1260 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1260 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version. The Blender
 | |
|  * Foundation also sells licenses for use in proprietary software under
 | |
|  * the Blender License.  See http://www.blender.org/BL/ for information
 | |
|  * about this.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * 
 | |
|  * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
 | |
|  *
 | |
|  * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_blenlib.h"
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_arithb.h"
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| char Vector_Zero_doc[] = "() - set all values in the vector to 0";
 | |
| char Vector_Normalize_doc[] = "() - normalize the vector";
 | |
| char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
 | |
| char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
 | |
| char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
 | |
| char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
 | |
| char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
 | |
| char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis";
 | |
| char Vector_copy_doc[] = "() - return a copy of the vector";
 | |
| /*-----------------------METHOD DEFINITIONS ----------------------*/
 | |
| struct PyMethodDef Vector_methods[] = {
 | |
| 	{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
 | |
| 	{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
 | |
| 	{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
 | |
| 	{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
 | |
| 	{"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
 | |
| 	{"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | |
| 	{"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| /*-----------------------------METHODS----------------------------
 | |
|   --------------------------Vector.toPoint()----------------------
 | |
|   create a new point object to represent this vector */
 | |
| PyObject *Vector_toPoint(VectorObject * self)
 | |
| {
 | |
| 	float coord[3];
 | |
| 	int i;
 | |
| 
 | |
| 	if(self->size < 2 || self->size > 3) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
 | |
| 	} 
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		coord[i] = self->vec[i];
 | |
| 	}
 | |
| 	
 | |
| 	return newPointObject(coord, self->size, Py_NEW);
 | |
| }
 | |
| /*----------------------------Vector.zero() ----------------------
 | |
|   set the vector data to 0,0,0 */
 | |
| PyObject *Vector_Zero(VectorObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	for(i = 0; i < self->size; i++) {
 | |
| 		self->vec[i] = 0.0f;
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| /*----------------------------Vector.normalize() -----------------
 | |
|   normalize the vector data to a unit vector */
 | |
| PyObject *Vector_Normalize(VectorObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	float norm = 0.0f;
 | |
| 
 | |
| 	for(i = 0; i < self->size; i++) {
 | |
| 		norm += self->vec[i] * self->vec[i];
 | |
| 	}
 | |
| 	norm = (float) sqrt(norm);
 | |
| 	for(i = 0; i < self->size; i++) {
 | |
| 		self->vec[i] /= norm;
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------Vector.resize2D() ------------------
 | |
|   resize the vector to x,y */
 | |
| PyObject *Vector_Resize2D(VectorObject * self)
 | |
| {
 | |
| 	if(self->wrapped==Py_WRAP)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
 | |
| 
 | |
| 	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 2));
 | |
| 	if(self->vec == NULL)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize2d(): problem allocating pointer space\n\n");
 | |
| 	
 | |
| 	self->size = 2;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| /*----------------------------Vector.resize3D() ------------------
 | |
|   resize the vector to x,y,z */
 | |
| PyObject *Vector_Resize3D(VectorObject * self)
 | |
| {
 | |
| 	if (self->wrapped==Py_WRAP)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
 | |
| 
 | |
| 	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 3));
 | |
| 	if(self->vec == NULL)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize3d(): problem allocating pointer space\n\n");
 | |
| 	
 | |
| 	if(self->size == 2)
 | |
| 		self->vec[2] = 0.0f;
 | |
| 	
 | |
| 	self->size = 3;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| /*----------------------------Vector.resize4D() ------------------
 | |
|   resize the vector to x,y,z,w */
 | |
| PyObject *Vector_Resize4D(VectorObject * self)
 | |
| {
 | |
| 	if(self->wrapped==Py_WRAP)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
 | |
| 
 | |
| 	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 4));
 | |
| 	if(self->vec == NULL)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize4d(): problem allocating pointer space\n\n");
 | |
| 	
 | |
| 	if(self->size == 2){
 | |
| 		self->vec[2] = 0.0f;
 | |
| 		self->vec[3] = 1.0f;
 | |
| 	}else if(self->size == 3){
 | |
| 		self->vec[3] = 1.0f;
 | |
| 	}
 | |
| 	self->size = 4;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| /*----------------------------Vector.toTrackQuat(track, up) ----------------------
 | |
|   extract a quaternion from the vector and the track and up axis */
 | |
| PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
 | |
| {
 | |
| 	float vec[3];
 | |
| 	char *strack, *sup;
 | |
| 	short track = 2, up = 1;
 | |
| 
 | |
| 	if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) {
 | |
| 		return EXPP_ReturnPyObjError( PyExc_TypeError, 
 | |
| 			"expected optional two strings\n" );
 | |
| 	}
 | |
| 	if (self->size != 3) {
 | |
| 		return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" );
 | |
| 	}
 | |
| 
 | |
| 	if (strack) {
 | |
| 		if (strlen(strack) == 2) {
 | |
| 			if (strack[0] == '-') {
 | |
| 				switch(strack[1]) {
 | |
| 					case 'X':
 | |
| 					case 'x':
 | |
| 						track = 3;
 | |
| 						break;
 | |
| 					case 'Y':
 | |
| 					case 'y':
 | |
| 						track = 4;
 | |
| 						break;
 | |
| 					case 'z':
 | |
| 					case 'Z':
 | |
| 						track = 5;
 | |
| 						break;
 | |
| 					default:
 | |
| 						return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 										  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | |
| 			}
 | |
| 		}
 | |
| 		else if (strlen(strack) == 1) {
 | |
| 			switch(strack[0]) {
 | |
| 			case '-':
 | |
| 			case 'X':
 | |
| 			case 'x':
 | |
| 				track = 0;
 | |
| 				break;
 | |
| 			case 'Y':
 | |
| 			case 'y':
 | |
| 				track = 1;
 | |
| 				break;
 | |
| 			case 'z':
 | |
| 			case 'Z':
 | |
| 				track = 2;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 							  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sup) {
 | |
| 		if (strlen(sup) == 1) {
 | |
| 			switch(*sup) {
 | |
| 			case 'X':
 | |
| 			case 'x':
 | |
| 				up = 0;
 | |
| 				break;
 | |
| 			case 'Y':
 | |
| 			case 'y':
 | |
| 				up = 1;
 | |
| 				break;
 | |
| 			case 'z':
 | |
| 			case 'Z':
 | |
| 				up = 2;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 								  "only X, Y or Z for up axis\n" );
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 							  "only X, Y or Z for up axis\n" );
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (track == up) {
 | |
| 			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | |
| 						      "Can't have the same axis for track and up\n" );
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 		flip vector around, since vectoquat expect a vector from target to tracking object 
 | |
| 		and the python function expects the inverse (a vector to the target).
