This code allows to push a set of different operations all based on iterations over a range of indices, and then process them all at once over multiple threads. This commit also adds unit tests for both old un-pooled, and new pooled task_parallel_range family of functions, as well as some basic performances tests. This is mainly interesting for relatively low amount of individual tasks, as expected. E.g. performance tests on a 32 threads machine, for a set of 10 different tasks, shows following improvements when using pooled version instead of ten sequential calls to BLI_task_parallel_range(): | Num Items | Sequential | Pooled | Speed-up | | --------- | ---------- | ------- | -------- | | 10K | 365 us | 138 us | 2.5 x | | 100K | 877 us | 530 us | 1.66 x | | 1000K | 5521 us | 4625 us | 1.25 x | Differential Revision: https://developer.blender.org/D6189 Note: Compared to previous commit yesterday, this reworks atomic handling in parallel iter code, and fixes a dummy double-free bug. Now we should only use the two critical values for synchronization from atomic calls results, which is the proper way to do things. Reading a value after an atomic operation does not guarantee you will get the latest value in all cases (especially on Windows release builds it seems).
1931 lines
62 KiB
C
1931 lines
62 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* A generic task system which can be used for any task based subsystem.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_listBase.h"
|
|
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_mempool.h"
|
|
#include "BLI_task.h"
|
|
#include "BLI_threads.h"
|
|
|
|
#include "atomic_ops.h"
|
|
|
|
/* Define this to enable some detailed statistic print. */
|
|
#undef DEBUG_STATS
|
|
|
|
/* Types */
|
|
|
|
/* Number of per-thread pre-allocated tasks.
|
|
*
|
|
* For more details see description of TaskMemPool.
|
|
*/
|
|
#define MEMPOOL_SIZE 256
|
|
|
|
/* Number of tasks which are pushed directly to local thread queue.
|
|
*
|
|
* This allows thread to fetch next task without locking the whole queue.
|
|
*/
|
|
#define LOCAL_QUEUE_SIZE 1
|
|
|
|
/* Number of tasks which are allowed to be scheduled in a delayed manner.
|
|
*
|
|
* This allows to use less locks per graph node children schedule. More details
|
|
* could be found at TaskThreadLocalStorage::do_delayed_push.
|
|
*/
|
|
#define DELAYED_QUEUE_SIZE 4096
|
|
|
|
#ifndef NDEBUG
|
|
# define ASSERT_THREAD_ID(scheduler, thread_id) \
|
|
do { \
|
|
if (!BLI_thread_is_main()) { \
|
|
TaskThread *thread = pthread_getspecific(scheduler->tls_id_key); \
|
|
if (thread == NULL) { \
|
|
BLI_assert(thread_id == 0); \
|
|
} \
|
|
else { \
|
|
BLI_assert(thread_id == thread->id); \
|
|
} \
|
|
} \
|
|
else { \
|
|
BLI_assert(thread_id == 0); \
|
|
} \
|
|
} while (false)
|
|
#else
|
|
# define ASSERT_THREAD_ID(scheduler, thread_id)
|
|
#endif
|
|
|
|
typedef struct Task {
|
|
struct Task *next, *prev;
|
|
|
|
TaskRunFunction run;
|
|
void *taskdata;
|
|
bool free_taskdata;
|
|
TaskFreeFunction freedata;
|
|
TaskPool *pool;
|
|
} Task;
|
|
|
|
/* This is a per-thread storage of pre-allocated tasks.
|
|
*
|
|
* The idea behind this is simple: reduce amount of malloc() calls when pushing
|
|
* new task to the pool. This is done by keeping memory from the tasks which
|
|
* were finished already, so instead of freeing that memory we put it to the
|
|
* pool for the later re-use.
|
|
*
|
|
* The tricky part here is to avoid any inter-thread synchronization, hence no
|
|
* lock must exist around this pool. The pool will become an owner of the pointer
|
|
* from freed task, and only corresponding thread will be able to use this pool
|
|
* (no memory stealing and such).
|
|
*
|
|
* This leads to the following use of the pool:
|
|
*
|
|
* - task_push() should provide proper thread ID from which the task is being
|
|
* pushed from.
|
|
*
|
|
* - Task allocation function which check corresponding memory pool and if there
|
|
* is any memory in there it'll mark memory as re-used, remove it from the pool
|
|
* and use that memory for the new task.
|
|
*
|
|
* At this moment task queue owns the memory.
|
|
*
|
|
* - When task is done and task_free() is called the memory will be put to the
|
|
* pool which corresponds to a thread which handled the task.
|
|
*/
|
|
typedef struct TaskMemPool {
|
|
/* Number of pre-allocated tasks in the pool. */
|
|
int num_tasks;
|
|
/* Pre-allocated task memory pointers. */
|
|
Task *tasks[MEMPOOL_SIZE];
|
|
} TaskMemPool;
|
|
|
|
#ifdef DEBUG_STATS
|
|
typedef struct TaskMemPoolStats {
|
|
/* Number of allocations. */
|
|
int num_alloc;
|
|
/* Number of avoided allocations (pointer was re-used from the pool). */
|
|
int num_reuse;
|
|
/* Number of discarded memory due to pool saturation, */
|
|
int num_discard;
|
|
} TaskMemPoolStats;
|
|
#endif
|
|
|
|
typedef struct TaskThreadLocalStorage {
|
|
/* Memory pool for faster task allocation.
|
|
* The idea is to re-use memory of finished/discarded tasks by this thread.
|
|
*/
|
|
TaskMemPool task_mempool;
|
|
|
|
/* Local queue keeps thread alive by keeping small amount of tasks ready
|
|
* to be picked up without causing global thread locks for synchronization.
|
|
*/
|
|
int num_local_queue;
|
|
Task *local_queue[LOCAL_QUEUE_SIZE];
|
|
|
|
/* Thread can be marked for delayed tasks push. This is helpful when it's
|
|
* know that lots of subsequent task pushed will happen from the same thread
|
|
* without "interrupting" for task execution.
|
|
*
|
|
* We try to accumulate as much tasks as possible in a local queue without
|
|
* any locks first, and then we push all of them into a scheduler's queue
|
|
* from within a single mutex lock.
|
|
*/
|
|
bool do_delayed_push;
|
|
int num_delayed_queue;
|
|
Task *delayed_queue[DELAYED_QUEUE_SIZE];
|
|
} TaskThreadLocalStorage;
|
|
|
|
struct TaskPool {
|
|
TaskScheduler *scheduler;
|
|
|
|
volatile size_t num;
|
|
ThreadMutex num_mutex;
|
|
ThreadCondition num_cond;
|
|
|
|
void *userdata;
|
|
ThreadMutex user_mutex;
|
|
|
|
volatile bool do_cancel;
|
|
volatile bool do_work;
|
|
|
|
volatile bool is_suspended;
|
|
bool start_suspended;
|
|
ListBase suspended_queue;
|
|
size_t num_suspended;
|
|
|
|
/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler
|
|
* has to use its special background fallback thread in case we are in
|
|
* single-threaded situation.
|
|
*/
|
|
bool run_in_background;
|
|
|
|
/* This is a task scheduler's ID of a thread at which pool was constructed.
|
|
* It will be used to access task TLS.
|
|
*/
|
|
int thread_id;
|
|
|
|
/* For the pools which are created from non-main thread which is not a
|
|
* scheduler worker thread we can't re-use any of scheduler's threads TLS
|
|
* and have to use our own one.
