;
v[2] = v3;
numClipped = sum = 0;
for (int i = 0; i < 3; i++) {
if (v[i][2] > _z_near) {
clip[i] = CLIPPED_BY_NEAR;
numClipped++;
}
else if (v[i][2] < _z_far) {
clip[i] = CLIPPED_BY_FAR;
numClipped++;
}
else {
clip[i] = NOT_CLIPPED;
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%d %s\n",
i,
(clip[i] == NOT_CLIPPED) ? "not" : (clip[i] == CLIPPED_BY_NEAR) ? "near" : "far");
}
#endif
sum += clip[i];
}
switch (numClipped) {
case 0:
numTris = 1; // triangle
break;
case 1:
numTris = 2; // tetragon
break;
case 2:
if (sum == 0) {
numTris = 3; // pentagon
}
else {
numTris = 1; // triangle
}
break;
case 3:
if (ELEM(sum, 3, -3)) {
numTris = 0;
}
else {
numTris = 2; // tetragon
}
break;
}
return numTris;
}
// find the intersection point C between the line segment from V1 to V2 and
// a clipping plane at depth Z (i.e., the Z component of C is known, while
// the X and Y components are unknown).
void BlenderFileLoader::clipLine(float v1[3], float v2[3], float c[3], float z)
{
// Order v1 and v2 by Z values to make sure that clipLine(P, Q, c, z)
// and clipLine(Q, P, c, z) gives exactly the same numerical result.
float *p, *q;
if (v1[2] < v2[2]) {
p = v1;
q = v2;
}
else {
p = v2;
q = v1;
}
double d[3];
for (int i = 0; i < 3; i++) {
d[i] = q[i] - p[i];
}
double t = (z - p[2]) / d[2];
c[0] = p[0] + t * d[0];
c[1] = p[1] + t * d[1];
c[2] = z;
}
// clip the triangle (V1, V2, V3) by the near and far clipping plane and
// obtain a set of vertices after the clipping. The number of vertices
// is at most 5.
void BlenderFileLoader::clipTriangle(int numTris,
float triCoords[][3],
float v1[3],
float v2[3],
float v3[3],
float triNormals[][3],
float n1[3],
float n2[3],
float n3[3],
bool edgeMarks[5],
bool em1,
bool em2,
bool em3,
const int clip[3])
{
float *v[3], *n[3];
bool em[3];
int i, j, k;
v[0] = v1;
n[0] = n1;
v[1] = v2;
n[1] = n2;
v[2] = v3;
n[2] = n3;
em[0] = em1; /* edge mark of the edge between v1 and v2 */
em[1] = em2; /* edge mark of the edge between v2 and v3 */
em[2] = em3; /* edge mark of the edge between v3 and v1 */
k = 0;
for (i = 0; i < 3; i++) {
j = (i + 1) % 3;
if (clip[i] == NOT_CLIPPED) {
copy_v3_v3(triCoords[k], v[i]);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
if (clip[j] != NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
else if (clip[i] != clip[j]) {
if (clip[j] == NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
}
else {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
}
BLI_assert(k == 2 + numTris);
(void)numTris; /* Ignored in release builds. */
}
void BlenderFileLoader::addTriangle(struct LoaderState *ls,
float v1[3],
float v2[3],
float v3[3],
float n1[3],
float n2[3],
float n3[3],
bool fm,
bool em1,
bool em2,
bool em3)
{
float *fv[3], *fn[3];
#if 0
float len;
#endif
uint i, j;
IndexedFaceSet::FaceEdgeMark marks = 0;
// initialize the bounding box by the first vertex
if (ls->currentIndex == 0) {
copy_v3_v3(ls->minBBox, v1);
copy_v3_v3(ls->maxBBox, v1);
}
fv[0] = v1;
fn[0] = n1;
fv[1] = v2;
fn[1] = n2;
fv[2] = v3;
fn[2] = n3;
for (i = 0; i < 3; i++) {
copy_v3_v3(ls->pv, fv[i]);
copy_v3_v3(ls->pn, fn[i]);
// update the bounding box
for (j = 0; j < 3; j++) {
if (ls->minBBox[j] > ls->pv[j]) {
ls->minBBox[j] = ls->pv[j];
}
if (ls->maxBBox[j] < ls->pv[j]) {
ls->maxBBox[j] = ls->pv[j];
}
}
#if 0
len = len_v3v3(fv[i], fv[(i + 1) % 3]);
if (_minEdgeSize > len) {
_minEdgeSize = len;
}
#endif
*ls->pvi = ls->currentIndex;
*ls->pni = ls->currentIndex;
*ls->pmi = ls->currentMIndex;
ls->currentIndex += 3;
ls->pv += 3;
ls->pn += 3;
ls->pvi++;
ls->pni++;
ls->pmi++;
}
if (fm) {
marks |= IndexedFaceSet::FACE_MARK;
}
if (em1) {
marks |= IndexedFaceSet::EDGE_MARK_V1V2;
}
if (em2) {
marks |= IndexedFaceSet::EDGE_MARK_V2V3;
}
if (em3) {
marks |= IndexedFaceSet::EDGE_MARK_V3V1;
}
*(ls->pm++) = marks;
}
// With A, B and P indicating the three vertices of a given triangle, returns:
// 1 if points A and B are in the same position in the 3D space;
// 2 if the distance between point P and line segment AB is zero; and
// zero otherwise.