 | |
| 	*/
 | |
| 	vec[0] = -self->vec[0];
 | |
| 	vec[1] = -self->vec[1];
 | |
| 	vec[2] = -self->vec[2];
 | |
| 
 | |
| 	return newQuaternionObject(vectoquat(vec, track, up), Py_NEW);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*----------------------------Vector.copy() --------------------------------------
 | |
|   return a copy of the vector */
 | |
| PyObject *Vector_copy(VectorObject * self)
 | |
| {
 | |
| 	return newVectorObject(self->vec, self->size, Py_NEW);
 | |
| }
 | |
| 
 | |
| /*----------------------------dealloc()(internal) ----------------
 | |
|   free the py_object */
 | |
| static void Vector_dealloc(VectorObject * self)
 | |
| {
 | |
| 	/* only free non wrapped */
 | |
| 	if(self->wrapped != Py_WRAP){
 | |
| 		PyMem_Free(self->vec);
 | |
| 	}
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| 
 | |
| /*----------------------------print object (internal)-------------
 | |
|   print the object to screen */
 | |
| static PyObject *Vector_repr(VectorObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	BLI_strncpy(str,"[",1024);
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		if(i < (self->size - 1)){
 | |
| 			sprintf(buffer, "%.6f, ", self->vec[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f", self->vec[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 	strcat(str, "](vector)");
 | |
| 
 | |
| 	return PyString_FromString(str);
 | |
| }
 | |
| /*---------------------SEQUENCE PROTOCOLS------------------------
 | |
|   ----------------------------len(object)------------------------
 | |
|   sequence length*/
 | |
| static int Vector_len(VectorObject * self)
 | |
| {
 | |
| 	return self->size;
 | |
| }
 | |
| /*----------------------------object[]---------------------------
 | |
|   sequence accessor (get)*/
 | |
| static PyObject *Vector_item(VectorObject * self, int i)
 | |
| {
 | |
| 	if(i < 0 || i >= self->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | |
| 		"vector[index]: out of range\n");
 | |
| 
 | |
| 	return PyFloat_FromDouble(self->vec[i]);
 | |
| 
 | |
| }
 | |
| /*----------------------------object[]-------------------------
 | |
|   sequence accessor (set)*/
 | |
| static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	
 | |
| 	if(!(PyNumber_Check(ob))) { /* parsed item not a number */
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"vector[index] = x: index argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(i < 0 || i >= self->size){
 | |
| 		return EXPP_ReturnIntError(PyExc_IndexError,
 | |
| 			"vector[index] = x: assignment index out of range\n");
 | |
| 	}
 | |
| 	self->vec[i] = (float)PyFloat_AsDouble(ob);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (get) */
 | |
| static PyObject *Vector_slice(VectorObject * self, int begin, int end)
 | |
| {
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->size);
 | |
| 	CLAMP(end, 0, self->size);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				PyFloat_FromDouble(self->vec[count]));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (set) */
 | |
| static int Vector_ass_slice(VectorObject * self, int begin, int end,
 | |
| 			     PyObject * seq)
 | |
| {
 | |
| 	int i, y, size = 0;
 | |
| 	float vec[4];
 | |
| 	PyObject *v;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->size);
 | |
| 	CLAMP(end, 0, self->size);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	size = PySequence_Length(seq);
 | |
| 	if(size != (end - begin)){
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"vector[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		v = PySequence_GetItem(seq, i);
 | |
| 		if (v == NULL) { /* Failed to read sequence */
 | |
| 			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 				"vector[begin:end] = []: unable to read sequence\n");
 | |
| 		}
 | |
| 		
 | |
| 		if(!PyNumber_Check(v)) { /* parsed item not a number */
 | |
| 			Py_DECREF(v);
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"vector[begin:end] = []: sequence argument not a number\n");
 | |
| 		}
 | |
| 
 | |
| 		vec[i] = (float)PyFloat_AsDouble(v);
 | |
| 		Py_DECREF(v);
 | |
| 	}
 | |
| 	/*parsed well - now set in vector*/
 | |
| 	for(y = 0; y < size; y++){
 | |
| 		self->vec[begin + y] = vec[y];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| /*------------------------NUMERIC PROTOCOLS----------------------
 | |
|   ------------------------obj + obj------------------------------
 | |
|   addition*/
 | |
| static PyObject *Vector_add(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i;
 | |
| 	float vec[4];
 | |
| 
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	
 | |
| 	if VectorObject_Check(v1)
 | |
| 		vec1= (VectorObject *)v1;
 | |
| 	
 | |
| 	if VectorObject_Check(v2)