|
|
*/
|
|
bool use_local_tls;
|
|
TaskThreadLocalStorage local_tls;
|
|
#ifndef NDEBUG
|
|
pthread_t creator_thread_id;
|
|
#endif
|
|
|
|
#ifdef DEBUG_STATS
|
|
TaskMemPoolStats *mempool_stats;
|
|
#endif
|
|
};
|
|
|
|
struct TaskScheduler {
|
|
pthread_t *threads;
|
|
struct TaskThread *task_threads;
|
|
int num_threads;
|
|
bool background_thread_only;
|
|
|
|
ListBase queue;
|
|
ThreadMutex queue_mutex;
|
|
ThreadCondition queue_cond;
|
|
|
|
ThreadMutex startup_mutex;
|
|
ThreadCondition startup_cond;
|
|
volatile int num_thread_started;
|
|
|
|
volatile bool do_exit;
|
|
|
|
/* NOTE: In pthread's TLS we store the whole TaskThread structure. */
|
|
pthread_key_t tls_id_key;
|
|
};
|
|
|
|
typedef struct TaskThread {
|
|
TaskScheduler *scheduler;
|
|
int id;
|
|
TaskThreadLocalStorage tls;
|
|
} TaskThread;
|
|
|
|
/* Helper */
|
|
BLI_INLINE void task_data_free(Task *task, const int thread_id)
|
|
{
|
|
if (task->free_taskdata) {
|
|
if (task->freedata) {
|
|
task->freedata(task->pool, task->taskdata, thread_id);
|
|
}
|
|
else {
|
|
MEM_freeN(task->taskdata);
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void initialize_task_tls(TaskThreadLocalStorage *tls)
|
|
{
|
|
memset(tls, 0, sizeof(TaskThreadLocalStorage));
|
|
}
|
|
|
|
BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool, const int thread_id)
|
|
{
|
|
TaskScheduler *scheduler = pool->scheduler;
|
|
BLI_assert(thread_id >= 0);
|
|
BLI_assert(thread_id <= scheduler->num_threads);
|
|
if (pool->use_local_tls && thread_id == 0) {
|
|
BLI_assert(pool->thread_id == 0);
|
|
BLI_assert(!BLI_thread_is_main());
|
|
BLI_assert(pthread_equal(pthread_self(), pool->creator_thread_id));
|
|
return &pool->local_tls;
|
|
}
|
|
if (thread_id == 0) {
|
|
BLI_assert(BLI_thread_is_main());
|
|
return &scheduler->task_threads[pool->thread_id].tls;
|
|
}
|
|
return &scheduler->task_threads[thread_id].tls;
|
|
}
|
|
|
|
BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls)
|
|
{
|
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
|
for (int i = 0; i < task_mempool->num_tasks; i++) {
|
|
MEM_freeN(task_mempool->tasks[i]);
|
|
}
|
|
}
|
|
|
|
static Task *task_alloc(TaskPool *pool, const int thread_id)
|
|
{
|
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
|
if (thread_id != -1) {
|
|
BLI_assert(thread_id >= 0);
|
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
|
/* Try to re-use task memory from a thread local storage. */
|
|
if (task_mempool->num_tasks > 0) {
|
|
--task_mempool->num_tasks;
|
|
/* Success! We've just avoided task allocation. */
|
|
#ifdef DEBUG_STATS
|
|
pool->mempool_stats[thread_id].num_reuse++;
|
|
#endif
|
|
return task_mempool->tasks[task_mempool->num_tasks];
|
|
}
|
|
/* We are doomed to allocate new task data. */
|
|
#ifdef DEBUG_STATS
|
|
pool->mempool_stats[thread_id].num_alloc++;
|
|
#endif
|
|
}
|
|
return MEM_mallocN(sizeof(Task), "New task");
|
|
}
|
|
|
|
static void task_free(TaskPool *pool, Task *task, const int thread_id)
|
|
{
|
|
task_data_free(task, thread_id);
|
|
BLI_assert(thread_id >= 0);
|
|
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
|
if (thread_id == 0) {
|
|
BLI_assert(pool->use_local_tls || BLI_thread_is_main());
|
|
}
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
|
TaskMemPool *task_mempool = &tls->task_mempool;
|
|
if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) {
|
|
/* Successfully allowed the task to be re-used later. */
|
|
task_mempool->tasks[task_mempool->num_tasks] = task;
|
|
++task_mempool->num_tasks;
|
|
}
|
|
else {
|
|
/* Local storage saturated, no other way than just discard
|
|
* the memory.
|
|
*
|
|
* TODO(sergey): We can perhaps store such pointer in a global
|
|
* scheduler pool, maybe it'll be faster than discarding and
|
|
* allocating again.
|
|
*/
|
|
MEM_freeN(task);
|
|
#ifdef DEBUG_STATS
|
|
pool->mempool_stats[thread_id].num_discard++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Task Scheduler */
|
|
|
|
static void task_pool_num_decrease(TaskPool *pool, size_t done)
|
|
{
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
BLI_assert(pool->num >= done);
|
|
|
|
pool->num -= done;
|
|
|
|
if (pool->num == 0) {
|
|
BLI_condition_notify_all(&pool->num_cond);
|
|
}
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
}
|
|
|
|
static void task_pool_num_increase(TaskPool *pool, size_t new)
|
|
{
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
pool->num += new;
|
|
BLI_condition_notify_all(&pool->num_cond);
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
}
|
|
|
|
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
|
|
{
|
|
bool found_task = false;
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
while (!scheduler->queue.first && !scheduler->do_exit) {
|
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
|
}
|
|
|
|
do {
|
|
Task *current_task;
|
|
|
|
/* Assuming we can only have a void queue in 'exit' case here seems logical
|
|
* (we should only be here after our worker thread has been woken up from a
|
|
* condition_wait(), which only happens after a new task was added to the queue),
|
|
* but it is wrong.
|
|
* Waiting on condition may wake up the thread even if condition is not signaled
|
|
* (spurious wake-ups), and some race condition may also empty the queue **after**
|
|
* condition has been signaled, but **before** awoken thread reaches this point...
|
|
* See http://stackoverflow.com/questions/8594591
|
|
*
|
|
* So we only abort here if do_exit is set.
|
|
*/
|
|
if (scheduler->do_exit) {
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
return false;
|
|
}
|
|
|
|
for (current_task = scheduler->queue.first; current_task != NULL;
|
|
current_task = current_task->next) {
|
|
TaskPool *pool = current_task->pool;
|
|
|
|
if (scheduler->background_thread_only && !pool->run_in_background) {
|
|
continue;
|
|
}
|
|
|
|
*task = current_task;
|
|
found_task = true;
|
|
BLI_remlink(&scheduler->queue, *task);
|
|
break;
|
|
}
|
|
if (!found_task) {
|
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
|
}
|
|
} while (!found_task);
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
return true;
|
|
}
|
|
|
|
BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls, const int thread_id)
|
|
{
|
|
BLI_assert(!tls->do_delayed_push);
|
|
while (tls->num_local_queue > 0) {
|
|
/* We pop task from queue before handling it so handler of the task can
|
|
* push next job to the local queue.
|
|
*/
|
|
tls->num_local_queue--;
|
|
Task *local_task = tls->local_queue[tls->num_local_queue];
|
|
/* TODO(sergey): Double-check work_and_wait() doesn't handle other's
|
|
* pool tasks.
|
|
*/
|
|
TaskPool *local_pool = local_task->pool;
|
|
local_task->run(local_pool, local_task->taskdata, thread_id);
|
|
task_free(local_pool, local_task, thread_id);
|
|
}
|
|
BLI_assert(!tls->do_delayed_push);
|
|
}
|
|
|
|
static void *task_scheduler_thread_run(void *thread_p)
|
|
{
|
|
TaskThread *thread = (TaskThread *)thread_p;
|
|
TaskThreadLocalStorage *tls = &thread->tls;
|
|
TaskScheduler *scheduler = thread->scheduler;
|
|
int thread_id = thread->id;
|
|
Task *task;
|
|
|
|
pthread_setspecific(scheduler->tls_id_key, thread);
|
|
|
|
/* signal the main thread when all threads have started */
|
|
BLI_mutex_lock(&scheduler->startup_mutex);
|
|
scheduler->num_thread_started++;
|
|
if (scheduler->num_thread_started == scheduler->num_threads) {
|
|
BLI_condition_notify_one(&scheduler->startup_cond);
|
|
}
|
|
BLI_mutex_unlock(&scheduler->startup_mutex);
|
|
|
|
/* keep popping off tasks */
|
|
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
|
|
TaskPool *pool = task->pool;
|
|
|
|
/* run task */
|
|
BLI_assert(!tls->do_delayed_push);
|
|
task->run(pool, task->taskdata, thread_id);
|
|
BLI_assert(!tls->do_delayed_push);
|
|
|
|
/* delete task */
|
|
task_free(pool, task, thread_id);
|
|
|
|
/* Handle all tasks from local queue. */
|
|
handle_local_queue(tls, thread_id);
|
|
|
|
/* notify pool task was done */
|
|
task_pool_num_decrease(pool, 1);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
TaskScheduler *BLI_task_scheduler_create(int num_threads)
|
|
{
|
|
TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
|
|
|
|
/* multiple places can use this task scheduler, sharing the same
|
|
* threads, so we keep track of the number of users. */
|
|
scheduler->do_exit = false;
|
|
|
|
BLI_listbase_clear(&scheduler->queue);
|
|
BLI_mutex_init(&scheduler->queue_mutex);
|
|
BLI_condition_init(&scheduler->queue_cond);
|
|
|
|
BLI_mutex_init(&scheduler->startup_mutex);
|
|
BLI_condition_init(&scheduler->startup_cond);
|
|
scheduler->num_thread_started = 0;
|
|
|
|
if (num_threads == 0) {
|
|
/* automatic number of threads will be main thread + num cores */
|
|
num_threads = BLI_system_thread_count();
|
|
}
|
|
|
|
/* main thread will also work, so we count it too */
|
|
num_threads -= 1;
|
|
|
|
/* Add background-only thread if needed. */
|
|
if (num_threads == 0) {
|
|
scheduler->background_thread_only = true;
|
|
num_threads = 1;
|
|
}
|
|
|
|
scheduler->task_threads = MEM_mallocN(sizeof(TaskThread) * (num_threads + 1),
|
|
"TaskScheduler task threads");
|
|
|
|
/* Initialize TLS for main thread. */
|
|
initialize_task_tls(&scheduler->task_threads[0].tls);
|
|
|
|
pthread_key_create(&scheduler->tls_id_key, NULL);
|
|
|
|
/* launch threads that will be waiting for work */
|
|
if (num_threads > 0) {
|
|
int i;
|
|
|
|
scheduler->num_threads = num_threads;
|
|
scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads");
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
TaskThread *thread = &scheduler->task_threads[i + 1];
|
|
thread->scheduler = scheduler;
|
|
thread->id = i + 1;
|
|
initialize_task_tls(&thread->tls);
|
|
|
|
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
|
|
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Wait for all worker threads to start before returning to caller to prevent the case where
|
|
* threads are still starting and pthread_join is called, which causes a deadlock on pthreads4w.
