1165 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1165 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * The Original Code is: all of this file.
 | |
|  *
 | |
|  * Contributor(s): none yet.
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/editors/transform/transform_constraints.c
 | |
|  *  \ingroup edtransform
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "DNA_object_types.h"
 | |
| #include "DNA_scene_types.h"
 | |
| #include "DNA_screen_types.h"
 | |
| #include "DNA_space_types.h"
 | |
| #include "DNA_view3d_types.h"
 | |
| 
 | |
| #include "BIF_glutil.h"
 | |
| 
 | |
| #include "GPU_immediate.h"
 | |
| #include "GPU_matrix.h"
 | |
| #include "GPU_state.h"
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_string.h"
 | |
| #include "BLI_rect.h"
 | |
| 
 | |
| #include "BKE_context.h"
 | |
| 
 | |
| #include "ED_image.h"
 | |
| #include "ED_view3d.h"
 | |
| 
 | |
| #include "BLT_translation.h"
 | |
| 
 | |
| #include "UI_resources.h"
 | |
| 
 | |
| #include "transform.h"
 | |
| 
 | |
| static void drawObjectConstraint(TransInfo *t);
 | |
| 
 | |
| /* ************************** CONSTRAINTS ************************* */
 | |
| static void constraintAutoValues(TransInfo *t, float vec[3])
 | |
| {
 | |
| 	int mode = t->con.mode;
 | |
| 	if (mode & CON_APPLY) {
 | |
| 		float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
 | |
| 
 | |
| 		if ((mode & CON_AXIS0) == 0) {
 | |
| 			vec[0] = nval;
 | |
| 		}
 | |
| 		if ((mode & CON_AXIS1) == 0) {
 | |
| 			vec[1] = nval;
 | |
| 		}
 | |
| 		if ((mode & CON_AXIS2) == 0) {
 | |
| 			vec[2] = nval;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void constraintNumInput(TransInfo *t, float vec[3])
 | |
| {
 | |
| 	int mode = t->con.mode;
 | |
| 	if (mode & CON_APPLY) {
 | |
| 		float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
 | |
| 
 | |
| 		const int dims = getConstraintSpaceDimension(t);
 | |
| 		if (dims == 2) {
 | |
| 			int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | |
| 			if (axis == (CON_AXIS0 | CON_AXIS1)) {
 | |
| 				/* vec[0] = vec[0]; */ /* same */
 | |
| 				/* vec[1] = vec[1]; */ /* same */
 | |
| 				vec[2] = nval;
 | |
| 			}
 | |
| 			else if (axis == (CON_AXIS1 | CON_AXIS2)) {
 | |
| 				vec[2] = vec[1];
 | |
| 				vec[1] = vec[0];
 | |
| 				vec[0] = nval;
 | |
| 			}
 | |
| 			else if (axis == (CON_AXIS0 | CON_AXIS2)) {
 | |
| 				/* vec[0] = vec[0]; */  /* same */
 | |
| 				vec[2] = vec[1];
 | |
| 				vec[1] = nval;
 | |
| 			}
 | |
| 		}
 | |
| 		else if (dims == 1) {
 | |
| 			if (mode & CON_AXIS0) {
 | |
| 				/* vec[0] = vec[0]; */ /* same */
 | |
| 				vec[1] = nval;
 | |
| 				vec[2] = nval;
 | |
| 			}
 | |
| 			else if (mode & CON_AXIS1) {
 | |
| 				vec[1] = vec[0];
 | |
| 				vec[0] = nval;
 | |
| 				vec[2] = nval;
 | |
| 			}
 | |
| 			else if (mode & CON_AXIS2) {
 | |
| 				vec[2] = vec[0];
 | |
| 				vec[0] = nval;
 | |
| 				vec[1] = nval;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3])
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	mul_m3_v3(t->con.imtx, vec);
 | |
| 
 | |
| 	snapGridIncrement(t, vec);
 | |
| 
 | |
| 	if (t->flag & T_NULL_ONE) {
 | |
| 		if (!(t->con.mode & CON_AXIS0))
 | |
| 			vec[0] = 1.0f;
 | |
| 
 | |
| 		if (!(t->con.mode & CON_AXIS1))
 | |
| 			vec[1] = 1.0f;
 | |
| 
 | |
| 		if (!(t->con.mode & CON_AXIS2))
 | |
| 			vec[2] = 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	if (applyNumInput(&t->num, vec)) {
 | |
| 		constraintNumInput(t, vec);
 | |
| 		removeAspectRatio(t, vec);
 | |
| 	}
 | |
| 
 | |
| 	/* autovalues is operator param, use that directly but not if snapping is forced */
 | |
| 	if (t->flag & T_AUTOVALUES && (t->tsnap.status & SNAP_FORCED) == 0) {
 | |
| 		copy_v3_v3(vec, t->auto_values);
 | |
| 		constraintAutoValues(t, vec);
 | |
| 		/* inverse transformation at the end */
 | |
| 	}
 | |
| 
 | |
| 	if (t->con.mode & CON_AXIS0) {
 | |
| 		pvec[i++] = vec[0];
 | |
| 	}
 | |
| 	if (t->con.mode & CON_AXIS1) {
 | |
| 		pvec[i++] = vec[1];
 | |
| 	}
 | |
| 	if (t->con.mode & CON_AXIS2) {
 | |
| 		pvec[i++] = vec[2];
 | |
| 	}
 | |
| 
 | |
| 	mul_m3_v3(t->con.mtx, vec);
 | |
| }
 | |
| 
 | |
| static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3])
 | |
| {
 | |
| 	if (t->spacetype == SPACE_VIEW3D) {
 | |
| 		// View3D *v3d = t->sa->spacedata.first;
 | |
| 		const float min_dist = 1.0f;  /* v3d->near; */
 | |
| 		float dir[3];
 | |
| 		float l;
 | |
| 
 | |
| 		sub_v3_v3v3(dir, t_con_center, t->viewinv[3]);
 | |
| 		if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) {
 | |
| 			negate_v3(dir);
 | |
| 		}
 | |
| 		project_v3_v3v3(dir, dir, t->viewinv[2]);
 | |
| 
 | |
| 		l = len_v3(dir);
 | |
| 
 | |
| 		if (l < min_dist) {
 | |
| 			float diff[3];
 | |
| 			normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l);
 | |
| 			sub_v3_v3(t_con_center, diff);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Axis calculation taking the view into account, correcting view-aligned axis.