 | |
| 		vec2= (VectorObject *)v2;
 | |
| 	
 | |
| 	/* make sure v1 is always the vector */
 | |
| 	if (vec1 && vec2 ) {
 | |
| 		/*VECTOR + VECTOR*/
 | |
| 		if(vec1->size != vec2->size)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector addition: vectors must have the same dimensions for this operation\n");
 | |
| 		
 | |
| 		for(i = 0; i < vec1->size; i++) {
 | |
| 			vec[i] = vec1->vec[i] +	vec2->vec[i];
 | |
| 		}
 | |
| 		return newVectorObject(vec, vec1->size, Py_NEW);
 | |
| 	}
 | |
| 	
 | |
| 	if(PointObject_Check(v2)){  /*VECTOR + POINT*/
 | |
| 		/*Point translation*/
 | |
| 		PointObject *pt = (PointObject*)v2;
 | |
| 		
 | |
| 		if(pt->size == vec1->size){
 | |
| 			for(i = 0; i < vec1->size; i++){
 | |
| 				vec[i] = vec1->vec[i] + pt->coord[i];
 | |
| 			}
 | |
| 		}else{
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Vector addition: arguments are the wrong size....\n");
 | |
| 		}
 | |
| 		return newPointObject(vec, vec1->size, Py_NEW);
 | |
| 	}
 | |
| 	
 | |
| 	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector addition: arguments not valid for this operation....\n");
 | |
| }
 | |
| 
 | |
| /*  ------------------------obj += obj------------------------------
 | |
|   addition in place */
 | |
| static PyObject *Vector_iadd(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	
 | |
| 	if VectorObject_Check(v1)
 | |
| 		vec1= (VectorObject *)v1;
 | |
| 	
 | |
| 	if VectorObject_Check(v2)
 | |
| 		vec2= (VectorObject *)v2;
 | |
| 	
 | |
| 	/* make sure v1 is always the vector */
 | |
| 	if (vec1 && vec2 ) {
 | |
| 		/*VECTOR + VECTOR*/
 | |
| 		if(vec1->size != vec2->size)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector addition: vectors must have the same dimensions for this operation\n");
 | |
| 		
 | |
| 		for(i = 0; i < vec1->size; i++) {
 | |
| 			vec1->vec[i] +=	vec2->vec[i];
 | |
| 		}
 | |
| 		Py_INCREF( v1 );
 | |
| 		return v1;
 | |
| 	}
 | |
| 	
 | |
| 	if(PointObject_Check(v2)){  /*VECTOR + POINT*/
 | |
| 		/*Point translation*/
 | |
| 		PointObject *pt = (PointObject*)v2;
 | |
| 		
 | |
| 		if(pt->size == vec1->size){
 | |
| 			for(i = 0; i < vec1->size; i++){
 | |
| 				vec1->vec[i] += pt->coord[i];
 | |
| 			}
 | |
| 		}else{
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Vector addition: arguments are the wrong size....\n");
 | |
| 		}
 | |
| 		Py_INCREF( v1 );
 | |
| 		return v1;
 | |
| 	}
 | |
| 	
 | |
| 	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector addition: arguments not valid for this operation....\n");
 | |
| }
 | |
| 
 | |
| /*------------------------obj - obj------------------------------
 | |
|   subtraction*/
 | |
| static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i;
 | |
| 	float vec[4];
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 
 | |
| 	if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector subtraction: arguments not valid for this operation....\n");
 | |
| 	
 | |
| 	vec1 = (VectorObject*)v1;
 | |
| 	vec2 = (VectorObject*)v2;
 | |
| 	
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | |
| 	
 | |
| 	for(i = 0; i < vec1->size; i++) {
 | |
| 		vec[i] = vec1->vec[i] -	vec2->vec[i];
 | |
| 	}
 | |
| 
 | |
| 	return newVectorObject(vec, vec1->size, Py_NEW);
 | |
| }
 | |
| 
 | |
| /*------------------------obj -= obj------------------------------
 | |
|   subtraction*/
 | |
| static PyObject *Vector_isub(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i, size;
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 
 | |
| 	if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector subtraction: arguments not valid for this operation....\n");
 | |
| 	
 | |
| 	vec1 = (VectorObject*)v1;
 | |
| 	vec2 = (VectorObject*)v2;
 | |
| 	
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | |
| 
 | |
| 	size = vec1->size;
 | |
| 	for(i = 0; i < vec1->size; i++) {
 | |
| 		vec1->vec[i] = vec1->vec[i] -	vec2->vec[i];
 | |
| 	}
 | |
| 
 | |
| 	Py_INCREF( v1 );
 | |
| 	return v1;
 | |
| }
 | |
| 
 | |
| /*------------------------obj * obj------------------------------
 | |
|   mulplication*/
 | |
| static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	
 | |
| 	if VectorObject_Check(v1)
 | |
| 		vec1= (VectorObject *)v1;
 | |
| 	
 | |
| 	if VectorObject_Check(v2)
 | |
| 		vec2= (VectorObject *)v2;
 | |
| 	
 | |
| 	/* make sure v1 is always the vector */
 | |
| 	if (vec1 && vec2 ) {
 | |
| 		int i;
 | |
| 		double dot = 0.0f;
 | |
| 		
 | |
| 		if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector multiplication: vectors must have the same dimensions for this operation\n");
 | |
| 		
 | |
| 		/*dot product*/
 | |
| 		for(i = 0; i < vec1->size; i++) {
 | |
| 			dot += vec1->vec[i] * vec2->vec[i];