|
|
*/
|
|
BLI_mutex_lock(&scheduler->startup_mutex);
|
|
/* NOTE: Use loop here to avoid false-positive everything-is-ready caused by spontaneous thread
|
|
* wake up. */
|
|
while (scheduler->num_thread_started != num_threads) {
|
|
BLI_condition_wait(&scheduler->startup_cond, &scheduler->startup_mutex);
|
|
}
|
|
BLI_mutex_unlock(&scheduler->startup_mutex);
|
|
|
|
return scheduler;
|
|
}
|
|
|
|
void BLI_task_scheduler_free(TaskScheduler *scheduler)
|
|
{
|
|
Task *task;
|
|
|
|
/* stop all waiting threads */
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
scheduler->do_exit = true;
|
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
pthread_key_delete(scheduler->tls_id_key);
|
|
|
|
/* delete threads */
|
|
if (scheduler->threads) {
|
|
int i;
|
|
|
|
for (i = 0; i < scheduler->num_threads; i++) {
|
|
if (pthread_join(scheduler->threads[i], NULL) != 0) {
|
|
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(scheduler->threads);
|
|
}
|
|
|
|
/* Delete task thread data */
|
|
if (scheduler->task_threads) {
|
|
for (int i = 0; i < scheduler->num_threads + 1; i++) {
|
|
TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls;
|
|
free_task_tls(tls);
|
|
}
|
|
|
|
MEM_freeN(scheduler->task_threads);
|
|
}
|
|
|
|
/* delete leftover tasks */
|
|
for (task = scheduler->queue.first; task; task = task->next) {
|
|
task_data_free(task, 0);
|
|
}
|
|
BLI_freelistN(&scheduler->queue);
|
|
|
|
/* delete mutex/condition */
|
|
BLI_mutex_end(&scheduler->queue_mutex);
|
|
BLI_condition_end(&scheduler->queue_cond);
|
|
BLI_mutex_end(&scheduler->startup_mutex);
|
|
BLI_condition_end(&scheduler->startup_cond);
|
|
|
|
MEM_freeN(scheduler);
|
|
}
|
|
|
|
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
|
|
{
|
|
return scheduler->num_threads + 1;
|
|
}
|
|
|
|
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
|
|
{
|
|
task_pool_num_increase(task->pool, 1);
|
|
|
|
/* add task to queue */
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
if (priority == TASK_PRIORITY_HIGH) {
|
|
BLI_addhead(&scheduler->queue, task);
|
|
}
|
|
else {
|
|
BLI_addtail(&scheduler->queue, task);
|
|
}
|
|
|
|
BLI_condition_notify_one(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
}
|
|
|
|
static void task_scheduler_push_all(TaskScheduler *scheduler,
|
|
TaskPool *pool,
|
|
Task **tasks,
|
|
int num_tasks)
|
|
{
|
|
if (num_tasks == 0) {
|
|
return;
|
|
}
|
|
|
|
task_pool_num_increase(pool, num_tasks);
|
|
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
for (int i = 0; i < num_tasks; i++) {
|
|
BLI_addhead(&scheduler->queue, tasks[i]);
|
|
}
|
|
|
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
}
|
|
|
|
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
|
|
{
|
|
Task *task, *nexttask;
|
|
size_t done = 0;
|
|
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
/* free all tasks from this pool from the queue */
|
|
for (task = scheduler->queue.first; task; task = nexttask) {
|
|
nexttask = task->next;
|
|
|
|
if (task->pool == pool) {
|
|
task_data_free(task, pool->thread_id);
|
|
BLI_freelinkN(&scheduler->queue, task);
|
|
|
|
done++;
|
|
}
|
|
}
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
/* notify done */
|
|
task_pool_num_decrease(pool, done);
|
|
}
|
|
|
|
/* Task Pool */
|
|
|
|
static TaskPool *task_pool_create_ex(TaskScheduler *scheduler,
|
|
void *userdata,
|
|
const bool is_background,
|
|
const bool is_suspended)
|
|
{
|
|
TaskPool *pool = MEM_mallocN(sizeof(TaskPool), "TaskPool");
|
|
|
|
#ifndef NDEBUG
|
|
/* Assert we do not try to create a background pool from some parent task -
|
|
* those only work OK from main thread. */
|
|
if (is_background) {
|
|
const pthread_t thread_id = pthread_self();
|
|
int i = scheduler->num_threads;
|
|
|
|
while (i--) {
|
|
BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
pool->scheduler = scheduler;
|
|
pool->num = 0;
|
|
pool->do_cancel = false;
|
|
pool->do_work = false;
|
|
pool->is_suspended = is_suspended;
|
|
pool->start_suspended = is_suspended;
|
|
pool->num_suspended = 0;
|
|
pool->suspended_queue.first = pool->suspended_queue.last = NULL;
|
|
pool->run_in_background = is_background;
|
|
pool->use_local_tls = false;
|
|
|
|
BLI_mutex_init(&pool->num_mutex);
|
|
BLI_condition_init(&pool->num_cond);
|
|
|
|
pool->userdata = userdata;
|
|
BLI_mutex_init(&pool->user_mutex);
|
|
|
|
if (BLI_thread_is_main()) {
|
|
pool->thread_id = 0;
|
|
}
|
|
else {
|
|
TaskThread *thread = pthread_getspecific(scheduler->tls_id_key);
|
|
if (thread == NULL) {
|
|
/* NOTE: Task pool is created from non-main thread which is not
|
|
* managed by the task scheduler. We identify ourselves as thread ID
|
|
* 0 but we do not use scheduler's TLS storage and use our own
|
|
* instead to avoid any possible threading conflicts.
|
|
*/
|
|
pool->thread_id = 0;
|
|
pool->use_local_tls = true;
|
|
#ifndef NDEBUG
|
|
pool->creator_thread_id = pthread_self();
|
|
#endif
|
|
initialize_task_tls(&pool->local_tls);
|
|
}
|
|
else {
|
|
pool->thread_id = thread->id;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_STATS
|
|
pool->mempool_stats = MEM_callocN(sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1),
|
|
"per-taskpool mempool stats");
|
|
#endif
|
|
|
|
/* Ensure malloc will go fine from threads,
|
|
*
|
|
* This is needed because we could be in main thread here
|
|
* and malloc could be non-thread safe at this point because
|
|
* no other jobs are running.
|
|
*/
|
|
BLI_threaded_malloc_begin();
|
|
|
|
return pool;
|
|
}
|
|
|
|
/**
|
|
* Create a normal task pool. Tasks will be executed as soon as they are added.
|
|
*/
|
|
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata)
|
|
{
|
|
return task_pool_create_ex(scheduler, userdata, false, false);
|
|
}
|
|
|
|
/**
|
|
* Create a background task pool.
|
|
* In multi-threaded context, there is no differences with #BLI_task_pool_create(),
|
|
* but in single-threaded case it is ensured to have at least one worker thread to run on
|
|
* (i.e. you don't have to call #BLI_task_pool_work_and_wait
|
|
* on it to be sure it will be processed).
|
|
*
|
|
* \note Background pools are non-recursive
|
|
* (that is, you should not create other background pools in tasks assigned to a background pool,
|
|
* they could end never being executed, since the 'fallback' background thread is already
|
|
* busy with parent task in single-threaded context).
|
|
*/
|
|
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata)
|
|
{
|
|
return task_pool_create_ex(scheduler, userdata, true, false);
|
|
}
|
|
|
|
/**
|
|
* Similar to BLI_task_pool_create() but does not schedule any tasks for execution
|
|
* for until BLI_task_pool_work_and_wait() is called. This helps reducing threading
|
|
* overhead when pushing huge amount of small initial tasks from the main thread.