 | |
|  */
 | |
| static void axisProjection(const TransInfo *t, const float axis[3], const float in[3], float out[3])
 | |
| {
 | |
| 	float norm[3], vec[3], factor, angle;
 | |
| 	float t_con_center[3];
 | |
| 
 | |
| 	if (is_zero_v3(in)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	copy_v3_v3(t_con_center, t->center_global);
 | |
| 
 | |
| 	/* checks for center being too close to the view center */
 | |
| 	viewAxisCorrectCenter(t, t_con_center);
 | |
| 
 | |
| 	angle = fabsf(angle_v3v3(axis, t->viewinv[2]));
 | |
| 	if (angle > (float)M_PI_2) {
 | |
| 		angle = (float)M_PI - angle;
 | |
| 	}
 | |
| 
 | |
| 	/* For when view is parallel to constraint... will cause NaNs otherwise
 | |
| 	 * So we take vertical motion in 3D space and apply it to the
 | |
| 	 * constraint axis. Nice for camera grab + MMB */
 | |
| 	if (angle < DEG2RADF(5.0f)) {
 | |
| 		project_v3_v3v3(vec, in, t->viewinv[1]);
 | |
| 		factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
 | |
| 		/* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */
 | |
| 		if (factor < 0.0f) factor *= -factor;
 | |
| 		else factor *= factor;
 | |
| 
 | |
| 		/* -factor makes move down going backwards */
 | |
| 		normalize_v3_v3_length(out, axis, -factor);
 | |
| 	}
 | |
| 	else {
 | |
| 		float v[3], i1[3], i2[3];
 | |
| 		float v2[3], v4[3];
 | |
| 		float norm_center[3];
 | |
| 		float plane[3];
 | |
| 
 | |
| 		getViewVector(t, t_con_center, norm_center);
 | |
| 		cross_v3_v3v3(plane, norm_center, axis);
 | |
| 
 | |
| 		project_v3_v3v3(vec, in, plane);
 | |
| 		sub_v3_v3v3(vec, in, vec);
 | |
| 
 | |
| 		add_v3_v3v3(v, vec, t_con_center);
 | |
| 		getViewVector(t, v, norm);
 | |
| 
 | |
| 		/* give arbitrary large value if projection is impossible */
 | |
| 		factor = dot_v3v3(axis, norm);
 | |
| 		if (1.0f - fabsf(factor) < 0.0002f) {
 | |
| 			copy_v3_v3(out, axis);
 | |
| 			if (factor > 0) {
 | |
| 				mul_v3_fl(out, 1000000000.0f);
 | |
| 			}
 | |
| 			else {
 | |
| 				mul_v3_fl(out, -1000000000.0f);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			add_v3_v3v3(v2, t_con_center, axis);
 | |
| 			add_v3_v3v3(v4, v, norm);
 | |
| 
 | |
| 			isect_line_line_v3(t_con_center, v2, v, v4, i1, i2);
 | |
| 
 | |
| 			sub_v3_v3v3(v, i2, v);
 | |
| 
 | |
| 			sub_v3_v3v3(out, i1, t_con_center);
 | |
| 
 | |
| 			/* possible some values become nan when
 | |
| 			 * viewpoint and object are both zero */
 | |
| 			if (!isfinite(out[0])) out[0] = 0.0f;
 | |
| 			if (!isfinite(out[1])) out[1] = 0.0f;
 | |
| 			if (!isfinite(out[2])) out[2] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return true if the 2x axis are both aligned when projected into the view.
 | |
|  * In this case, we can't usefully project the cursor onto the plane.
 | |
|  */
 | |
| static bool isPlaneProjectionViewAligned(const TransInfo *t)
 | |
| {
 | |
| 	const float eps = 0.001f;
 | |
| 	const float *constraint_vector[2];
 | |
| 	int n = 0;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		if (t->con.mode & (CON_AXIS0 << i)) {
 | |
| 			constraint_vector[n++] = t->con.mtx[i];
 | |
| 			if (n == 2) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	BLI_assert(n == 2);
 | |
| 
 | |
| 	float view_to_plane[3], plane_normal[3];
 | |
| 
 | |
| 	getViewVector(t, t->center_global, view_to_plane);
 | |
| 
 | |
| 	cross_v3_v3v3(plane_normal, constraint_vector[0], constraint_vector[1]);
 | |
| 	normalize_v3(plane_normal);
 | |
| 
 | |
| 	float factor = dot_v3v3(plane_normal, view_to_plane);
 | |
| 	return fabsf(factor) < eps;
 | |
| }
 | |
| 
 | |
| static void planeProjection(const TransInfo *t, const float in[3], float out[3])
 | |
| {
 | |
| 	float vec[3], factor, norm[3];
 | |
| 
 | |
| 	add_v3_v3v3(vec, in, t->center_global);
 | |
| 	getViewVector(t, vec, norm);
 | |
| 
 | |
| 	sub_v3_v3v3(vec, out, in);
 | |
| 
 | |
| 	factor = dot_v3v3(vec, norm);
 | |
| 	if (fabsf(factor) <= 0.001f) {
 | |
| 		return; /* prevent divide by zero */
 | |
| 	}
 | |
| 	factor = dot_v3v3(vec, vec) / factor;
 | |
| 
 | |
| 	copy_v3_v3(vec, norm);
 | |
| 	mul_v3_fl(vec, factor);
 | |
| 
 | |
| 	add_v3_v3v3(out, in, vec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic callback for constant spatial constraints applied to linear motion
 | |
|  *
 | |
|  * The IN vector in projected into the constrained space and then further
 | |
|  * projected along the view vector.