 | |
| 		}
 | |
| 		return PyFloat_FromDouble(dot);
 | |
| 	}
 | |
| 	
 | |
| 	/*swap so vec1 is always the vector */
 | |
| 	if (vec2) {
 | |
| 		vec1= vec2;
 | |
| 		v2= v1;
 | |
| 	}
 | |
| 	
 | |
| 	if (PyNumber_Check(v2)) {
 | |
| 		/* VEC * NUM */
 | |
| 		int i;
 | |
| 		float vec[4];
 | |
| 		float scalar = (float)PyFloat_AsDouble( v2 );
 | |
| 		
 | |
| 		for(i = 0; i < vec1->size; i++) {
 | |
| 			vec[i] = vec1->vec[i] *	scalar;
 | |
| 		}
 | |
| 		return newVectorObject(vec, vec1->size, Py_NEW);
 | |
| 		
 | |
| 	} else if (MatrixObject_Check(v2)) {
 | |
| 		/* VEC * MATRIX */
 | |
| 		if (v1==v2) /* mat*vec, we have swapped the order */
 | |
| 			return column_vector_multiplication((MatrixObject*)v2, vec1);
 | |
| 		else /* vec*mat */
 | |
| 			return row_vector_multiplication(vec1, (MatrixObject*)v2);
 | |
| 	} else if (QuaternionObject_Check(v2)) {
 | |
| 		QuaternionObject *quat = (QuaternionObject*)v2;
 | |
| 		if(vec1->size != 3)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
 | |
| 		
 | |
| 		return quat_rotation((PyObject*)vec1, (PyObject*)quat);
 | |
| 	}
 | |
| 	
 | |
| 	return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 		"Vector multiplication: arguments not acceptable for this operation\n");
 | |
| }
 | |
| 
 | |
| /*------------------------obj *= obj------------------------------
 | |
|   in place mulplication */
 | |
| static PyObject *Vector_imul(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	VectorObject *vec = (VectorObject *)v1;
 | |
| 	int i;
 | |
| 	
 | |
| 	/* only support vec*=float and vec*=mat
 | |
| 	   vec*=vec result is a float so that wont work */
 | |
| 	if (PyNumber_Check(v2)) {
 | |
| 		/* VEC * NUM */
 | |
| 		float scalar = (float)PyFloat_AsDouble( v2 );
 | |
| 		
 | |
| 		for(i = 0; i < vec->size; i++) {
 | |
| 			vec->vec[i] *=	scalar;
 | |
| 		}
 | |
| 		Py_INCREF( v1 );
 | |
| 		return v1;
 | |
| 		
 | |
| 	} else if (MatrixObject_Check(v2)) {
 | |
| 		float vecCopy[4];
 | |
| 		int x,y, size= vec->size;
 | |
| 		MatrixObject *mat= (MatrixObject*)v2;
 | |
| 			
 | |
| 		if(mat->colSize != vec->size){
 | |
| 			if(mat->rowSize == 4 && vec->size != 3){
 | |
| 				return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 					"vector * matrix: matrix column size and the vector size must be the same");
 | |
| 			}else{
 | |
| 				vecCopy[3] = 1.0f;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		for(i = 0; i < size; i++){
 | |
| 			vecCopy[i] = vec->vec[i];
 | |
| 		}
 | |
| 		
 | |
| 		/*muliplication*/
 | |
| 		for(x = 0, i = 0; x < mat->colSize; x++) {
 | |
| 			double dot = 0.0f;
 | |
| 			for(y = 0; y < mat->rowSize; y++) {
 | |
| 				dot += mat->matrix[y][x] * vecCopy[y];
 | |
| 			}
 | |
| 			vec->vec[i++] = (float)dot;
 | |
| 		}
 | |
| 		Py_INCREF( v1 );
 | |
| 		return v1;
 | |
| 	}
 | |
| 	return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 		"Vector multiplication: arguments not acceptable for this operation\n");
 | |
| }
 | |
| 
 | |
| /*------------------------obj / obj------------------------------
 | |
|   divide*/
 | |
| static PyObject *Vector_div(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i, size;
 | |
| 	float vec[4], scalar;
 | |
| 	VectorObject *vec1 = NULL;
 | |
| 	
 | |
| 	if(!VectorObject_Check(v1)) /* not a vector */
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Vector division: Vector must be divided by a float\n");
 | |
| 	
 | |
| 	vec1 = (VectorObject*)v1; /* vector */
 | |
| 	
 | |
| 	if(!PyNumber_Check(v2)) /* parsed item not a number */
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Vector division: Vector must be divided by a float\n");
 | |
| 
 | |
| 	scalar = (float)PyFloat_AsDouble(v2);
 | |
| 	
 | |
| 	if(scalar==0.0) /* not a vector */
 | |
| 		return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, 
 | |
| 			"Vector division: divide by zero error.\n");
 | |
| 	
 | |
| 	size = vec1->size;
 | |
| 	for(i = 0; i < size; i++) {
 | |
| 		vec[i] = vec1->vec[i] /	scalar;
 | |
| 	}
 | |
| 	return newVectorObject(vec, size, Py_NEW);
 | |
| }
 | |
| 
 | |
| /*------------------------obj / obj------------------------------
 | |
|   divide*/
 | |
| static PyObject *Vector_idiv(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int i, size;
 | |
| 	float scalar;
 | |
| 	VectorObject *vec1 = NULL;
 | |
| 	
 | |
| 	/*if(!VectorObject_Check(v1))
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"Vector division: Vector must be divided by a float\n");*/
 | |
| 	
 | |
| 	vec1 = (VectorObject*)v1; /* vector */
 | |
| 	
 | |
| 	if(!PyNumber_Check(v2)) /* parsed item not a number */
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Vector division: Vector must be divided by a float\n");