|
|
*/
|
|
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler, void *userdata)
|
|
{
|
|
return task_pool_create_ex(scheduler, userdata, false, true);
|
|
}
|
|
|
|
void BLI_task_pool_free(TaskPool *pool)
|
|
{
|
|
BLI_task_pool_cancel(pool);
|
|
|
|
BLI_mutex_end(&pool->num_mutex);
|
|
BLI_condition_end(&pool->num_cond);
|
|
|
|
BLI_mutex_end(&pool->user_mutex);
|
|
|
|
#ifdef DEBUG_STATS
|
|
printf("Thread ID Allocated Reused Discarded\n");
|
|
for (int i = 0; i < pool->scheduler->num_threads + 1; i++) {
|
|
printf("%02d %05d %05d %05d\n",
|
|
i,
|
|
pool->mempool_stats[i].num_alloc,
|
|
pool->mempool_stats[i].num_reuse,
|
|
pool->mempool_stats[i].num_discard);
|
|
}
|
|
MEM_freeN(pool->mempool_stats);
|
|
#endif
|
|
|
|
if (pool->use_local_tls) {
|
|
free_task_tls(&pool->local_tls);
|
|
}
|
|
|
|
MEM_freeN(pool);
|
|
|
|
BLI_threaded_malloc_end();
|
|
}
|
|
|
|
BLI_INLINE bool task_can_use_local_queues(TaskPool *pool, int thread_id)
|
|
{
|
|
return (thread_id != -1 && (thread_id != pool->thread_id || pool->do_work));
|
|
}
|
|
|
|
static void task_pool_push(TaskPool *pool,
|
|
TaskRunFunction run,
|
|
void *taskdata,
|
|
bool free_taskdata,
|
|
TaskFreeFunction freedata,
|
|
TaskPriority priority,
|
|
int thread_id)
|
|
{
|
|
/* Allocate task and fill it's properties. */
|
|
Task *task = task_alloc(pool, thread_id);
|
|
task->run = run;
|
|
task->taskdata = taskdata;
|
|
task->free_taskdata = free_taskdata;
|
|
task->freedata = freedata;
|
|
task->pool = pool;
|
|
/* For suspended pools we put everything yo a global queue first
|
|
* and exit as soon as possible.
|
|
*
|
|
* This tasks will be moved to actual execution when pool is
|
|
* activated by work_and_wait().
|
|
*/
|
|
if (pool->is_suspended) {
|
|
BLI_addhead(&pool->suspended_queue, task);
|
|
atomic_fetch_and_add_z(&pool->num_suspended, 1);
|
|
return;
|
|
}
|
|
/* Populate to any local queue first, this is cheapest push ever. */
|
|
if (task_can_use_local_queues(pool, thread_id)) {
|
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
|
/* Try to push to a local execution queue.
|
|
* These tasks will be picked up next.
|
|
*/
|
|
if (tls->num_local_queue < LOCAL_QUEUE_SIZE) {
|
|
tls->local_queue[tls->num_local_queue] = task;
|
|
tls->num_local_queue++;
|
|
return;
|
|
}
|
|
/* If we are in the delayed tasks push mode, we push tasks to a
|
|
* temporary local queue first without any locks, and then move them
|
|
* to global execution queue with a single lock.
|
|
*/
|
|
if (tls->do_delayed_push && tls->num_delayed_queue < DELAYED_QUEUE_SIZE) {
|
|
tls->delayed_queue[tls->num_delayed_queue] = task;
|
|
tls->num_delayed_queue++;
|
|
return;
|
|
}
|
|
}
|
|
/* Do push to a global execution pool, slowest possible method,
|
|
* causes quite reasonable amount of threading overhead.
|
|
*/
|
|
task_scheduler_push(pool->scheduler, task, priority);
|
|
}
|
|
|
|
void BLI_task_pool_push_ex(TaskPool *pool,
|
|
TaskRunFunction run,
|
|
void *taskdata,
|
|
bool free_taskdata,
|
|
TaskFreeFunction freedata,
|
|
TaskPriority priority)
|
|
{
|
|
task_pool_push(pool, run, taskdata, free_taskdata, freedata, priority, -1);
|
|
}
|
|
|
|
void BLI_task_pool_push(
|
|
TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority)
|
|
{
|
|
BLI_task_pool_push_ex(pool, run, taskdata, free_taskdata, NULL, priority);
|
|
}
|
|
|
|
void BLI_task_pool_push_from_thread(TaskPool *pool,
|
|
TaskRunFunction run,
|
|
void *taskdata,
|
|
bool free_taskdata,
|
|
TaskPriority priority,
|
|
int thread_id)
|
|
{
|
|
task_pool_push(pool, run, taskdata, free_taskdata, NULL, priority, thread_id);
|
|
}
|
|
|
|
void BLI_task_pool_work_and_wait(TaskPool *pool)
|
|
{
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id);
|
|
TaskScheduler *scheduler = pool->scheduler;
|
|
|
|
if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) {
|
|
if (pool->num_suspended) {
|
|
task_pool_num_increase(pool, pool->num_suspended);
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue);
|
|
|
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
pool->num_suspended = 0;
|
|
}
|
|
}
|
|
|
|
pool->do_work = true;
|
|
|
|
ASSERT_THREAD_ID(pool->scheduler, pool->thread_id);
|
|
|
|
handle_local_queue(tls, pool->thread_id);
|
|
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
while (pool->num != 0) {
|
|
Task *task, *work_task = NULL;
|
|
bool found_task = false;
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
/* find task from this pool. if we get a task from another pool,
|
|
* we can get into deadlock */
|
|
|
|
for (task = scheduler->queue.first; task; task = task->next) {
|
|
if (task->pool == pool) {
|
|
work_task = task;
|
|
found_task = true;
|
|
BLI_remlink(&scheduler->queue, task);
|
|
break;
|
|
}
|
|
}
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
/* if found task, do it, otherwise wait until other tasks are done */
|
|
if (found_task) {
|
|
/* run task */
|
|
BLI_assert(!tls->do_delayed_push);
|
|
work_task->run(pool, work_task->taskdata, pool->thread_id);
|
|
BLI_assert(!tls->do_delayed_push);
|
|
|
|
/* delete task */
|
|
task_free(pool, task, pool->thread_id);
|
|
|
|
/* Handle all tasks from local queue. */
|
|
handle_local_queue(tls, pool->thread_id);
|
|
|
|
/* notify pool task was done */
|
|
task_pool_num_decrease(pool, 1);
|
|
}
|
|
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
if (pool->num == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!found_task) {
|
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
|
}
|
|
}
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
|
|
BLI_assert(tls->num_local_queue == 0);
|
|
}
|
|
|
|
void BLI_task_pool_work_wait_and_reset(TaskPool *pool)
|
|
{
|
|
BLI_task_pool_work_and_wait(pool);
|
|
|
|
pool->do_work = false;
|
|
pool->is_suspended = pool->start_suspended;
|
|
}
|
|
|
|
void BLI_task_pool_cancel(TaskPool *pool)
|
|
{
|
|
pool->do_cancel = true;
|
|
|
|
task_scheduler_clear(pool->scheduler, pool);
|
|
|
|
/* wait until all entries are cleared */
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
while (pool->num) {
|
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
|
}
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
|
|
pool->do_cancel = false;
|
|
}
|
|
|
|
bool BLI_task_pool_canceled(TaskPool *pool)
|
|
{
|
|
return pool->do_cancel;
|
|
}
|
|
|
|
void *BLI_task_pool_userdata(TaskPool *pool)
|
|
{
|
|
return pool->userdata;
|
|
}
|
|
|
|
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
|
|
{
|
|
return &pool->user_mutex;
|
|
}
|
|
|
|
void BLI_task_pool_delayed_push_begin(TaskPool *pool, int thread_id)
|
|
{
|
|
if (task_can_use_local_queues(pool, thread_id)) {
|
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
|
tls->do_delayed_push = true;
|
|
}
|
|
}
|
|
|
|
void BLI_task_pool_delayed_push_end(TaskPool *pool, int thread_id)
|
|
{
|
|
if (task_can_use_local_queues(pool, thread_id)) {
|
|
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
|
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
|
BLI_assert(tls->do_delayed_push);
|
|
task_scheduler_push_all(pool->scheduler, pool, tls->delayed_queue, tls->num_delayed_queue);
|
|
tls->do_delayed_push = false;
|
|
tls->num_delayed_queue = 0;
|
|
}
|
|
}
|
|
|
|
/* Parallel range routines */
|
|
|
|
/**
|
|
*
|
|
* Main functions:
|
|
* - #BLI_task_parallel_range
|
|
* - #BLI_task_parallel_listbase (#ListBase - double linked list)
|
|
*
|
|
* TODO:
|
|
* - #BLI_task_parallel_foreach_link (#Link - single linked list)
|
|
* - #BLI_task_parallel_foreach_ghash/gset (#GHash/#GSet - hash & set)
|
|
* - #BLI_task_parallel_foreach_mempool (#BLI_mempool - iterate over mempools)
|
|
*/
|
|
|
|
/* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */
|
|
#define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__)
|
|
#define MALLOCA_FREE(_mem, _size) \
|
|
if (((_mem) != NULL) && ((_size) > 8192)) \
|
|
MEM_freeN((_mem))
|
|
|
|
/* Stores all needed data to perform a parallelized iteration,
|
|
* with a same operation (callback function).