int BlenderFileLoader::testDegenerateTriangle(float v1[3], float v2[3], float v3[3])
{
const float eps = 1.0e-6;
const float eps_sq = eps * eps;
#if 0
float area = area_tri_v3(v1, v2, v3);
bool verbose = (area < 1.0e-6);
#endif
if (equals_v3v3(v1, v2) || equals_v3v3(v2, v3) || equals_v3v3(v1, v3)) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 1\n");
}
#endif
return 1;
}
if (dist_squared_to_line_segment_v3(v1, v2, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v2, v1, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v3, v1, v2) < eps_sq) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 2\n");
}
#endif
return 2;
}
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 0\n");
}
#endif
return 0;
}
static bool testEdgeMark(Mesh *me, const FreestyleEdge *fed, const MLoopTri *lt, int i)
{
const Span<MEdge> edges = me->edges();
const Span<MLoop> loops = me->loops();
const MLoop *mloop = &loops[lt->tri[i]];
const MLoop *mloop_next = &loops[lt->tri[(i + 1) % 3]];
const MEdge *edge = &edges[mloop->e];
if (!ELEM(mloop_next->v, edge->v1, edge->v2)) {
/* Not an edge in the original mesh before triangulation. */
return false;
}
return (fed[mloop->e].flag & FREESTYLE_EDGE_MARK) != 0;
}
void BlenderFileLoader::insertShapeNode(Object *ob, Mesh *me, int id)
{
using namespace blender;
char *name = ob->id.name + 2;
const Span<float3> vert_positions = me->vert_positions();
const Span<MPoly> mesh_polys = me->polys();
const Span<MLoop> mesh_loops = me->loops();
// Compute loop triangles
int tottri = poly_to_tri_count(me->totpoly, me->totloop);
MLoopTri *mlooptri = (MLoopTri *)MEM_malloc_arrayN(tottri, sizeof(*mlooptri), __func__);
BKE_mesh_recalc_looptri(mesh_loops.data(),
mesh_polys.data(),
reinterpret_cast<const float(*)[3]>(vert_positions.data()),
me->totloop,
me->totpoly,
mlooptri);
// Compute loop normals
BKE_mesh_calc_normals_split(me);
const float(*lnors)[3] = nullptr;
if (CustomData_has_layer(&me->ldata, CD_NORMAL)) {
lnors = (const float(*)[3])CustomData_get_layer(&me->ldata, CD_NORMAL);
}
// Get other mesh data
const FreestyleEdge *fed = (const FreestyleEdge *)CustomData_get_layer(&me->edata,
CD_FREESTYLE_EDGE);
const FreestyleFace *ffa = (const FreestyleFace *)CustomData_get_layer(&me->pdata,
CD_FREESTYLE_FACE);
// Compute view matrix
Object *ob_camera_eval = DEG_get_evaluated_object(_depsgraph, RE_GetCamera(_re));
float viewinv[4][4], viewmat[4][4];
RE_GetCameraModelMatrix(_re, ob_camera_eval, viewinv);
invert_m4_m4(viewmat, viewinv);
// Compute matrix including camera transform
float obmat[4][4], nmat[4][4];
mul_m4_m4m4(obmat, viewmat, ob->object_to_world);
invert_m4_m4(nmat, obmat);
transpose_m4(nmat);
// We count the number of triangles after the clipping by the near and far view
// planes is applied (NOTE: mesh vertices are in the camera coordinate system).