 | |
|  * (in perspective mode, the view vector is relative to the position on screen)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void applyAxisConstraintVec(
 | |
|         TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, const float in[3], float out[3], float pvec[3])
 | |
| {
 | |
| 	copy_v3_v3(out, in);
 | |
| 	if (!td && t->con.mode & CON_APPLY) {
 | |
| 		mul_m3_v3(t->con.pmtx, out);
 | |
| 
 | |
| 		// With snap, a projection is alright, no need to correct for view alignment
 | |
| 		if (!validSnap(t)) {
 | |
| 			const int dims = getConstraintSpaceDimension(t);
 | |
| 			if (dims == 2) {
 | |
| 				if (!is_zero_v3(out)) {
 | |
| 					if (!isPlaneProjectionViewAligned(t)) {
 | |
| 						planeProjection(t, in, out);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if (dims == 1) {
 | |
| 				float c[3];
 | |
| 
 | |
| 				if (t->con.mode & CON_AXIS0) {
 | |
| 					copy_v3_v3(c, t->con.mtx[0]);
 | |
| 				}
 | |
| 				else if (t->con.mode & CON_AXIS1) {
 | |
| 					copy_v3_v3(c, t->con.mtx[1]);
 | |
| 				}
 | |
| 				else if (t->con.mode & CON_AXIS2) {
 | |
| 					copy_v3_v3(c, t->con.mtx[2]);
 | |
| 				}
 | |
| 				axisProjection(t, c, in, out);
 | |
| 			}
 | |
| 		}
 | |
| 		postConstraintChecks(t, out, pvec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic callback for object based spatial constraints applied to linear motion
 | |
|  *
 | |
|  * At first, the following is applied to the first data in the array
 | |
|  * The IN vector in projected into the constrained space and then further
 | |
|  * projected along the view vector.
 | |
|  * (in perspective mode, the view vector is relative to the position on screen)
 | |
|  *
 | |
|  * Further down, that vector is mapped to each data's space.
 | |
|  */
 | |
| 
 | |
| static void applyObjectConstraintVec(
 | |
|         TransInfo *t, TransDataContainer *tc, TransData *td, const float in[3], float out[3], float pvec[3])
 | |
| {
 | |
| 	copy_v3_v3(out, in);
 | |
| 	if (t->con.mode & CON_APPLY) {
 | |
| 		if (!td) {
 | |
| 			mul_m3_v3(t->con.pmtx, out);
 | |
| 
 | |
| 			const int dims = getConstraintSpaceDimension(t);
 | |
| 			if (dims == 2) {
 | |
| 				if (!is_zero_v3(out)) {
 | |
| 					if (!isPlaneProjectionViewAligned(t)) {
 | |
| 						planeProjection(t, in, out);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if (dims == 1) {
 | |
| 				float c[3];
 | |
| 
 | |
| 				if (t->con.mode & CON_AXIS0) {
 | |
| 					copy_v3_v3(c, t->con.mtx[0]);
 | |
| 				}
 | |
| 				else if (t->con.mode & CON_AXIS1) {
 | |
| 					copy_v3_v3(c, t->con.mtx[1]);
 | |
| 				}
 | |
| 				else if (t->con.mode & CON_AXIS2) {
 | |
| 					copy_v3_v3(c, t->con.mtx[2]);
 | |
| 				}
 | |
| 				axisProjection(t, c, in, out);
 | |
| 			}
 | |
| 			postConstraintChecks(t, out, pvec);
 | |
| 			copy_v3_v3(out, pvec);
 | |
| 		}
 | |
| 		else {
 | |
| 			int i = 0;
 | |
| 
 | |
| 			out[0] = out[1] = out[2] = 0.0f;
 | |
| 			if (t->con.mode & CON_AXIS0) {
 | |
| 				out[0] = in[i++];
 | |
| 			}
 | |
| 			if (t->con.mode & CON_AXIS1) {
 | |
| 				out[1] = in[i++];
 | |
| 			}
 | |
| 			if (t->con.mode & CON_AXIS2) {
 | |
| 				out[2] = in[i++];
 | |
| 			}
 | |
| 
 | |
| 			mul_m3_v3(td->axismtx, out);
 | |
| 			if (t->flag & T_EDIT) {
 | |
| 				mul_m3_v3(tc->mat3_unit, out);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic callback for constant spatial constraints applied to resize motion
 | |
|  */
 | |
| 
 | |
| static void applyAxisConstraintSize(
 | |
|         TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float smat[3][3])
 | |
| {
 | |
| 	if (!td && t->con.mode & CON_APPLY) {
 | |
| 		float tmat[3][3];
 | |
| 
 | |
| 		if (!(t->con.mode & CON_AXIS0)) {
 | |
| 			smat[0][0] = 1.0f;
 | |
| 		}
 | |
| 		if (!(t->con.mode & CON_AXIS1)) {
 | |
| 			smat[1][1] = 1.0f;
 | |
| 		}
 | |
| 		if (!(t->con.mode & CON_AXIS2)) {
 | |
| 			smat[2][2] = 1.0f;
 | |
| 		}
 | |
| 
 | |
| 		mul_m3_m3m3(tmat, smat, t->con.imtx);
 | |
| 		mul_m3_m3m3(smat, t->con.mtx, tmat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback for object based spatial constraints applied to resize motion
 | |
|  */
 | |
| 
 | |
| static void applyObjectConstraintSize(
 | |
|         TransInfo *t, TransDataContainer *tc, TransData *td, float smat[3][3])
