This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_linear_allocator.hh
Jacques Lucke 8cbbdedaf4 Refactor: Update integer type usage
This updates the usage of integer types in code I wrote according to our new style guides.

Major changes:
* Use signed instead of unsigned integers in many places.
* C++ containers in blenlib use `int64_t` for size and indices now (instead of `uint`).
* Hash values for C++ containers are 64 bit wide now (instead of 32 bit).

I do hope that I broke no builds, but it is quite likely that some compiler reports
slightly different errors. Please let me know when there are any errors. If the fix
is small, feel free to commit it yourself.
I compiled successfully on linux with gcc and on windows.
2020-07-20 12:16:20 +02:00

224 lines
6.9 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bli
*
* A linear allocator is the simplest form of an allocator. It never reuses any memory, and
* therefore does not need a deallocation method. It simply hands out consecutive buffers of
* memory. When the current buffer is full, it reallocates a new larger buffer and continues.
*/
#ifndef __BLI_LINEAR_ALLOCATOR_HH__
#define __BLI_LINEAR_ALLOCATOR_HH__
#include "BLI_string_ref.hh"
#include "BLI_utility_mixins.hh"
#include "BLI_vector.hh"
namespace blender {
template<typename Allocator = GuardedAllocator> class LinearAllocator : NonCopyable, NonMovable {
private:
Allocator allocator_;
Vector<void *> owned_buffers_;
Vector<Span<char>> unused_borrowed_buffers_;
uintptr_t current_begin_;
uintptr_t current_end_;
int64_t next_min_alloc_size_;
#ifdef DEBUG
int64_t debug_allocated_amount_ = 0;
#endif
public:
LinearAllocator()
{
current_begin_ = 0;
current_end_ = 0;
next_min_alloc_size_ = 64;
}
~LinearAllocator()
{
for (void *ptr : owned_buffers_) {
allocator_.deallocate(ptr);
}
}
/**
* Get a pointer to a memory buffer with the given size an alignment. The memory buffer will be
* freed when this LinearAllocator is destructed.
*
* The alignment has to be a power of 2.
*/
void *allocate(const int64_t size, const int64_t alignment)
{
BLI_assert(size >= 0);
BLI_assert(alignment >= 1);
BLI_assert(is_power_of_2_i(alignment));
#ifdef DEBUG
debug_allocated_amount_ += size;
#endif
const uintptr_t alignment_mask = alignment - 1;
const uintptr_t potential_allocation_begin = (current_begin_ + alignment_mask) &
~alignment_mask;
const uintptr_t potential_allocation_end = potential_allocation_begin + size;
if (potential_allocation_end <= current_end_) {
current_begin_ = potential_allocation_end;
return (void *)potential_allocation_begin;
}
else {
this->allocate_new_buffer(size + alignment);
return this->allocate(size, alignment);
}
};
/**
* Allocate a memory buffer that can hold an instance of T.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> T *allocate()
{
return (T *)this->allocate(sizeof(T), alignof(T));
}
/**
* Allocate a memory buffer that can hold T array with the given size.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> MutableSpan<T> allocate_array(int64_t size)
{
return MutableSpan<T>((T *)this->allocate(sizeof(T) * size, alignof(T)), size);
}
/**
* Construct an instance of T in memory provided by this allocator.
*
* Arguments passed to this method will be forwarded to the constructor of T.
*
* You must not call `delete` on the returned pointer.
* Instead, the destruct has to be called explicitly.
*/
template<typename T, typename... Args> T *construct(Args &&... args)
{
void *buffer = this->allocate(sizeof(T), alignof(T));
T *value = new (buffer) T(std::forward<Args>(args)...);
return value;
}
/**
* Copy the given array into a memory buffer provided by this allocator.
*/
template<typename T> MutableSpan<T> construct_array_copy(Span<T> src)
{
MutableSpan<T> dst = this->allocate_array<T>(src.size());
uninitialized_copy_n(src.data(), src.size(), dst.data());
return dst;
}
/**
* Copy the given string into a memory buffer provided by this allocator. The returned string is
* always null terminated.
*/
StringRefNull copy_string(StringRef str)
{
const int64_t alloc_size = str.size() + 1;
char *buffer = (char *)this->allocate(alloc_size, 1);
str.copy(buffer, alloc_size);
return StringRefNull((const char *)buffer);
}
MutableSpan<void *> allocate_elements_and_pointer_array(int64_t element_amount,
int64_t element_size,
int64_t element_alignment)
{
void *pointer_buffer = this->allocate(element_amount * sizeof(void *), alignof(void *));
void *elements_buffer = this->allocate(element_amount * element_size, element_alignment);
MutableSpan<void *> pointers((void **)pointer_buffer, element_amount);
void *next_element_buffer = elements_buffer;
for (int64_t i : IndexRange(element_amount)) {
pointers[i] = next_element_buffer;
next_element_buffer = POINTER_OFFSET(next_element_buffer, element_size);
}
return pointers;
}
template<typename T, typename... Args>
Span<T *> construct_elements_and_pointer_array(int64_t n, Args &&... args)
{
MutableSpan<void *> void_pointers = this->allocate_elements_and_pointer_array(
n, sizeof(T), alignof(T));
MutableSpan<T *> pointers = void_pointers.cast<T *>();
for (int64_t i : IndexRange(n)) {
new ((void *)pointers[i]) T(std::forward<Args>(args)...);
}
return pointers;
}
/**
* Tell the allocator to use up the given memory buffer, before allocating new memory from the
* system.
*/
void provide_buffer(void *buffer, uint size)
{
unused_borrowed_buffers_.append(Span<char>((char *)buffer, size));
}
template<size_t Size, size_t Alignment>
void provide_buffer(AlignedBuffer<Size, Alignment> &aligned_buffer)
{
this->provide_buffer(aligned_buffer.ptr(), Size);
}
private:
void allocate_new_buffer(int64_t min_allocation_size)
{
for (int64_t i : unused_borrowed_buffers_.index_range()) {
Span<char> buffer = unused_borrowed_buffers_[i];
if (buffer.size() >= min_allocation_size) {
unused_borrowed_buffers_.remove_and_reorder(i);
current_begin_ = (uintptr_t)buffer.begin();
current_end_ = (uintptr_t)buffer.end();
return;
}
}
const int64_t size_in_bytes = power_of_2_min_u(
std::max(min_allocation_size, next_min_alloc_size_));
next_min_alloc_size_ = size_in_bytes * 2;
void *buffer = allocator_.allocate(size_in_bytes, 8, AT);
owned_buffers_.append(buffer);
current_begin_ = (uintptr_t)buffer;
current_end_ = current_begin_ + size_in_bytes;
}
};
} // namespace blender
#endif /* __BLI_LINEAR_ALLOCATOR_HH__ */