uint numFaces = 0;
float v1[3], v2[3], v3[3];
float n1[3], n2[3], n3[3], facenormal[3];
int clip[3];
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
copy_v3_v3(v1, vert_positions[mesh_loops[lt->tri[0]].v]);
copy_v3_v3(v2, vert_positions[mesh_loops[lt->tri[1]].v]);
copy_v3_v3(v3, vert_positions[mesh_loops[lt->tri[2]].v]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
numFaces += countClippedFaces(v1, v2, v3, clip);
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "numFaces " << numFaces << endl;
}
#endif
if (numFaces == 0) {
MEM_freeN(mlooptri);
return;
}
// We allocate memory for the meshes to be imported
NodeGroup *currentMesh = new NodeGroup;
NodeShape *shape = new NodeShape;
uint vSize = 3 * 3 * numFaces;
float *vertices = new float[vSize];
uint nSize = vSize;
float *normals = new float[nSize];
uint *numVertexPerFaces = new uint[numFaces];
vector<Material *> meshMaterials;
vector<FrsMaterial> meshFrsMaterials;
IndexedFaceSet::TRIANGLES_STYLE *faceStyle = new IndexedFaceSet::TRIANGLES_STYLE[numFaces];
uint i;
for (i = 0; i < numFaces; i++) {
faceStyle[i] = IndexedFaceSet::TRIANGLES;
numVertexPerFaces[i] = 3;
}
IndexedFaceSet::FaceEdgeMark *faceEdgeMarks = new IndexedFaceSet::FaceEdgeMark[numFaces];
uint viSize = 3 * numFaces;
uint *VIndices = new uint[viSize];
uint niSize = viSize;
uint *NIndices = new uint[niSize];
uint *MIndices = new uint[viSize]; // Material Indices
struct LoaderState ls;
ls.pv = vertices;
ls.pn = normals;
ls.pm = faceEdgeMarks;
ls.pvi = VIndices;
ls.pni = NIndices;
ls.pmi = MIndices;
ls.currentIndex = 0;
ls.currentMIndex = 0;
FrsMaterial tmpMat;
const bke::AttributeAccessor attributes = me->attributes();
const VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
const VArray<bool> sharp_faces = attributes.lookup_or_default<bool>(
"sharp_face", ATTR_DOMAIN_FACE, false);
// We parse the vlak nodes again and import meshes while applying the clipping
// by the near and far view planes.
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
Material *mat = BKE_object_material_get(ob, material_indices[lt->poly] + 1);
copy_v3_v3(v1, vert_positions[mesh_loops[lt->tri[0]].v]);
copy_v3_v3(v2, vert_positions[mesh_loops[lt->tri[1]].v]);
copy_v3_v3(v3, vert_positions[mesh_loops[lt->tri[2]].v]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
if (_smooth && (!sharp_faces[lt->poly]) && lnors) {
copy_v3_v3(n1, lnors[lt->tri[0]]);
copy_v3_v3(n2, lnors[lt->tri[1]]);
copy_v3_v3(n3, lnors[lt->tri[2]]);
mul_mat3_m4_v3(nmat, n1);
mul_mat3_m4_v3(nmat, n2);
mul_mat3_m4_v3(nmat, n3);
normalize_v3(n1);
normalize_v3(n2);
normalize_v3(n3);
}
else {
normal_tri_v3(facenormal, v3, v2, v1);
copy_v3_v3(n1, facenormal);
copy_v3_v3(n2, facenormal);
copy_v3_v3(n3, facenormal);
}
uint numTris = countClippedFaces(v1, v2, v3, clip);
if (numTris == 0) {
continue;
}
bool fm = (ffa) ? (ffa[lt->poly].flag & FREESTYLE_FACE_MARK) != 0 : false;
bool em1 = false, em2 = false, em3 = false;
if (fed) {
em1 = testEdgeMark(me, fed, lt, 0);
em2 = testEdgeMark(me, fed, lt, 1);
em3 = testEdgeMark(me, fed, lt, 2);
}
if (mat) {
tmpMat.setLine(mat->line_col[0], mat->line_col[1], mat->line_col[2], mat->line_col[3]);
tmpMat.setDiffuse(mat->r, mat->g, mat->b, 1.0f);
tmpMat.setSpecular(mat->specr, mat->specg, mat->specb, 1.0f);
tmpMat.setShininess(128.0f);
tmpMat.setPriority(mat->line_priority);
}
if (meshMaterials.empty()) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
shape->setFrsMaterial(tmpMat);
}
else {
// find if the Blender material is already in the list
uint i = 0;
bool found = false;
for (vector<Material *>::iterator it = meshMaterials.begin(), itend = meshMaterials.end();
it != itend;
it++, i++) {
if (*it == mat) {
ls.currentMIndex = i;
found = true;
break;
}
}
if (!found) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
ls.currentMIndex = meshFrsMaterials.size() - 1;
}
}
float triCoords[5][3], triNormals[5][3];
bool edgeMarks[5]; // edgeMarks[i] is for the edge between i-th and (i+1)-th vertices
clipTriangle(
numTris, triCoords, v1, v2, v3, triNormals, n1, n2, n3, edgeMarks, em1, em2, em3, clip);
for (i = 0; i < numTris; i++) {
addTriangle(&ls,
triCoords[0],
triCoords[i + 1],
triCoords[i + 2],
triNormals[0],
triNormals[i + 1],
triNormals[i + 2],
fm,
(i == 0) ? edgeMarks[0] : false,
edgeMarks[i + 1],
(i == numTris - 1) ? edgeMarks[i + 2] : false);
_numFacesRead++;
}
}
MEM_freeN(mlooptri);
// We might have several times the same vertex. We want a clean
// shape with no real-vertex. Here, we are making a cleaning pass.