 | |
| 
 | |
| 	scalar = (float)PyFloat_AsDouble(v2);
 | |
| 	
 | |
| 	if(scalar==0.0) /* not a vector */
 | |
| 		return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, 
 | |
| 			"Vector division: divide by zero error.\n");
 | |
| 	
 | |
| 	size = vec1->size;
 | |
| 	for(i = 0; i < size; i++) {
 | |
| 		vec1->vec[i] /=	scalar;
 | |
| 	}
 | |
| 	Py_INCREF( v1 );
 | |
| 	return v1;
 | |
| }
 | |
| 
 | |
| /*-------------------------- -obj -------------------------------
 | |
|   returns the negative of this object*/
 | |
| static PyObject *Vector_neg(VectorObject *self)
 | |
| {
 | |
| 	int i;
 | |
| 	float vec[4];
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		vec[i] = -self->vec[i];
 | |
| 	}
 | |
| 
 | |
| 	return newVectorObject(vec, self->size, Py_NEW);
 | |
| }
 | |
| /*------------------------coerce(obj, obj)-----------------------
 | |
|   coercion of unknown types to type VectorObject for numeric protocols
 | |
|   Coercion() is called whenever a math operation has 2 operands that
 | |
|  it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | |
|  evaluate some of these operations like: (vector * 2), however, for math
 | |
|  to proceed, the unknown operand must be cast to a type that python math will
 | |
|  understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | |
|  then call vector.multiply(vector, scalar_cast_as_vector)*/
 | |
| 
 | |
| 
 | |
| static int Vector_coerce(PyObject ** v1, PyObject ** v2)
 | |
| {
 | |
| 	/* Just incref, each functon must raise errors for bad types */
 | |
| 	Py_INCREF (*v1);
 | |
| 	Py_INCREF (*v2);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*------------------------tp_doc*/
 | |
| static char VectorObject_doc[] = "This is a wrapper for vector objects.";
 | |
| /*------------------------vec_magnitude_nosqrt (internal) - for comparing only */
 | |
| static double vec_magnitude_nosqrt(float *data, int size)
 | |
| {
 | |
| 	double dot = 0.0f;
 | |
| 	int i;
 | |
| 
 | |
| 	for(i=0; i<size; i++){
 | |
| 		dot += data[i];
 | |
| 	}
 | |
| 	/*return (double)sqrt(dot);*/
 | |
| 	/* warning, line above removed because we are not using the length,
 | |
| 	   rather the comparing the sizes and for this we do not need the sqrt
 | |
| 	   for the actual length, the dot must be sqrt'd */
 | |
| 	return (double)dot;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*------------------------tp_richcmpr
 | |
|   returns -1 execption, 0 false, 1 true */
 | |
| PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	VectorObject *vecA = NULL, *vecB = NULL;
 | |
| 	int result = 0;
 | |
| 	float epsilon = .000001f;
 | |
| 	double lenA,lenB;
 | |
| 
 | |
| 	if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			return EXPP_incr_ret(Py_True); 
 | |
| 		}else{
 | |
| 			return EXPP_incr_ret(Py_False);
 | |
| 		}
 | |
| 	}
 | |
| 	vecA = (VectorObject*)objectA;
 | |
| 	vecB = (VectorObject*)objectB;
 | |
| 
 | |
| 	if (vecA->size != vecB->size){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			return EXPP_incr_ret(Py_True); 
 | |
| 		}else{
 | |
| 			return EXPP_incr_ret(Py_False);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_LT:
 | |
| 			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | |
| 			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | |
| 			if( lenA < lenB ){
 | |
| 				result = 1;
 | |
| 			}
 | |
| 			break;
 | |
| 		case Py_LE:
 | |
| 			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | |
| 			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | |
| 			if( lenA < lenB ){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | |
| 			}
 | |
| 			break;
 | |
| 		case Py_EQ:
 | |
| 			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		case Py_GT:
 | |
| 			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | |
| 			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | |
| 			if( lenA > lenB ){
 | |
| 				result = 1;
 | |
| 			}
 | |
| 			break;
 | |
| 		case Py_GE:
 | |
| 			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | |
| 			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | |
| 			if( lenA > lenB ){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		return EXPP_incr_ret(Py_True);
 | |
| 	}else{
 | |
| 		return EXPP_incr_ret(Py_False);
 | |
| 	}
 | |
| }
 | |
| /*-----------------PROTCOL DECLARATIONS--------------------------*/
 | |
| static PySequenceMethods Vector_SeqMethods = {
 | |
| 	(inquiry) Vector_len,						/* sq_length */
 | |
| 	(binaryfunc) 0,								/* sq_concat */
 | |
| 	(intargfunc) 0,								/* sq_repeat */
 | |
| 	(intargfunc) Vector_item,					/* sq_item */
 | |
| 	(intintargfunc) Vector_slice,				/* sq_slice */
 | |
| 	(intobjargproc) Vector_ass_item,			/* sq_ass_item */
 | |