 | |
| {
 | |
| 	if (td && t->con.mode & CON_APPLY) {
 | |
| 		float tmat[3][3];
 | |
| 		float imat[3][3];
 | |
| 
 | |
| 		invert_m3_m3(imat, td->axismtx);
 | |
| 
 | |
| 		if (!(t->con.mode & CON_AXIS0)) {
 | |
| 			smat[0][0] = 1.0f;
 | |
| 		}
 | |
| 		if (!(t->con.mode & CON_AXIS1)) {
 | |
| 			smat[1][1] = 1.0f;
 | |
| 		}
 | |
| 		if (!(t->con.mode & CON_AXIS2)) {
 | |
| 			smat[2][2] = 1.0f;
 | |
| 		}
 | |
| 
 | |
| 		mul_m3_m3m3(tmat, smat, imat);
 | |
| 		if (t->flag & T_EDIT) {
 | |
| 			mul_m3_m3m3(smat, tc->mat3_unit, smat);
 | |
| 		}
 | |
| 		mul_m3_m3m3(smat, td->axismtx, tmat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic callback for constant spatial constraints applied to rotations
 | |
|  *
 | |
|  * The rotation axis is copied into VEC.
 | |
|  *
 | |
|  * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | |
|  * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | |
|  *
 | |
|  * The following only applies when CON_NOFLIP is not set.
 | |
|  * The vector is then modified to always point away from the screen (in global space)
 | |
|  * This insures that the rotation is always logically following the mouse.
 | |
|  * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | |
|  */
 | |
| 
 | |
| static void applyAxisConstraintRot(TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float vec[3], float *angle)
 | |
| {
 | |
| 	if (!td && t->con.mode & CON_APPLY) {
 | |
| 		int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | |
| 
 | |
| 		switch (mode) {
 | |
| 			case CON_AXIS0:
 | |
| 			case (CON_AXIS1 | CON_AXIS2):
 | |
| 				copy_v3_v3(vec, t->con.mtx[0]);
 | |
| 				break;
 | |
| 			case CON_AXIS1:
 | |
| 			case (CON_AXIS0 | CON_AXIS2):
 | |
| 				copy_v3_v3(vec, t->con.mtx[1]);
 | |
| 				break;
 | |
| 			case CON_AXIS2:
 | |
| 			case (CON_AXIS0 | CON_AXIS1):
 | |
| 				copy_v3_v3(vec, t->con.mtx[2]);
 | |
| 				break;
 | |
| 		}
 | |
| 		/* don't flip axis if asked to or if num input */
 | |
| 		if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | |
| 			if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | |
| 				*angle = -(*angle);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback for object based spatial constraints applied to rotations
 | |
|  *
 | |
|  * The rotation axis is copied into VEC.
 | |
|  *
 | |
|  * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | |
|  * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | |
|  *
 | |
|  * The following only applies when CON_NOFLIP is not set.
 | |
|  * The vector is then modified to always point away from the screen (in global space)
 | |
|  * This insures that the rotation is always logically following the mouse.
 | |
|  * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | |
|  */
 | |
| 
 | |
| static void applyObjectConstraintRot(
 | |
|         TransInfo *t, TransDataContainer *tc, TransData *td, float vec[3], float *angle)
 | |
| {
 | |
| 	if (t->con.mode & CON_APPLY) {
 | |
| 		int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
 | |
| 		float tmp_axismtx[3][3];
 | |
| 		float (*axismtx)[3];
 | |
| 
 | |
| 		/* on setup call, use first object */
 | |
| 		if (td == NULL) {
 | |
| 			td = TRANS_DATA_CONTAINER_FIRST_OK(t)->data;
 | |
| 		}
 | |
| 
 | |
| 		if (t->flag & T_EDIT) {
 | |
| 			mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
 | |
| 			axismtx = tmp_axismtx;
 | |
| 		}
 | |
| 		else {
 | |
| 			axismtx = td->axismtx;
 | |
| 		}
 | |
| 
 | |
| 		switch (mode) {
 | |
| 			case CON_AXIS0:
 | |
| 			case (CON_AXIS1 | CON_AXIS2):
 | |
| 				copy_v3_v3(vec, axismtx[0]);
 | |
| 				break;
 | |
| 			case CON_AXIS1:
 | |
| 			case (CON_AXIS0 | CON_AXIS2):
 | |
| 				copy_v3_v3(vec, axismtx[1]);
 | |
| 				break;
 | |
| 			case CON_AXIS2:
 | |
| 			case (CON_AXIS0 | CON_AXIS1):
 | |
| 				copy_v3_v3(vec, axismtx[2]);
 | |
| 				break;
 | |
| 		}
 | |
| 		if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | |
| 			if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | |
| 				*angle = -(*angle);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*--------------------- INTERNAL SETUP CALLS ------------------*/
 | |
| 
 | |
| void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[])
 | |
| {
 | |
| 	BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