float *cleanVertices = nullptr;
uint cvSize;
uint *cleanVIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
vertices, vSize, VIndices, viSize, &cleanVertices, &cvSize, &cleanVIndices);
float *cleanNormals = nullptr;
uint cnSize;
uint *cleanNIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
normals, nSize, NIndices, niSize, &cleanNormals, &cnSize, &cleanNIndices);
// format materials array
FrsMaterial **marray = new FrsMaterial *[meshFrsMaterials.size()];
uint mindex = 0;
for (vector<FrsMaterial>::iterator m = meshFrsMaterials.begin(), mend = meshFrsMaterials.end();
m != mend;
++m) {
marray[mindex] = new FrsMaterial(*m);
++mindex;
}
// deallocates memory:
delete[] vertices;
delete[] normals;
delete[] VIndices;
delete[] NIndices;
// Fix for degenerated triangles
// A degenerate triangle is a triangle such that
// 1) A and B are in the same position in the 3D space; or
// 2) the distance between point P and line segment AB is zero.
// Only those degenerate triangles in the second form are resolved here
// by adding a small offset to P, whereas those in the first form are
// addressed later in WShape::MakeFace().
vector<detri_t> detriList;
Vec3r zero(0.0, 0.0, 0.0);
uint vi0, vi1, vi2;
for (i = 0; i < viSize; i += 3) {
detri_t detri;
vi0 = cleanVIndices[i];
vi1 = cleanVIndices[i + 1];
vi2 = cleanVIndices[i + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (v0 == v1 || v0 == v2 || v1 == v2) {
continue; // do nothing for now
}
if (GeomUtils::distPointSegment<Vec3r>(v0, v1, v2) < 1.0e-6) {
detri.viP = vi0;
detri.viA = vi1;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v1, v0, v2) < 1.0e-6) {
detri.viP = vi1;
detri.viA = vi0;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v2, v0, v1) < 1.0e-6) {
detri.viP = vi2;
detri.viA = vi0;
detri.viB = vi1;
}
else {
continue;
}
detri.v = zero;
detri.n = 0;
for (uint j = 0; j < viSize; j += 3) {
if (i == j) {
continue;
}
vi0 = cleanVIndices[j];
vi1 = cleanVIndices[j + 1];
vi2 = cleanVIndices[j + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (detri.viP == vi0 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v2 - v0);
detri.n++;
}
else if (detri.viP == vi0 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v1 - v0);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v2 - v1);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v0 - v1);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v1 - v2);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v0 - v2);
detri.n++;
}
}
if (detri.n > 0) {
detri.v.normalizeSafe();
}
detriList.push_back(detri);
}
if (!detriList.empty()) {
vector<detri_t>::iterator v;
for (v = detriList.begin(); v != detriList.end(); v++) {
detri_t detri = (*v);
if (detri.n == 0) {
cleanVertices[detri.viP] = cleanVertices[detri.viA];
cleanVertices[detri.viP + 1] = cleanVertices[detri.viA + 1];
cleanVertices[detri.viP + 2] = cleanVertices[detri.viA + 2];
}
else if (detri.v.norm() > 0.0) {
cleanVertices[detri.viP] += 1.0e-5 * detri.v.x();
cleanVertices[detri.viP + 1] += 1.0e-5 * detri.v.y();
cleanVertices[detri.viP + 2] += 1.0e-5 * detri.v.z();
}
}
if (G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: Object %s contains %lu degenerated triangle%s (strokes may be incorrect)\n",
name,
ulong(detriList.size()),
(detriList.size() > 1) ? "s" : "");
}
}
// Create the IndexedFaceSet with the retrieved attributes
IndexedFaceSet *rep;
rep = new IndexedFaceSet(cleanVertices,
cvSize,
cleanNormals,
cnSize,
marray,
meshFrsMaterials.size(),
nullptr,
0,
numFaces,
numVertexPerFaces,
faceStyle,
faceEdgeMarks,
cleanVIndices,
viSize,
cleanNIndices,
niSize,
MIndices,
viSize,
nullptr,
0,
0);
// sets the id of the rep
rep->setId(Id(id, 0));
rep->setName(ob->id.name + 2);
rep->setLibraryPath(ob->id.lib ? ob->id.lib->filepath : "");
const BBox<Vec3r> bbox = BBox<Vec3r>(Vec3r(ls.minBBox[0], ls.minBBox[1], ls.minBBox[2]),
Vec3r(ls.maxBBox[0], ls.maxBBox[1], ls.maxBBox[2]));
rep->setBBox(bbox);
shape->AddRep(rep);
currentMesh->AddChild(shape);
_Scene->AddChild(currentMesh);
}
} /* namespace Freestyle */