|
|
* It can be chained with other tasks in a single-linked list way. */
|
|
typedef struct TaskParallelRangeState {
|
|
struct TaskParallelRangeState *next;
|
|
|
|
/* Start and end point of integer value iteration. */
|
|
int start, stop;
|
|
|
|
/* User-defined data, shared between all worker threads. */
|
|
void *userdata_shared;
|
|
/* User-defined callback function called for each value in [start, stop[ specified range. */
|
|
TaskParallelRangeFunc func;
|
|
|
|
/* Each instance of looping chunks will get a copy of this data
|
|
* (similar to OpenMP's firstprivate).
|
|
*/
|
|
void *initial_tls_memory; /* Pointer to actual user-defined 'tls' data. */
|
|
size_t tls_data_size; /* Size of that data. */
|
|
|
|
void *flatten_tls_storage; /* 'tls' copies of initial_tls_memory for each running task. */
|
|
/* Number of 'tls' copies in the array, i.e. number of worker threads. */
|
|
size_t num_elements_in_tls_storage;
|
|
|
|
/* Function called from calling thread once whole range have been processed. */
|
|
TaskParallelFinalizeFunc func_finalize;
|
|
|
|
/* Current value of the iterator, shared between all threads (atomically updated). */
|
|
int iter_value;
|
|
int iter_chunk_num; /* Amount of iterations to process in a single step. */
|
|
} TaskParallelRangeState;
|
|
|
|
/* Stores all the parallel tasks for a single pool. */
|
|
typedef struct TaskParallelRangePool {
|
|
/* The workers' task pool. */
|
|
TaskPool *pool;
|
|
/* The number of worker tasks we need to create. */
|
|
int num_tasks;
|
|
/* The total number of iterations in all the added ranges. */
|
|
int num_total_iters;
|
|
/* The size (number of items) processed at once by a worker task. */
|
|
int chunk_size;
|
|
|
|
/* Linked list of range tasks to process. */
|
|
TaskParallelRangeState *parallel_range_states;
|
|
/* Current range task beeing processed, swapped atomically. */
|
|
TaskParallelRangeState *current_state;
|
|
/* Scheduling settings common to all tasks. */
|
|
TaskParallelSettings *settings;
|
|
} TaskParallelRangePool;
|
|
|
|
BLI_INLINE void task_parallel_calc_chunk_size(const TaskParallelSettings *settings,
|
|
const int tot_items,
|
|
int num_tasks,
|
|
int *r_chunk_size)
|
|
{
|
|
int chunk_size = 0;
|
|
|
|
if (!settings->use_threading) {
|
|
/* Some users of this helper will still need a valid chunk size in case processing is not
|
|
* threaded. We can use a bigger one than in default threaded case then. */
|
|
chunk_size = 1024;
|
|
num_tasks = 1;
|
|
}
|
|
else if (settings->min_iter_per_thread > 0) {
|
|
/* Already set by user, no need to do anything here. */
|
|
chunk_size = settings->min_iter_per_thread;
|
|
}
|
|
else {
|
|
/* Multiplier used in heuristics below to define "optimal" chunk size.
|
|
* The idea here is to increase the chunk size to compensate for a rather measurable threading
|
|
* overhead caused by fetching tasks. With too many CPU threads we are starting
|
|
* to spend too much time in those overheads.
|
|
* First values are: 1 if num_tasks < 16;
|
|
* else 2 if num_tasks < 32;
|
|
* else 3 if num_tasks < 48;
|
|
* else 4 if num_tasks < 64;
|
|
* etc.
|
|
* Note: If we wanted to keep the 'power of two' multiplier, we'd need something like:
|
|
* 1 << max_ii(0, (int)(sizeof(int) * 8) - 1 - bitscan_reverse_i(num_tasks) - 3)
|
|
*/
|
|
const int num_tasks_factor = max_ii(1, num_tasks >> 3);
|
|
|
|
/* We could make that 'base' 32 number configurable in TaskParallelSettings too, or maybe just
|
|
* always use that heuristic using TaskParallelSettings.min_iter_per_thread as basis? */
|
|
chunk_size = 32 * num_tasks_factor;
|
|
|
|
/* Basic heuristic to avoid threading on low amount of items.
|
|
* We could make that limit configurable in settings too. */
|
|
if (tot_items > 0 && tot_items < max_ii(256, chunk_size * 2)) {
|
|
chunk_size = tot_items;
|
|
}
|
|
}
|
|
|
|
BLI_assert(chunk_size > 0);
|
|
|
|
if (tot_items > 0) {
|
|
switch (settings->scheduling_mode) {
|
|
case TASK_SCHEDULING_STATIC:
|
|
*r_chunk_size = max_ii(chunk_size, tot_items / num_tasks);
|
|
break;
|
|
case TASK_SCHEDULING_DYNAMIC:
|
|
*r_chunk_size = chunk_size;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* If total amount of items is unknown, we can only use dynamic scheduling. */
|
|
*r_chunk_size = chunk_size;
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void task_parallel_range_calc_chunk_size(TaskParallelRangePool *range_pool)
|
|
{
|
|
int num_iters = 0;
|
|
int min_num_iters = INT_MAX;
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state->next) {
|
|
const int ni = state->stop - state->start;
|
|
num_iters += ni;
|
|
if (min_num_iters > ni) {
|
|
min_num_iters = ni;
|
|
}
|
|
}
|
|
range_pool->num_total_iters = num_iters;
|
|
/* Note: Passing min_num_iters here instead of num_iters kind of partially breaks the 'static'
|
|
* scheduling, but pooled range iterator is inherently non-static anyway, so adding a small level
|
|
* of dynamic scheduling here should be fine. */
|
|
task_parallel_calc_chunk_size(
|
|
range_pool->settings, min_num_iters, range_pool->num_tasks, &range_pool->chunk_size);
|
|
}
|
|
|
|
BLI_INLINE bool parallel_range_next_iter_get(TaskParallelRangePool *__restrict range_pool,
|
|
int *__restrict r_iter,
|
|
int *__restrict r_count,
|
|
TaskParallelRangeState **__restrict r_state)
|
|
{
|
|
/* We need an atomic op here as well to fetch the initial state, since some other thread might
|
|
* have already updated it. */
|
|
TaskParallelRangeState *current_state = atomic_cas_ptr(
|
|
(void **)&range_pool->current_state, NULL, NULL);
|
|
|
|
int previter = INT32_MAX;
|
|
|
|
while (current_state != NULL && previter >= current_state->stop) {
|
|
previter = atomic_fetch_and_add_int32(¤t_state->iter_value, range_pool->chunk_size);
|
|
*r_iter = previter;
|
|
*r_count = max_ii(0, min_ii(range_pool->chunk_size, current_state->stop - previter));
|
|
|
|
if (previter >= current_state->stop) {
|
|
/* At this point the state we got is done, we need to go to the next one. In case some other
|
|
* thread already did it, then this does nothing, and we'll just get current valid state
|
|
* at start of the next loop. */
|
|
TaskParallelRangeState *current_state_from_atomic_cas = atomic_cas_ptr(
|
|
(void **)&range_pool->current_state, current_state, current_state->next);
|
|
|
|
if (current_state == current_state_from_atomic_cas) {
|
|
/* The atomic CAS operation was successful, we did update range_pool->current_state, so we
|
|
* can safely switch to next state. */
|
|
current_state = current_state->next;
|
|
}
|
|
else {
|
|
/* The atomic CAS operation failed, but we still got range_pool->current_state value out of
|
|
* it, just use it as our new current state. */
|
|
current_state = current_state_from_atomic_cas;
|
|
}
|
|
}
|
|
}
|
|
|
|
*r_state = current_state;
|
|
return (current_state != NULL && previter < current_state->stop);
|
|
}
|
|
|
|
static void parallel_range_func(TaskPool *__restrict pool, void *tls_data_idx, int thread_id)
|
|
{
|
|
TaskParallelRangePool *__restrict range_pool = BLI_task_pool_userdata(pool);
|
|
TaskParallelTLS tls = {
|
|
.thread_id = thread_id,
|
|
.userdata_chunk = NULL,
|
|
};
|
|
TaskParallelRangeState *state;
|
|
int iter, count;
|
|
while (parallel_range_next_iter_get(range_pool, &iter, &count, &state)) {
|
|
tls.userdata_chunk = (char *)state->flatten_tls_storage +
|
|
(((size_t)POINTER_AS_INT(tls_data_idx)) * state->tls_data_size);
|
|
for (int i = 0; i < count; i++) {
|
|
state->func(state->userdata_shared, iter + i, &tls);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void parallel_range_single_thread(TaskParallelRangePool *range_pool)
|
|
{
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state->next) {
|
|
const int start = state->start;
|
|
const int stop = state->stop;
|
|
void *userdata = state->userdata_shared;
|
|
TaskParallelRangeFunc func = state->func;
|
|
|
|
void *initial_tls_memory = state->initial_tls_memory;
|
|
const size_t tls_data_size = state->tls_data_size;
|
|
void *flatten_tls_storage = NULL;
|
|
const bool use_tls_data = (tls_data_size != 0) && (initial_tls_memory != NULL);
|
|
if (use_tls_data) {
|
|
flatten_tls_storage = MALLOCA(tls_data_size);
|
|
memcpy(flatten_tls_storage, initial_tls_memory, tls_data_size);
|
|
}
|
|
TaskParallelTLS tls = {
|
|
.thread_id = 0,
|
|
.userdata_chunk = flatten_tls_storage,
|
|
};
|
|
for (int i = start; i < stop; i++) {
|
|
func(userdata, i, &tls);
|
|
}
|
|
if (state->func_finalize != NULL) {
|
|
state->func_finalize(userdata, flatten_tls_storage);
|
|
}
|
|
MALLOCA_FREE(flatten_tls_storage, tls_data_size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelized for loops in a similar way to OpenMP's
|
|
* 'parallel for' statement.