 | |
| 	copy_m3_m3(t->con.mtx, space);
 | |
| 	t->con.mode = mode;
 | |
| 	getConstraintMatrix(t);
 | |
| 
 | |
| 	startConstraint(t);
 | |
| 
 | |
| 	t->con.drawExtra = NULL;
 | |
| 	t->con.applyVec = applyAxisConstraintVec;
 | |
| 	t->con.applySize = applyAxisConstraintSize;
 | |
| 	t->con.applyRot = applyAxisConstraintRot;
 | |
| 	t->redraw = TREDRAW_HARD;
 | |
| }
 | |
| 
 | |
| /* applies individual td->axismtx constraints */
 | |
| void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
 | |
| {
 | |
| 	TransDataContainer *tc = t->data_container;
 | |
| 	if (t->data_len_all == 1) {
 | |
| 		float axismtx[3][3];
 | |
| 		if (t->flag & T_EDIT) {
 | |
| 			mul_m3_m3m3(axismtx, tc->mat3_unit, tc->data->axismtx);
 | |
| 		}
 | |
| 		else {
 | |
| 			copy_m3_m3(axismtx, tc->data->axismtx);
 | |
| 		}
 | |
| 
 | |
| 		setConstraint(t, axismtx, mode, text);
 | |
| 	}
 | |
| 	else {
 | |
| 		BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
 | |
| 		copy_m3_m3(t->con.mtx, tc->data->axismtx);
 | |
| 		t->con.mode = mode;
 | |
| 		getConstraintMatrix(t);
 | |
| 
 | |
| 		startConstraint(t);
 | |
| 
 | |
| 		t->con.drawExtra = drawObjectConstraint;
 | |
| 		t->con.applyVec = applyObjectConstraintVec;
 | |
| 		t->con.applySize = applyObjectConstraintSize;
 | |
| 		t->con.applyRot = applyObjectConstraintRot;
 | |
| 		t->redraw = TREDRAW_HARD;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void setLocalConstraint(TransInfo *t, int mode, const char text[])
 | |
| {
 | |
| 	/* edit-mode now allows local transforms too */
 | |
| 	if (t->flag & T_EDIT) {
 | |
| 		/* Use the active (first) edit object. */
 | |
| 		TransDataContainer *tc = t->data_container;
 | |
| 		setConstraint(t, tc->mat3_unit, mode, text);
 | |
| 	}
 | |
| 	else {
 | |
| 		setAxisMatrixConstraint(t, mode, text);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the constraint according to the user defined orientation
 | |
|  *
 | |
|  * ftext is a format string passed to BLI_snprintf. It will add the name of
 | |
|  * the orientation where %s is (logically).
 | |
|  */
 | |
| void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[])
 | |
| {
 | |
| 	char text[256];
 | |
| 
 | |
| 	switch (orientation) {
 | |
| 		case V3D_MANIP_GLOBAL:
 | |
| 		{
 | |
| 			float mtx[3][3];
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("global"));
 | |
| 			unit_m3(mtx);
 | |
| 			setConstraint(t, mtx, mode, text);
 | |
| 			break;
 | |
| 		}
 | |
| 		case V3D_MANIP_LOCAL:
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("local"));
 | |
| 			setLocalConstraint(t, mode, text);
 | |
| 			break;
 | |
| 		case V3D_MANIP_NORMAL:
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("normal"));
 | |
| 			if (checkUseAxisMatrix(t)) {
 | |
| 				setAxisMatrixConstraint(t, mode, text);
 | |
| 			}
 | |
| 			else {
 | |
| 				setConstraint(t, t->spacemtx, mode, text);
 | |
| 			}
 | |
| 			break;
 | |
| 		case V3D_MANIP_VIEW:
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("view"));
 | |
| 			setConstraint(t, t->spacemtx, mode, text);
 | |
| 			break;
 | |
| 		case V3D_MANIP_CURSOR:
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("cursor"));
 | |
| 			setConstraint(t, t->spacemtx, mode, text);
 | |
| 			break;
 | |
| 		case V3D_MANIP_GIMBAL:
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, IFACE_("gimbal"));
 | |
| 			setConstraint(t, t->spacemtx, mode, text);
 | |
| 			break;
 | |
| 		case V3D_MANIP_CUSTOM:
 | |
| 		{
 | |
| 			char orientation_str[128];
 | |
| 			BLI_snprintf(orientation_str, sizeof(orientation_str), "%s \"%s\"",
 | |
| 			             IFACE_("custom orientation"), t->custom_orientation->name);
 | |
| 			BLI_snprintf(text, sizeof(text), ftext, orientation_str);
 | |
| 			setConstraint(t, t->spacemtx, mode, text);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t->con.orientation = orientation;
 | |
| 
 | |
| 	t->con.mode |= CON_USER;
 | |
| }
 | |
| 
 | |
| /*----------------- DRAWING CONSTRAINTS -------------------*/
 | |
| 
 | |
| void drawConstraint(TransInfo *t)
 | |
| {
 | |
| 	TransCon *tc = &(t->con);
 | |
| 
 | |
| 	if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE))
 | |
| 		return;
 | |
| 	if (!(tc->mode & CON_APPLY))
 | |
| 		return;
 | |
| 	if (t->flag & T_NO_CONSTRAINT)
 | |