| 	(intintobjargproc) Vector_ass_slice,		/* sq_ass_slice */
 | |
| };
 | |
| 
 | |
| 
 | |
| /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
 | |
|    arguments are guaranteed to be of the object's type (modulo
 | |
|    coercion hacks -- i.e. if the type's coercion function
 | |
|    returns other types, then these are allowed as well).  Numbers that
 | |
|    have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
 | |
|    arguments for proper type and implement the necessary conversions
 | |
|    in the slot functions themselves. */
 | |
|  
 | |
| static PyNumberMethods Vector_NumMethods = {
 | |
| 	(binaryfunc) Vector_add,					/* __add__ */
 | |
| 	(binaryfunc) Vector_sub,					/* __sub__ */
 | |
| 	(binaryfunc) Vector_mul,					/* __mul__ */
 | |
| 	(binaryfunc) Vector_div,					/* __div__ */
 | |
| 	(binaryfunc) NULL,							/* __mod__ */
 | |
| 	(binaryfunc) NULL,							/* __divmod__ */
 | |
| 	(ternaryfunc) NULL,							/* __pow__ */
 | |
| 	(unaryfunc) Vector_neg,						/* __neg__ */
 | |
| 	(unaryfunc) NULL,							/* __pos__ */
 | |
| 	(unaryfunc) NULL,							/* __abs__ */
 | |
| 	(inquiry) NULL,								/* __nonzero__ */
 | |
| 	(unaryfunc) NULL,							/* __invert__ */
 | |
| 	(binaryfunc) NULL,							/* __lshift__ */
 | |
| 	(binaryfunc) NULL,							/* __rshift__ */
 | |
| 	(binaryfunc) NULL,							/* __and__ */
 | |
| 	(binaryfunc) NULL,							/* __xor__ */
 | |
| 	(binaryfunc) NULL,							/* __or__ */
 | |
| 	(coercion)  Vector_coerce,					/* __coerce__ */
 | |
| 	(unaryfunc) NULL,							/* __int__ */
 | |
| 	(unaryfunc) NULL,							/* __long__ */
 | |
| 	(unaryfunc) NULL,							/* __float__ */
 | |
| 	(unaryfunc) NULL,							/* __oct__ */
 | |
| 	(unaryfunc) NULL,							/* __hex__ */
 | |
| 	
 | |
| 	/* Added in release 2.0 */
 | |
| 	(binaryfunc) Vector_iadd,					/*__iadd__*/
 | |
| 	(binaryfunc) Vector_isub,					/*__isub__*/
 | |
| 	(binaryfunc) Vector_imul,					/*__imul__*/
 | |
| 	(binaryfunc) Vector_idiv,					/*__idiv__*/
 | |
| 	(binaryfunc) NULL,							/*__imod__*/
 | |
| 	(ternaryfunc) NULL,							/*__ipow__*/
 | |
| 	(binaryfunc) NULL,							/*__ilshift__*/
 | |
| 	(binaryfunc) NULL,							/*__irshift__*/
 | |
| 	(binaryfunc) NULL,							/*__iand__*/
 | |
| 	(binaryfunc) NULL,							/*__ixor__*/
 | |
| 	(binaryfunc) NULL,							/*__ior__*/
 | |
|  
 | |
| 	/* Added in release 2.2 */
 | |
| 	/* The following require the Py_TPFLAGS_HAVE_CLASS flag */
 | |
| 	(binaryfunc) NULL,							/*__floordiv__  __rfloordiv__*/
 | |
| 	(binaryfunc) NULL,							/*__truediv__ __rfloordiv__*/
 | |
| 	(binaryfunc) NULL,							/*__ifloordiv__*/
 | |
| 	(binaryfunc) NULL,							/*__itruediv__*/
 | |
| };
 | |
| /*------------------PY_OBECT DEFINITION--------------------------*/
 | |
| 
 | |
| /*
 | |
|  * vector axis, vector.x/y/z/w
 | |
|  */
 | |
| 	
 | |
| static PyObject *Vector_getAxis( VectorObject * self, void *type )
 | |
| {
 | |
| 	switch( (long)type ) {
 | |
|     case 'X':	/* these are backwards, but that how it works */
 | |
| 		return PyFloat_FromDouble(self->vec[0]);
 | |
|     case 'Y':
 | |
| 		return PyFloat_FromDouble(self->vec[1]);
 | |
|     case 'Z':	/* these are backwards, but that how it works */
 | |
| 		if(self->size < 3)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"vector.z: error, cannot get this axis for a 2D vector\n");
 | |
| 		else
 | |
| 			return PyFloat_FromDouble(self->vec[2]);
 | |
|     case 'W':
 | |
| 		if(self->size < 4)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"vector.w: error, cannot get this axis for a 3D vector\n");
 | |
| 	
 | |
| 		return PyFloat_FromDouble(self->vec[4]);
 | |
| 	default:
 | |
| 		{
 | |
| 			char errstr[1024];
 | |
| 			sprintf( errstr, "undefined type '%d' in Vector_getAxis",
 | |
| 					(int)((long)type & 0xff));
 | |
| 			return EXPP_ReturnPyObjError( PyExc_RuntimeError, errstr );
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int Vector_setAxis( VectorObject * self, PyObject * value, void * type )
 | |
| {
 | |
| 	float param;
 | |
| 	
 | |
| 	if (!PyNumber_Check(value))
 | |
| 		return EXPP_ReturnIntError( PyExc_TypeError,
 | |
| 			"expected a number for the vector axis" );
 | |
| 	
 | |
| 	param= (float)PyFloat_AsDouble( value );
 | |
| 	
 | |
| 	switch( (long)type ) {
 | |
|     case 'X':	/* these are backwards, but that how it works */
 | |
| 		self->vec[0]= param;
 | |
| 		break;
 | |
|     case 'Y':
 | |
| 		self->vec[1]= param;
 | |
| 		break;
 | |
|     case 'Z':	/* these are backwards, but that how it works */
 | |
| 		if(self->size < 3)
 | |
| 			return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"vector.z: error, cannot get this axis for a 2D vector\n");
 | |
| 		self->vec[2]= param;
 | |
| 		break;
 | |