|
|
*
|
|
* See public API doc of ParallelRangeSettings for description of all settings.
|
|
*/
|
|
void BLI_task_parallel_range(const int start,
|
|
const int stop,
|
|
void *userdata,
|
|
TaskParallelRangeFunc func,
|
|
TaskParallelSettings *settings)
|
|
{
|
|
if (start == stop) {
|
|
return;
|
|
}
|
|
|
|
BLI_assert(start < stop);
|
|
|
|
TaskParallelRangeState state = {
|
|
.next = NULL,
|
|
.start = start,
|
|
.stop = stop,
|
|
.userdata_shared = userdata,
|
|
.func = func,
|
|
.iter_value = start,
|
|
.initial_tls_memory = settings->userdata_chunk,
|
|
.tls_data_size = settings->userdata_chunk_size,
|
|
.func_finalize = settings->func_finalize,
|
|
};
|
|
TaskParallelRangePool range_pool = {
|
|
.pool = NULL, .parallel_range_states = &state, .current_state = NULL, .settings = settings};
|
|
int i, num_threads, num_tasks;
|
|
|
|
void *tls_data = settings->userdata_chunk;
|
|
const size_t tls_data_size = settings->userdata_chunk_size;
|
|
if (tls_data_size != 0) {
|
|
BLI_assert(tls_data != NULL);
|
|
}
|
|
const bool use_tls_data = (tls_data_size != 0) && (tls_data != NULL);
|
|
void *flatten_tls_storage = NULL;
|
|
|
|
/* If it's not enough data to be crunched, don't bother with tasks at all,
|
|
* do everything from the current thread.
|
|
*/
|
|
if (!settings->use_threading) {
|
|
parallel_range_single_thread(&range_pool);
|
|
return;
|
|
}
|
|
|
|
TaskScheduler *task_scheduler = BLI_task_scheduler_get();
|
|
num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
|
|
|
/* The idea here is to prevent creating task for each of the loop iterations
|
|
* and instead have tasks which are evenly distributed across CPU cores and
|
|
* pull next iter to be crunched using the queue.
|
|
*/
|
|
range_pool.num_tasks = num_tasks = num_threads + 2;
|
|
|
|
task_parallel_range_calc_chunk_size(&range_pool);
|
|
range_pool.num_tasks = num_tasks = min_ii(num_tasks,
|
|
max_ii(1, (stop - start) / range_pool.chunk_size));
|
|
|
|
if (num_tasks == 1) {
|
|
parallel_range_single_thread(&range_pool);
|
|
return;
|
|
}
|
|
|
|
TaskPool *task_pool = range_pool.pool = BLI_task_pool_create_suspended(task_scheduler,
|
|
&range_pool);
|
|
|
|
range_pool.current_state = &state;
|
|
|
|
if (use_tls_data) {
|
|
state.flatten_tls_storage = flatten_tls_storage = MALLOCA(tls_data_size * (size_t)num_tasks);
|
|
state.tls_data_size = tls_data_size;
|
|
}
|
|
|
|
for (i = 0; i < num_tasks; i++) {
|
|
if (use_tls_data) {
|
|
void *userdata_chunk_local = (char *)flatten_tls_storage + (tls_data_size * (size_t)i);
|
|
memcpy(userdata_chunk_local, tls_data, tls_data_size);
|
|
}
|
|
/* Use this pool's pre-allocated tasks. */
|
|
BLI_task_pool_push_from_thread(task_pool,
|
|
parallel_range_func,
|
|
POINTER_FROM_INT(i),
|
|
false,
|
|
TASK_PRIORITY_HIGH,
|
|
task_pool->thread_id);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
if (use_tls_data) {
|
|
if (settings->func_finalize != NULL) {
|
|
for (i = 0; i < num_tasks; i++) {
|
|
void *userdata_chunk_local = (char *)flatten_tls_storage + (tls_data_size * (size_t)i);
|
|
settings->func_finalize(userdata, userdata_chunk_local);
|
|
}
|
|
}
|
|
MALLOCA_FREE(flatten_tls_storage, tls_data_size * (size_t)num_tasks);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Initialize a task pool to parallelize several for loops at the same time.
|
|
*
|
|
* See public API doc of ParallelRangeSettings for description of all settings.
|
|
* Note that loop-specific settings (like 'tls' data or finalize function) must be left NULL here.
|
|
* Only settings controlling how iteration is parallelized must be defined, as those will affect
|
|
* all loops added to that pool.
|
|
*/
|
|
TaskParallelRangePool *BLI_task_parallel_range_pool_init(const TaskParallelSettings *settings)
|
|
{
|
|
TaskParallelRangePool *range_pool = MEM_callocN(sizeof(*range_pool), __func__);
|
|
|
|
BLI_assert(settings->userdata_chunk == NULL);
|
|
BLI_assert(settings->func_finalize == NULL);
|
|
range_pool->settings = MEM_mallocN(sizeof(*range_pool->settings), __func__);
|
|
*range_pool->settings = *settings;
|
|
|
|
return range_pool;
|
|
}
|
|
|
|
/**
|
|
* Add a loop task to the pool. It does not execute it at all.
|
|
*
|
|
* See public API doc of ParallelRangeSettings for description of all settings.
|
|
* Note that only 'tls'-related data are used here.
|
|
*/
|
|
void BLI_task_parallel_range_pool_push(TaskParallelRangePool *range_pool,
|
|
const int start,
|
|
const int stop,
|
|
void *userdata,
|
|
TaskParallelRangeFunc func,
|
|
const TaskParallelSettings *settings)
|
|
{
|
|
BLI_assert(range_pool->pool == NULL);
|
|
|
|
if (start == stop) {
|
|
return;
|
|
}
|
|
|
|
BLI_assert(start < stop);
|
|
if (settings->userdata_chunk_size != 0) {
|
|
BLI_assert(settings->userdata_chunk != NULL);
|
|
}
|
|
|
|
TaskParallelRangeState *state = MEM_callocN(sizeof(*state), __func__);
|
|
state->start = start;
|
|
state->stop = stop;
|
|
state->userdata_shared = userdata;
|
|
state->func = func;
|
|
state->iter_value = start;
|
|
state->initial_tls_memory = settings->userdata_chunk;
|
|
state->tls_data_size = settings->userdata_chunk_size;
|
|
state->func_finalize = settings->func_finalize;
|
|
|
|
state->next = range_pool->parallel_range_states;
|
|
range_pool->parallel_range_states = state;
|
|
}
|
|
|
|
static void parallel_range_func_finalize(TaskPool *__restrict pool,
|
|
void *v_state,
|
|
int UNUSED(thread_id))
|
|
{
|
|
TaskParallelRangePool *__restrict range_pool = BLI_task_pool_userdata(pool);
|
|
TaskParallelRangeState *state = v_state;
|
|
|
|
for (int i = 0; i < range_pool->num_tasks; i++) {
|
|
void *tls_data = (char *)state->flatten_tls_storage + (state->tls_data_size * (size_t)i);
|
|
state->func_finalize(state->userdata_shared, tls_data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Run all tasks pushed to the range_pool.
|
|
*
|
|
* Note that the range pool is re-usable (you may push new tasks into it and call this function
|
|
* again).
|
|
*/
|
|
void BLI_task_parallel_range_pool_work_and_wait(TaskParallelRangePool *range_pool)
|
|
{
|
|
BLI_assert(range_pool->pool == NULL);
|
|
|
|
/* If it's not enough data to be crunched, don't bother with tasks at all,
|
|
* do everything from the current thread.