| 		return;
 | |
| 
 | |
| 	if (tc->drawExtra) {
 | |
| 		tc->drawExtra(t);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (tc->mode & CON_SELECT) {
 | |
| 			float vec[3];
 | |
| 			int depth_test_enabled;
 | |
| 
 | |
| 			convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1]));
 | |
| 			add_v3_v3(vec, t->center_global);
 | |
| 
 | |
| 			drawLine(t, t->center_global, tc->mtx[0], 'X', 0);
 | |
| 			drawLine(t, t->center_global, tc->mtx[1], 'Y', 0);
 | |
| 			drawLine(t, t->center_global, tc->mtx[2], 'Z', 0);
 | |
| 
 | |
| 			depth_test_enabled = GPU_depth_test_enabled();
 | |
| 			if (depth_test_enabled)
 | |
| 				GPU_depth_test(false);
 | |
| 
 | |
| 			const uint shdr_pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT);
 | |
| 
 | |
| 			immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR);
 | |
| 
 | |
| 			float viewport_size[4];
 | |
| 			GPU_viewport_size_get_f(viewport_size);
 | |
| 			immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
 | |
| 
 | |
| 			immUniform1i("colors_len", 0);  /* "simple" mode */
 | |
| 			immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f);
 | |
| 			immUniform1f("dash_width", 2.0f);
 | |
| 			immUniform1f("dash_factor", 0.5f);
 | |
| 
 | |
| 			immBegin(GWN_PRIM_LINES, 2);
 | |
| 			immVertex3fv(shdr_pos, t->center_global);
 | |
| 			immVertex3fv(shdr_pos, vec);
 | |
| 			immEnd();
 | |
| 
 | |
| 			immUnbindProgram();
 | |
| 
 | |
| 			if (depth_test_enabled)
 | |
| 				GPU_depth_test(true);
 | |
| 		}
 | |
| 
 | |
| 		if (tc->mode & CON_AXIS0) {
 | |
| 			drawLine(t, t->center_global, tc->mtx[0], 'X', DRAWLIGHT);
 | |
| 		}
 | |
| 		if (tc->mode & CON_AXIS1) {
 | |
| 			drawLine(t, t->center_global, tc->mtx[1], 'Y', DRAWLIGHT);
 | |
| 		}
 | |
| 		if (tc->mode & CON_AXIS2) {
 | |
| 			drawLine(t, t->center_global, tc->mtx[2], 'Z', DRAWLIGHT);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called from drawview.c, as an extra per-window draw option */
 | |
| void drawPropCircle(const struct bContext *C, TransInfo *t)
 | |
| {
 | |
| 	if (t->flag & T_PROP_EDIT) {
 | |
| 		RegionView3D *rv3d = CTX_wm_region_view3d(C);
 | |
| 		float tmat[4][4], imat[4][4];
 | |
| 		int depth_test_enabled;
 | |
| 
 | |
| 		if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) {
 | |
| 			copy_m4_m4(tmat, rv3d->viewmat);
 | |
| 			invert_m4_m4(imat, tmat);
 | |
| 		}
 | |
| 		else {
 | |
| 			unit_m4(tmat);
 | |
| 			unit_m4(imat);
 | |
| 		}
 | |
| 
 | |
| 		GPU_matrix_push();
 | |
| 
 | |
| 		if (t->spacetype == SPACE_VIEW3D) {
 | |
| 			/* pass */
 | |
| 		}
 | |
| 		else if (t->spacetype == SPACE_IMAGE) {
 | |
| 			GPU_matrix_scale_2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]);
 | |
| 		}
 | |
| 		else if (ELEM(t->spacetype, SPACE_IPO, SPACE_ACTION)) {
 | |
| 			/* only scale y */
 | |
| 			rcti *mask = &t->ar->v2d.mask;
 | |
| 			rctf *datamask = &t->ar->v2d.cur;
 | |
| 			float xsize = BLI_rctf_size_x(datamask);
 | |
| 			float ysize = BLI_rctf_size_y(datamask);
 | |
| 			float xmask = BLI_rcti_size_x(mask);
 | |
| 			float ymask = BLI_rcti_size_y(mask);
 | |
| 			GPU_matrix_scale_2f(1.0f, (ysize / xsize) * (xmask / ymask));
 | |
| 		}
 | |
| 
 | |
| 		depth_test_enabled = GPU_depth_test_enabled();
 | |
| 		if (depth_test_enabled)
 | |
| 			GPU_depth_test(false);
 | |
| 
 | |
| 		uint pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT);
 | |
| 
 | |
| 		immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
 | |
| 		immUniformThemeColor(TH_GRID);
 | |
| 
 | |
| 		set_inverted_drawing(1);
 | |
| 		imm_drawcircball(t->center_global, t->prop_size, imat, pos);
 | |
| 		set_inverted_drawing(0);
 | |
| 
 | |
| 		immUnbindProgram();
 | |
| 
 | |
| 		if (depth_test_enabled)
 | |
| 			GPU_depth_test(true);
 | |
| 
 | |
| 		GPU_matrix_pop();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drawObjectConstraint(TransInfo *t)
 | |
| {
 | |
| 	/* Draw the first one lighter because that's the one who controls the others.
 | |
| 	 * Meaning the transformation is projected on that one and just copied on the others
 | |
| 	 * constraint space.
 | |
| 	 * In a nutshell, the object with light axis is controlled by the user and the others follow.
 | |
| 	 * Without drawing the first light, users have little clue what they are doing.