|     case 'W':
 | |
| 		if(self->size < 4)
 | |
| 			return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"vector.w: error, cannot get this axis for a 3D vector\n");
 | |
| 	
 | |
| 		self->vec[3]= param;
 | |
| 		break;
 | |
| 	default:
 | |
| 		{
 | |
| 			char errstr[1024];
 | |
| 			sprintf( errstr, "undefined type '%d' in Vector_setAxis",
 | |
| 					(int)((long)type & 0xff));
 | |
| 			return EXPP_ReturnIntError( PyExc_RuntimeError, errstr );
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* vector.length */
 | |
| static PyObject *Vector_getLength( VectorObject * self, void *type )
 | |
| {
 | |
| 	double dot = 0.0f;
 | |
| 	int i;
 | |
| 	
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		dot += (self->vec[i] * self->vec[i]);
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(sqrt(dot));
 | |
| }
 | |
| 
 | |
| static int Vector_setLength( VectorObject * self, PyObject * value )
 | |
| {
 | |
| 	double dot = 0.0f, param;
 | |
| 	int i;
 | |
| 	
 | |
| 	if (!PyNumber_Check(value))
 | |
| 		return EXPP_ReturnIntError( PyExc_TypeError,
 | |
| 			"expected a number for the vector axis" );
 | |
| 	
 | |
| 	param= PyFloat_AsDouble( value );
 | |
| 	
 | |
| 	if (param < 0)
 | |
| 		return EXPP_ReturnIntError( PyExc_TypeError,
 | |
| 			"cannot set a vectors length to a negative value" );
 | |
| 	
 | |
| 	if (param==0) {
 | |
| 		for(i = 0; i < self->size; i++){
 | |
| 			self->vec[i]= 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		dot += (self->vec[i] * self->vec[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (!dot) /* cant sqrt zero */
 | |
| 		return 0;
 | |
| 	
 | |
| 	dot = sqrt(dot);
 | |
| 	
 | |
| 	if (dot==param)
 | |
| 		return 0;
 | |
| 	
 | |
| 	dot= dot/param;
 | |
| 	
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		self->vec[i]= self->vec[i] / (float)dot;
 | |
| 	}
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *Vector_getWrapped( VectorObject * self, void *type )
 | |
| {
 | |
| 	if (self->wrapped == Py_WRAP)
 | |
| 		Py_RETURN_TRUE;
 | |
| 	else
 | |
| 		Py_RETURN_FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Python attributes get/set structure:                                      */
 | |
| /*****************************************************************************/
 | |
| static PyGetSetDef Vector_getseters[] = {
 | |
| 	{"x",
 | |
| 	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | |
| 	 "Vector X axis",
 | |
| 	 (void *)'X'},
 | |
| 	{"y",
 | |
| 	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | |
| 	 "Vector Y axis",
 | |
| 	 (void *)'Y'},
 | |
| 	{"z",
 | |
| 	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | |
| 	 "Vector Z axis",
 | |
| 	 (void *)'Z'},
 | |
| 	{"w",
 | |
| 	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | |
| 	 "Vector Z axis",
 | |
| 	 (void *)'W'},
 | |
| 	{"length",
 | |
| 	 (getter)Vector_getLength, (setter)Vector_setLength,
 | |
| 	 "Vector Length",
 | |
| 	 NULL},
 | |
| 	{"magnitude",
 | |
| 	 (getter)Vector_getLength, (setter)Vector_setLength,
 | |
| 	 "Vector Length",
 | |
| 	 NULL},
 | |
| 	{"wrapped",
 | |
| 	 (getter)Vector_getWrapped, (setter)NULL,
 | |
| 	 "Vector Length",
 | |
| 	 NULL},
 | |
| 	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Note
 | |
|  Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing
 | |
|  but this means for eg that 
 | |
|  vec*mat and mat*vec both get sent to Vector_mul and it neesd to sort out the order
 | |
| */
 | |
| 
 | |
| PyTypeObject vector_Type = {
 | |
| 	PyObject_HEAD_INIT( NULL )  /* required py macro */
 | |
| 	0,                          /* ob_size */
 | |
| 	/*  For printing, in format "<module>.<name>" */
 | |
| 	"Blender Vector",             /* char *tp_name; */
 | |
| 	sizeof( VectorObject ),         /* int tp_basicsize; */
 | |
| 	0,                          /* tp_itemsize;  For allocation */
 | |
| 
 | |
| 	/* Methods to implement standard operations */
 | |
| 
 | |
| 	( destructor ) Vector_dealloc,/* destructor tp_dealloc; */
 | |
| 	NULL,                       /* printfunc tp_print; */
 | |
| 	NULL,                       /* getattrfunc tp_getattr; */
 | |
| 	NULL,                       /* setattrfunc tp_setattr; */
 | |
| 	NULL,   /* cmpfunc tp_compare; */
 | |
| 	( reprfunc ) Vector_repr,     /* reprfunc tp_repr; */
 | |
| 
 | |
| 	/* Method suites for standard classes */
 | |
| 
 | |
| 	&Vector_NumMethods,                       /* PyNumberMethods *tp_as_number; */
 | |
| 	&Vector_SeqMethods,                       /* PySequenceMethods *tp_as_sequence; */
 | |
| 	NULL,                       /* PyMappingMethods *tp_as_mapping; */
 | |
| 
 | |
| 	/* More standard operations (here for binary compatibility) */
 | |
| 
 | |