|
|
*/
|
|
if (!range_pool->settings->use_threading) {
|
|
parallel_range_single_thread(range_pool);
|
|
return;
|
|
}
|
|
|
|
TaskScheduler *task_scheduler = BLI_task_scheduler_get();
|
|
const int num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
|
|
|
/* The idea here is to prevent creating task for each of the loop iterations
|
|
* and instead have tasks which are evenly distributed across CPU cores and
|
|
* pull next iter to be crunched using the queue.
|
|
*/
|
|
int num_tasks = num_threads + 2;
|
|
range_pool->num_tasks = num_tasks;
|
|
|
|
task_parallel_range_calc_chunk_size(range_pool);
|
|
range_pool->num_tasks = num_tasks = min_ii(
|
|
num_tasks, max_ii(1, range_pool->num_total_iters / range_pool->chunk_size));
|
|
|
|
if (num_tasks == 1) {
|
|
parallel_range_single_thread(range_pool);
|
|
return;
|
|
}
|
|
|
|
/* We create all 'tls' data here in a single loop. */
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state->next) {
|
|
void *userdata_chunk = state->initial_tls_memory;
|
|
const size_t userdata_chunk_size = state->tls_data_size;
|
|
if (userdata_chunk_size == 0) {
|
|
BLI_assert(userdata_chunk == NULL);
|
|
continue;
|
|
}
|
|
|
|
void *userdata_chunk_array = NULL;
|
|
state->flatten_tls_storage = userdata_chunk_array = MALLOCA(userdata_chunk_size *
|
|
(size_t)num_tasks);
|
|
for (int i = 0; i < num_tasks; i++) {
|
|
void *userdata_chunk_local = (char *)userdata_chunk_array +
|
|
(userdata_chunk_size * (size_t)i);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
}
|
|
|
|
TaskPool *task_pool = range_pool->pool = BLI_task_pool_create_suspended(task_scheduler,
|
|
range_pool);
|
|
|
|
range_pool->current_state = range_pool->parallel_range_states;
|
|
|
|
for (int i = 0; i < num_tasks; i++) {
|
|
BLI_task_pool_push_from_thread(task_pool,
|
|
parallel_range_func,
|
|
POINTER_FROM_INT(i),
|
|
false,
|
|
TASK_PRIORITY_HIGH,
|
|
task_pool->thread_id);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
|
|
BLI_assert(atomic_cas_ptr((void **)&range_pool->current_state, NULL, NULL) == NULL);
|
|
|
|
/* Finalize all tasks. */
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state->next) {
|
|
const size_t userdata_chunk_size = state->tls_data_size;
|
|
void *userdata_chunk_array = state->flatten_tls_storage;
|
|
UNUSED_VARS_NDEBUG(userdata_chunk_array);
|
|
if (userdata_chunk_size == 0) {
|
|
BLI_assert(userdata_chunk_array == NULL);
|
|
continue;
|
|
}
|
|
|
|
if (state->func_finalize != NULL) {
|
|
BLI_task_pool_push_from_thread(task_pool,
|
|
parallel_range_func_finalize,
|
|
state,
|
|
false,
|
|
TASK_PRIORITY_HIGH,
|
|
task_pool->thread_id);
|
|
}
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
range_pool->pool = NULL;
|
|
|
|
/* Cleanup all tasks. */
|
|
TaskParallelRangeState *state_next;
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state_next) {
|
|
state_next = state->next;
|
|
|
|
const size_t userdata_chunk_size = state->tls_data_size;
|
|
void *userdata_chunk_array = state->flatten_tls_storage;
|
|
if (userdata_chunk_size != 0) {
|
|
BLI_assert(userdata_chunk_array != NULL);
|
|
MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * (size_t)num_tasks);
|
|
}
|
|
|
|
MEM_freeN(state);
|
|
}
|
|
range_pool->parallel_range_states = NULL;
|
|
}
|
|
|
|
/**
|
|
* Clear/free given \a range_pool.
|
|
*/
|
|
void BLI_task_parallel_range_pool_free(TaskParallelRangePool *range_pool)
|
|
{
|
|
TaskParallelRangeState *state_next = NULL;
|
|
for (TaskParallelRangeState *state = range_pool->parallel_range_states; state != NULL;
|
|
state = state_next) {
|
|
state_next = state->next;
|
|
MEM_freeN(state);
|
|
}
|
|
MEM_freeN(range_pool->settings);
|
|
MEM_freeN(range_pool);
|
|
}
|
|
|
|
typedef struct TaskParallelIteratorState {
|
|
void *userdata;
|
|
TaskParallelIteratorIterFunc iter_func;
|
|
TaskParallelIteratorFunc func;
|
|
|
|
/* *** Data used to 'acquire' chunks of items from the iterator. *** */
|
|
/* Common data also passed to the generator callback. */
|
|
TaskParallelIteratorStateShared iter_shared;
|
|
/* Total number of items. If unknown, set it to a negative number. */
|
|
int tot_items;
|
|
} TaskParallelIteratorState;
|
|
|
|
BLI_INLINE void task_parallel_iterator_calc_chunk_size(const TaskParallelSettings *settings,
|
|
const int num_tasks,
|
|
TaskParallelIteratorState *state)
|
|
{
|
|
task_parallel_calc_chunk_size(
|
|
settings, state->tot_items, num_tasks, &state->iter_shared.chunk_size);
|
|
}
|
|
|
|
static void parallel_iterator_func_do(TaskParallelIteratorState *__restrict state,
|
|
void *userdata_chunk,
|
|
int threadid)
|
|
{
|
|
TaskParallelTLS tls = {
|
|
.thread_id = threadid,
|
|
.userdata_chunk = userdata_chunk,
|
|
};
|
|
|
|
void **current_chunk_items;
|
|
int *current_chunk_indices;
|
|
int current_chunk_size;
|
|
|
|
const size_t items_size = sizeof(*current_chunk_items) * (size_t)state->iter_shared.chunk_size;
|
|
const size_t indices_size = sizeof(*current_chunk_indices) *
|
|
(size_t)state->iter_shared.chunk_size;
|
|
|
|
current_chunk_items = MALLOCA(items_size);
|
|
current_chunk_indices = MALLOCA(indices_size);
|
|
current_chunk_size = 0;
|
|
|
|
for (bool do_abort = false; !do_abort;) {
|
|
if (state->iter_shared.spin_lock != NULL) {
|
|
BLI_spin_lock(state->iter_shared.spin_lock);
|
|
}
|
|
|
|
/* Get current status. */
|
|
int index = state->iter_shared.next_index;
|
|
void *item = state->iter_shared.next_item;
|
|
int i;
|
|
|
|
/* 'Acquire' a chunk of items from the iterator function. */
|
|
for (i = 0; i < state->iter_shared.chunk_size && !state->iter_shared.is_finished; i++) {
|
|
current_chunk_indices[i] = index;
|
|
current_chunk_items[i] = item;
|
|
state->iter_func(state->userdata, &tls, &item, &index, &state->iter_shared.is_finished);
|
|
}
|
|
|
|
/* Update current status. */
|
|
state->iter_shared.next_index = index;
|
|
state->iter_shared.next_item = item;
|
|
current_chunk_size = i;
|
|
|
|
do_abort = state->iter_shared.is_finished;
|
|
|
|
if (state->iter_shared.spin_lock != NULL) {
|
|
BLI_spin_unlock(state->iter_shared.spin_lock);
|
|
}
|
|
|
|
for (i = 0; i < current_chunk_size; ++i) {
|
|
state->func(state->userdata, current_chunk_items[i], current_chunk_indices[i], &tls);
|
|
}
|
|
}
|
|
|
|
MALLOCA_FREE(current_chunk_items, items_size);
|
|
MALLOCA_FREE(current_chunk_indices, indices_size);
|
|
}
|
|
|
|
static void parallel_iterator_func(TaskPool *__restrict pool, void *userdata_chunk, int threadid)
|
|
{
|
|
TaskParallelIteratorState *__restrict state = BLI_task_pool_userdata(pool);
|
|
|
|
parallel_iterator_func_do(state, userdata_chunk, threadid);
|
|
}
|
|
|
|
static void task_parallel_iterator_no_threads(const TaskParallelSettings *settings,
|
|
TaskParallelIteratorState *state)
|
|
{
|
|
/* Prepare user's TLS data. */
|
|
void *userdata_chunk = settings->userdata_chunk;
|
|
const size_t userdata_chunk_size = settings->userdata_chunk_size;
|
|
void *userdata_chunk_local = NULL;
|
|
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_local = MALLOCA(userdata_chunk_size);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
|
|
/* Also marking it as non-threaded for the iterator callback. */
|
|
state->iter_shared.spin_lock = NULL;
|
|
|
|
parallel_iterator_func_do(state, userdata_chunk, 0);
|
|
|
|
if (use_userdata_chunk) {
|
|
if (settings->func_finalize != NULL) {
|
|
settings->func_finalize(state->userdata, userdata_chunk_local);
|
|
}
|
|
MALLOCA_FREE(userdata_chunk_local, userdata_chunk_size);
|
|
}
|
|
}
|
|
|
|
static void task_parallel_iterator_do(const TaskParallelSettings *settings,
|
|
TaskParallelIteratorState *state)
|
|
{
|
|
TaskScheduler *task_scheduler = BLI_task_scheduler_get();
|
|
const int num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
|
|
|
task_parallel_iterator_calc_chunk_size(settings, num_threads, state);
|
|
|
|
if (!settings->use_threading) {
|
|
task_parallel_iterator_no_threads(settings, state);
|
|
return;
|
|
}
|
|
|
|
const int chunk_size = state->iter_shared.chunk_size;
|
|
const int tot_items = state->tot_items;
|
|
const size_t num_tasks = tot_items >= 0 ?