 | |
| 	 */
 | |
| 	short options = DRAWLIGHT;
 | |
| 	int i;
 | |
| 	float tmp_axismtx[3][3];
 | |
| 
 | |
| 	FOREACH_TRANS_DATA_CONTAINER (t, tc) {
 | |
| 		TransData *td = tc->data;
 | |
| 		for (i = 0; i < tc->data_len; i++, td++) {
 | |
| 			float co[3];
 | |
| 			float (*axismtx)[3];
 | |
| 
 | |
| 			if (t->flag & T_PROP_EDIT) {
 | |
| 				/* we're sorted, so skip the rest */
 | |
| 				if (td->factor == 0.0f) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (t->options & CTX_GPENCIL_STROKES) {
 | |
| 				/* only draw a constraint line for one point, otherwise we can't see anything */
 | |
| 				if ((options & DRAWLIGHT) == 0) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (t->flag & T_OBJECT) {
 | |
| 				copy_v3_v3(co, td->ob->obmat[3]);
 | |
| 				axismtx = td->axismtx;
 | |
| 			}
 | |
| 			else if (t->flag & T_EDIT) {
 | |
| 				mul_v3_m4v3(co, tc->mat, td->center);
 | |
| 
 | |
| 				mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
 | |
| 				axismtx = tmp_axismtx;
 | |
| 			}
 | |
| 			else if (t->flag & T_POSE) {
 | |
| 				mul_v3_m4v3(co, tc->mat, td->center);
 | |
| 				axismtx = td->axismtx;
 | |
| 			}
 | |
| 			else {
 | |
| 				copy_v3_v3(co, td->center);
 | |
| 				axismtx = td->axismtx;
 | |
| 			}
 | |
| 
 | |
| 			if (t->con.mode & CON_AXIS0) {
 | |
| 				drawLine(t, co, axismtx[0], 'X', options);
 | |
| 			}
 | |
| 			if (t->con.mode & CON_AXIS1) {
 | |
| 				drawLine(t, co, axismtx[1], 'Y', options);
 | |
| 			}
 | |
| 			if (t->con.mode & CON_AXIS2) {
 | |
| 				drawLine(t, co, axismtx[2], 'Z', options);
 | |
| 			}
 | |
| 			options &= ~DRAWLIGHT;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*--------------------- START / STOP CONSTRAINTS ---------------------- */
 | |
| 
 | |
| void startConstraint(TransInfo *t)
 | |
| {
 | |
| 	t->con.mode |= CON_APPLY;
 | |
| 	*t->con.text = ' ';
 | |
| 	t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max);
 | |
| }
 | |
| 
 | |
| void stopConstraint(TransInfo *t)
 | |
| {
 | |
| 	t->con.mode &= ~(CON_APPLY | CON_SELECT);
 | |
| 	*t->con.text = '\0';
 | |
| 	t->num.idx_max = t->idx_max;
 | |
| }
 | |
| 
 | |
| void getConstraintMatrix(TransInfo *t)
 | |
| {
 | |
| 	float mat[3][3];
 | |
| 	invert_m3_m3(t->con.imtx, t->con.mtx);
 | |
| 	unit_m3(t->con.pmtx);
 | |
| 
 | |
| 	if (!(t->con.mode & CON_AXIS0)) {
 | |
| 		zero_v3(t->con.pmtx[0]);
 | |
| 	}
 | |
| 
 | |
| 	if (!(t->con.mode & CON_AXIS1)) {
 | |
| 		zero_v3(t->con.pmtx[1]);
 | |
| 	}
 | |
| 
 | |
| 	if (!(t->con.mode & CON_AXIS2)) {
 | |
| 		zero_v3(t->con.pmtx[2]);
 | |
| 	}
 | |
| 
 | |
| 	mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx);
 | |
| 	mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat);
 | |
| }
 | |
| 
 | |
| /*------------------------- MMB Select -------------------------------*/
 | |
| 
 | |
| void initSelectConstraint(TransInfo *t, float mtx[3][3])
 | |
| {
 | |
| 	copy_m3_m3(t->con.mtx, mtx);
 | |
| 	t->con.mode |= CON_APPLY;
 | |
| 	t->con.mode |= CON_SELECT;
 | |
| 
 | |
| 	setNearestAxis(t);
 | |
| 	t->con.drawExtra = NULL;
 | |
| 	t->con.applyVec = applyAxisConstraintVec;
 | |
| 	t->con.applySize = applyAxisConstraintSize;
 | |
| 	t->con.applyRot = applyAxisConstraintRot;
 | |
| }
 | |
| 
 | |
| void selectConstraint(TransInfo *t)
 | |
| {
 | |
| 	if (t->con.mode & CON_SELECT) {
 | |
| 		setNearestAxis(t);
 | |
| 		startConstraint(t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void postSelectConstraint(TransInfo *t)
 | |
| {
 | |
| 	if (!(t->con.mode & CON_SELECT))
 | |
| 		return;
 | |
| 
 | |
| 	t->con.mode &= ~CON_AXIS0;
 | |
| 	t->con.mode &= ~CON_AXIS1;
 | |
| 	t->con.mode &= ~CON_AXIS2;
 | |
| 	t->con.mode &= ~CON_SELECT;
 | |
| 
 | |
| 	setNearestAxis(t);
 | |
| 
 | |
| 	startConstraint(t);
 | |
| 	t->redraw = TREDRAW_HARD;
 | |
| }
 | |
| 
 | |
| static void setNearestAxis2d(TransInfo *t)
 | |
| {
 | |
| 	/* no correction needed... just use whichever one is lower */
 | |
| 	if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) {
 | |
| 		t->con.mode |= CON_AXIS1;
 | |
| 		BLI_strncpy(t->con.text, IFACE_(" along Y axis"), sizeof(t->con.text));
 | |
| 	}
 | |
| 	else {
 | |
| 		t->con.mode |= CON_AXIS0;
 | |
| 		BLI_strncpy(t->con.text, IFACE_(" along X axis"), sizeof(t->con.text));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void setNearestAxis3d(TransInfo *t)
 | |
| {
 | |
| 	float zfac;
 | |
| 	float mvec[3], proj[3];
 | |
| 	float len[3];
 | |
| 	int i;
 | |
| 
 | |
| 	/* calculate mouse movement */
 | |
| 	mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
 | |
| 	mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
 | |
| 	mvec[2] = 0.0f;
 | |
| 
 | |
| 	/* we need to correct axis length for the current zoomlevel of view,
 | |
| 	 * this to prevent projected values to be clipped behind the camera
 | |
| 	 * and to overflow the short integers.