| 	NULL,                       /* hashfunc tp_hash; */
 | |
| 	NULL,                       /* ternaryfunc tp_call; */
 | |
| 	NULL,                       /* reprfunc tp_str; */
 | |
| 	NULL,                       /* getattrofunc tp_getattro; */
 | |
| 	NULL,                       /* setattrofunc tp_setattro; */
 | |
| 
 | |
| 	/* Functions to access object as input/output buffer */
 | |
| 	NULL,                       /* PyBufferProcs *tp_as_buffer; */
 | |
| 
 | |
|   /*** Flags to define presence of optional/expanded features ***/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES,         /* long tp_flags; */
 | |
| 
 | |
| 	VectorObject_doc,                       /*  char *tp_doc;  Documentation string */
 | |
|   /*** Assigned meaning in release 2.0 ***/
 | |
| 	/* call function for all accessible objects */
 | |
| 	NULL,                       /* traverseproc tp_traverse; */
 | |
| 
 | |
| 	/* delete references to contained objects */
 | |
| 	NULL,                       /* inquiry tp_clear; */
 | |
| 
 | |
|   /***  Assigned meaning in release 2.1 ***/
 | |
|   /*** rich comparisons ***/
 | |
| 	(richcmpfunc)Vector_richcmpr,                       /* richcmpfunc tp_richcompare; */
 | |
| 
 | |
|   /***  weak reference enabler ***/
 | |
| 	0,                          /* long tp_weaklistoffset; */
 | |
| 
 | |
|   /*** Added in release 2.2 ***/
 | |
| 	/*   Iterators */
 | |
| 	NULL,                       /* getiterfunc tp_iter; */
 | |
| 	NULL,                       /* iternextfunc tp_iternext; */
 | |
| 
 | |
|   /*** Attribute descriptor and subclassing stuff ***/
 | |
| 	Vector_methods,           /* struct PyMethodDef *tp_methods; */
 | |
| 	NULL,                       /* struct PyMemberDef *tp_members; */
 | |
| 	Vector_getseters,         /* struct PyGetSetDef *tp_getset; */
 | |
| 	NULL,                       /* struct _typeobject *tp_base; */
 | |
| 	NULL,                       /* PyObject *tp_dict; */
 | |
| 	NULL,                       /* descrgetfunc tp_descr_get; */
 | |
| 	NULL,                       /* descrsetfunc tp_descr_set; */
 | |
| 	0,                          /* long tp_dictoffset; */
 | |
| 	NULL,                       /* initproc tp_init; */
 | |
| 	NULL,                       /* allocfunc tp_alloc; */
 | |
| 	NULL,                       /* newfunc tp_new; */
 | |
| 	/*  Low-level free-memory routine */
 | |
| 	NULL,                       /* freefunc tp_free;  */
 | |
| 	/* For PyObject_IS_GC */
 | |
| 	NULL,                       /* inquiry tp_is_gc;  */
 | |
| 	NULL,                       /* PyObject *tp_bases; */
 | |
| 	/* method resolution order */
 | |
| 	NULL,                       /* PyObject *tp_mro;  */
 | |
| 	NULL,                       /* PyObject *tp_cache; */
 | |
| 	NULL,                       /* PyObject *tp_subclasses; */
 | |
| 	NULL,                       /* PyObject *tp_weaklist; */
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| 
 | |
| /*------------------------newVectorObject (internal)-------------
 | |
|   creates a new vector object
 | |
|   pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newVectorObject(float *vec, int size, int type)
 | |
| {
 | |
| 	int i;
 | |
| 	VectorObject *self = PyObject_NEW(VectorObject, &vector_Type);
 | |
| 	
 | |
| 	if(size > 4 || size < 2)
 | |
| 		return NULL;
 | |
| 	self->size = size;
 | |
| 
 | |
| 	if(type == Py_WRAP) {
 | |
| 		self->vec = vec;
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	} else if (type == Py_NEW) {
 | |
| 		self->vec = PyMem_Malloc(size * sizeof(float));
 | |
| 		if(!vec) { /*new empty*/
 | |
| 			for(i = 0; i < size; i++){
 | |
| 				self->vec[i] = 0.0f;
 | |
| 			}
 | |
| 			if(size == 4)  /* do the homogenous thing */
 | |
| 				self->vec[3] = 1.0f;
 | |
| 		}else{
 | |
| 			for(i = 0; i < size; i++){
 | |
| 				self->vec[i] = vec[i];
 | |
| 			}
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ /*bad type*/
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   #############################DEPRECATED################################
 | |
|   #######################################################################
 | |
|   ----------------------------Vector.negate() --------------------
 | |
|   set the vector to it's negative -x, -y, -z */
 | |
| PyObject *Vector_Negate(VectorObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	for(i = 0; i < self->size; i++) {
 | |
| 		self->vec[i] = -(self->vec[i]);
 | |
| 	}
 | |
| 	/*printf("Vector.negate(): Deprecated: use -vector instead\n");*/
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| /*###################################################################
 | |
|   ###########################DEPRECATED##############################*/
 | |
| 
 |