|
|
(size_t)min_ii(num_threads, state->tot_items / chunk_size) :
|
|
(size_t)num_threads;
|
|
|
|
BLI_assert(num_tasks > 0);
|
|
if (num_tasks == 1) {
|
|
task_parallel_iterator_no_threads(settings, state);
|
|
return;
|
|
}
|
|
|
|
SpinLock spin_lock;
|
|
BLI_spin_init(&spin_lock);
|
|
state->iter_shared.spin_lock = &spin_lock;
|
|
|
|
void *userdata_chunk = settings->userdata_chunk;
|
|
const size_t userdata_chunk_size = settings->userdata_chunk_size;
|
|
void *userdata_chunk_local = NULL;
|
|
void *userdata_chunk_array = NULL;
|
|
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
|
|
|
TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, state);
|
|
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks);
|
|
}
|
|
|
|
for (size_t i = 0; i < num_tasks; i++) {
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
/* Use this pool's pre-allocated tasks. */
|
|
BLI_task_pool_push_from_thread(task_pool,
|
|
parallel_iterator_func,
|
|
userdata_chunk_local,
|
|
false,
|
|
TASK_PRIORITY_HIGH,
|
|
task_pool->thread_id);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
if (use_userdata_chunk) {
|
|
if (settings->func_finalize != NULL) {
|
|
for (size_t i = 0; i < num_tasks; i++) {
|
|
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
|
|
settings->func_finalize(state->userdata, userdata_chunk_local);
|
|
}
|
|
}
|
|
MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks);
|
|
}
|
|
|
|
BLI_spin_end(&spin_lock);
|
|
state->iter_shared.spin_lock = NULL;
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops using a generic iterator.
|
|
*
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param iter_func: Callback function used to generate chunks of items.
|
|
* \param init_item: The initial item, if necessary (may be NULL if unused).
|
|
* \param init_index: The initial index.
|
|
* \param tot_items: The total amount of items to iterate over
|
|
* (if unknown, set it to a negative number).
|
|
* \param func: Callback function.
|
|
* \param settings: See public API doc of TaskParallelSettings for description of all settings.
|
|
*
|
|
* \note Static scheduling is only available when \a tot_items is >= 0.
|
|
*/
|
|
|
|
void BLI_task_parallel_iterator(void *userdata,
|
|
TaskParallelIteratorIterFunc iter_func,
|
|
void *init_item,
|
|
const int init_index,
|
|
const int tot_items,
|
|
TaskParallelIteratorFunc func,
|
|
const TaskParallelSettings *settings)
|
|
{
|
|
TaskParallelIteratorState state = {0};
|
|
|
|
state.tot_items = tot_items;
|
|
state.iter_shared.next_index = init_index;
|
|
state.iter_shared.next_item = init_item;
|
|
state.iter_shared.is_finished = false;
|
|
state.userdata = userdata;
|
|
state.iter_func = iter_func;
|
|
state.func = func;
|
|
|
|
task_parallel_iterator_do(settings, &state);
|
|
}
|
|
|
|
static void task_parallel_listbase_get(void *__restrict UNUSED(userdata),
|
|
const TaskParallelTLS *__restrict UNUSED(tls),
|
|
void **r_next_item,
|
|
int *r_next_index,
|
|
bool *r_do_abort)
|
|
{
|
|
/* Get current status. */
|
|
Link *link = *r_next_item;
|
|
|
|
if (link->next == NULL) {
|
|
*r_do_abort = true;
|
|
}
|
|
*r_next_item = link->next;
|
|
(*r_next_index)++;
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops over ListBase items.
|
|
*
|
|
* \param listbase: The double linked list to loop over.
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param func: Callback function.
|
|
* \param settings: See public API doc of ParallelRangeSettings for description of all settings.
|
|
*
|
|
* \note There is no static scheduling here,
|
|
* since it would need another full loop over items to count them.
|
|
*/
|
|
void BLI_task_parallel_listbase(ListBase *listbase,
|
|
void *userdata,
|
|
TaskParallelIteratorFunc func,
|
|
const TaskParallelSettings *settings)
|
|
{
|
|
if (BLI_listbase_is_empty(listbase)) {
|
|
return;
|
|
}
|
|
|
|
TaskParallelIteratorState state = {0};
|
|
|
|
state.tot_items = BLI_listbase_count(listbase);
|
|
state.iter_shared.next_index = 0;
|
|
state.iter_shared.next_item = listbase->first;
|
|
state.iter_shared.is_finished = false;
|
|
state.userdata = userdata;
|
|
state.iter_func = task_parallel_listbase_get;
|
|
state.func = func;
|
|
|
|
task_parallel_iterator_do(settings, &state);
|
|
}
|
|
|
|
#undef MALLOCA
|
|
#undef MALLOCA_FREE
|
|
|
|
typedef struct ParallelMempoolState {
|
|
void *userdata;
|
|
TaskParallelMempoolFunc func;
|
|
} ParallelMempoolState;
|
|
|
|
static void parallel_mempool_func(TaskPool *__restrict pool, void *taskdata, int UNUSED(threadid))
|
|
{
|
|
ParallelMempoolState *__restrict state = BLI_task_pool_userdata(pool);
|
|
BLI_mempool_iter *iter = taskdata;
|
|
MempoolIterData *item;
|
|
|
|
while ((item = BLI_mempool_iterstep(iter)) != NULL) {
|
|
state->func(state->userdata, item);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelize for loops over Mempool items.
|
|
*
|
|
* \param mempool: The iterable BLI_mempool to loop over.
|
|
* \param userdata: Common userdata passed to all instances of \a func.
|
|
* \param func: Callback function.
|
|
* \param use_threading: If \a true, actually split-execute loop in threads,
|
|
* else just do a sequential for loop
|
|
* (allows caller to use any kind of test to switch on parallelization or not).
|
|
*
|
|
* \note There is no static scheduling here.
|
|
*/
|
|
void BLI_task_parallel_mempool(BLI_mempool *mempool,
|
|
void *userdata,
|
|
TaskParallelMempoolFunc func,
|
|
const bool use_threading)
|
|
{
|
|
TaskScheduler *task_scheduler;
|
|
TaskPool *task_pool;
|
|
ParallelMempoolState state;
|
|
int i, num_threads, num_tasks;
|
|
|
|
if (BLI_mempool_len(mempool) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!use_threading) {
|
|
BLI_mempool_iter iter;
|
|
BLI_mempool_iternew(mempool, &iter);
|
|
|
|
for (void *item = BLI_mempool_iterstep(&iter); item != NULL;
|
|
item = BLI_mempool_iterstep(&iter)) {
|
|
func(userdata, item);
|
|
}
|
|
return;
|
|
}
|
|
|
|
task_scheduler = BLI_task_scheduler_get();
|
|
task_pool = BLI_task_pool_create_suspended(task_scheduler, &state);
|
|
num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
|
|
|
/* The idea here is to prevent creating task for each of the loop iterations
|
|
* and instead have tasks which are evenly distributed across CPU cores and
|
|
* pull next item to be crunched using the threaded-aware BLI_mempool_iter.
|
|
*/
|
|
num_tasks = num_threads + 2;
|
|
|
|
state.userdata = userdata;
|
|
state.func = func;
|
|
|
|
BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool,
|
|
(size_t)num_tasks);
|
|
|
|
for (i = 0; i < num_tasks; i++) {
|
|
/* Use this pool's pre-allocated tasks. */
|
|
BLI_task_pool_push_from_thread(task_pool,
|
|
parallel_mempool_func,
|
|
&mempool_iterators[i],
|
|
false,
|
|
TASK_PRIORITY_HIGH,
|
|
task_pool->thread_id);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
BLI_mempool_iter_threadsafe_free(mempool_iterators);
|
|
}
|