 | |
| 	 * The formula used is a bit stupid, just a simplification of the subtraction
 | |
| 	 * of two 2D points 30 pixels apart (that's the last factor in the formula) after
 | |
| 	 * projecting them with ED_view3d_win_to_delta and then get the length of that vector.
 | |
| 	 */
 | |
| 	zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global);
 | |
| 	zfac = len_v3(t->persinv[0]) * 2.0f / t->ar->winx * zfac * 30.0f;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		float axis[3], axis_2d[2];
 | |
| 
 | |
| 		copy_v3_v3(axis, t->con.mtx[i]);
 | |
| 
 | |
| 		mul_v3_fl(axis, zfac);
 | |
| 		/* now we can project to get window coordinate */
 | |
| 		add_v3_v3(axis, t->center_global);
 | |
| 		projectFloatView(t, axis, axis_2d);
 | |
| 
 | |
| 		sub_v2_v2v2(axis, axis_2d, t->center2d);
 | |
| 		axis[2] = 0.0f;
 | |
| 
 | |
| 		if (normalize_v3(axis) > 1e-3f) {
 | |
| 			project_v3_v3v3(proj, mvec, axis);
 | |
| 			sub_v3_v3v3(axis, mvec, proj);
 | |
| 			len[i] = normalize_v3(axis);
 | |
| 		}
 | |
| 		else {
 | |
| 			len[i] = 1e10f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (len[0] <= len[1] && len[0] <= len[2]) {
 | |
| 		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | |
| 			t->con.mode |= (CON_AXIS1 | CON_AXIS2);
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s X axis"), t->spacename);
 | |
| 		}
 | |
| 		else {
 | |
| 			t->con.mode |= CON_AXIS0;
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s X axis"), t->spacename);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (len[1] <= len[0] && len[1] <= len[2]) {
 | |
| 		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | |
| 			t->con.mode |= (CON_AXIS0 | CON_AXIS2);
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Y axis"), t->spacename);
 | |
| 		}
 | |
| 		else {
 | |
| 			t->con.mode |= CON_AXIS1;
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Y axis"), t->spacename);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (len[2] <= len[1] && len[2] <= len[0]) {
 | |
| 		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | |
| 			t->con.mode |= (CON_AXIS0 | CON_AXIS1);
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Z axis"), t->spacename);
 | |
| 		}
 | |
| 		else {
 | |
| 			t->con.mode |= CON_AXIS2;
 | |
| 			BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Z axis"), t->spacename);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void setNearestAxis(TransInfo *t)
 | |
| {
 | |
| 	/* clear any prior constraint flags */
 | |
| 	t->con.mode &= ~CON_AXIS0;
 | |
| 	t->con.mode &= ~CON_AXIS1;
 | |
| 	t->con.mode &= ~CON_AXIS2;
 | |
| 
 | |
| 	/* constraint setting - depends on spacetype */
 | |
| 	if (t->spacetype == SPACE_VIEW3D) {
 | |
| 		/* 3d-view */
 | |
| 		setNearestAxis3d(t);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* assume that this means a 2D-Editor */
 | |
| 		setNearestAxis2d(t);
 | |
| 	}
 | |
| 
 | |
| 	getConstraintMatrix(t);
 | |
| }
 | |
| 
 | |
| /*-------------- HELPER FUNCTIONS ----------------*/
 | |
| 
 | |
| char constraintModeToChar(TransInfo *t)
 | |
| {
 | |
| 	if ((t->con.mode & CON_APPLY) == 0) {
 | |
| 		return '\0';
 | |
| 	}
 | |
| 	switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) {
 | |
| 		case (CON_AXIS0):
 | |
| 		case (CON_AXIS1 | CON_AXIS2):
 | |
| 			return 'X';
 | |
| 		case (CON_AXIS1):
 | |
| 		case (CON_AXIS0 | CON_AXIS2):
 | |
| 			return 'Y';
 | |
| 		case (CON_AXIS2):
 | |
| 		case (CON_AXIS0 | CON_AXIS1):
 | |
| 			return 'Z';
 | |
| 		default:
 | |
| 			return '\0';
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| bool isLockConstraint(TransInfo *t)
 | |
| {
 | |
| 	int mode = t->con.mode;
 | |
| 
 | |
| 	if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the dimension of the constraint space.
 | |
|  *
 | |
|  * For that reason, the flags always needs to be set to properly evaluate here,
 | |
|  * even if they aren't actually used in the callback function. (Which could happen
 | |
|  * for weird constraints not yet designed. Along a path for example.)
 | |
|  */
 | |
| 
 | |
| int getConstraintSpaceDimension(TransInfo *t)
 | |
| {
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (t->con.mode & CON_AXIS0)
 | |
| 		n++;
 | |
| 
 | |
| 	if (t->con.mode & CON_AXIS1)
 | |
| 		n++;
 | |
| 
 | |
| 	if (t->con.mode & CON_AXIS2)
 | |
| 		n++;
 | |
| 
 | |
| 	return n;
 | |
| /*
 | |
|  * Someone willing to do it cryptically could do the following instead:
 | |
|  *
 | |
|  * return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | |
|  *
 | |
|  * Based on the assumptions that the axis flags are one after the other and start at 1
 | |
|  */
 | |
| }
 |