This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/intern/draw_cache_impl_volume.c
Jacques Lucke e12767a035 Volumes: support selection and outlines in viewport
Previously, one could only select a volume object in the outliner
or by clicking on the object origin. This patch allows you to click
on the actual volume.

Furthermore, the generated (invisible) mesh that is used for
selection is also used to draw an outline for the volume object now.

Reviewers: brecht

Differential Revision: https://developer.blender.org/D9022
2020-09-29 12:39:41 +02:00

342 lines
10 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2017 by Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup draw
*
* \brief Volume API for render engines
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math_base.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "DNA_object_types.h"
#include "DNA_volume_types.h"
#include "BKE_global.h"
#include "BKE_volume.h"
#include "BKE_volume_render.h"
#include "GPU_batch.h"
#include "GPU_texture.h"
#include "DRW_render.h"
#include "draw_cache.h" /* own include */
#include "draw_cache_impl.h" /* own include */
static void volume_batch_cache_clear(Volume *volume);
/* ---------------------------------------------------------------------- */
/* Volume GPUBatch Cache */
typedef struct VolumeBatchCache {
/* 3D textures */
ListBase grids;
/* Wireframe */
struct {
GPUVertBuf *pos_nor_in_order;
GPUBatch *batch;
} face_wire;
/* Surface for selection */
GPUBatch *selection_surface;
/* settings to determine if cache is invalid */
bool is_dirty;
} VolumeBatchCache;
/* GPUBatch cache management. */
static bool volume_batch_cache_valid(Volume *volume)
{
VolumeBatchCache *cache = volume->batch_cache;
return (cache && cache->is_dirty == false);
}
static void volume_batch_cache_init(Volume *volume)
{
VolumeBatchCache *cache = volume->batch_cache;
if (!cache) {
cache = volume->batch_cache = MEM_callocN(sizeof(*cache), __func__);
}
else {
memset(cache, 0, sizeof(*cache));
}
cache->is_dirty = false;
}
void DRW_volume_batch_cache_validate(Volume *volume)
{
if (!volume_batch_cache_valid(volume)) {
volume_batch_cache_clear(volume);
volume_batch_cache_init(volume);
}
}
static VolumeBatchCache *volume_batch_cache_get(Volume *volume)
{
DRW_volume_batch_cache_validate(volume);
return volume->batch_cache;
}
void DRW_volume_batch_cache_dirty_tag(Volume *volume, int mode)
{
VolumeBatchCache *cache = volume->batch_cache;
if (cache == NULL) {
return;
}
switch (mode) {
case BKE_VOLUME_BATCH_DIRTY_ALL:
cache->is_dirty = true;
break;
default:
BLI_assert(0);
}
}
static void volume_batch_cache_clear(Volume *volume)
{
VolumeBatchCache *cache = volume->batch_cache;
if (!cache) {
return;
}
LISTBASE_FOREACH (DRWVolumeGrid *, grid, &cache->grids) {
MEM_SAFE_FREE(grid->name);
DRW_TEXTURE_FREE_SAFE(grid->texture);
}
BLI_freelistN(&cache->grids);
GPU_VERTBUF_DISCARD_SAFE(cache->face_wire.pos_nor_in_order);
GPU_BATCH_DISCARD_SAFE(cache->face_wire.batch);
GPU_BATCH_DISCARD_SAFE(cache->selection_surface);
}
void DRW_volume_batch_cache_free(Volume *volume)
{
volume_batch_cache_clear(volume);
MEM_SAFE_FREE(volume->batch_cache);
}
static void drw_volume_wireframe_cb(
void *userdata, float (*verts)[3], int (*edges)[2], int totvert, int totedge)
{
Volume *volume = userdata;
VolumeBatchCache *cache = volume->batch_cache;
/* Create vertex buffer. */
static GPUVertFormat format = {0};
static uint pos_id, nor_id;
if (format.attr_len == 0) {
pos_id = GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
nor_id = GPU_vertformat_attr_add(&format, "nor", GPU_COMP_I10, 4, GPU_FETCH_INT_TO_FLOAT_UNIT);
}
static float normal[3] = {1.0f, 0.0f, 0.0f};
GPUPackedNormal packed_normal = GPU_normal_convert_i10_v3(normal);
cache->face_wire.pos_nor_in_order = GPU_vertbuf_create_with_format(&format);
GPU_vertbuf_data_alloc(cache->face_wire.pos_nor_in_order, totvert);
GPU_vertbuf_attr_fill(cache->face_wire.pos_nor_in_order, pos_id, verts);
GPU_vertbuf_attr_fill_stride(cache->face_wire.pos_nor_in_order, nor_id, 0, &packed_normal);
/* Create wiredata. */
GPUVertBuf *vbo_wiredata = GPU_vertbuf_calloc();
DRW_vertbuf_create_wiredata(vbo_wiredata, totvert);
if (volume->display.wireframe_type == VOLUME_WIREFRAME_POINTS) {
/* Create batch. */
cache->face_wire.batch = GPU_batch_create(
GPU_PRIM_POINTS, cache->face_wire.pos_nor_in_order, NULL);
}
else {
/* Create edge index buffer. */
GPUIndexBufBuilder elb;
GPU_indexbuf_init(&elb, GPU_PRIM_LINES, totedge, totvert);
for (int i = 0; i < totedge; i++) {
GPU_indexbuf_add_line_verts(&elb, edges[i][0], edges[i][1]);
}
GPUIndexBuf *ibo = GPU_indexbuf_build(&elb);
/* Create batch. */
cache->face_wire.batch = GPU_batch_create_ex(
GPU_PRIM_LINES, cache->face_wire.pos_nor_in_order, ibo, GPU_BATCH_OWNS_INDEX);
}
GPU_batch_vertbuf_add_ex(cache->face_wire.batch, vbo_wiredata, true);
}
GPUBatch *DRW_volume_batch_cache_get_wireframes_face(Volume *volume)
{
if (volume->display.wireframe_type == VOLUME_WIREFRAME_NONE) {
return NULL;
}
VolumeBatchCache *cache = volume_batch_cache_get(volume);
if (cache->face_wire.batch == NULL) {
VolumeGrid *volume_grid = BKE_volume_grid_active_get(volume);
if (volume_grid == NULL) {
return NULL;
}
/* Create wireframe from OpenVDB tree. */
BKE_volume_grid_wireframe(volume, volume_grid, drw_volume_wireframe_cb, volume);
}
return cache->face_wire.batch;
}
static void drw_volume_selection_surface_cb(
void *userdata, float (*verts)[3], int (*tris)[3], int totvert, int tottris)
{
Volume *volume = userdata;
VolumeBatchCache *cache = volume->batch_cache;
static GPUVertFormat format = {0};
static uint pos_id;
if (format.attr_len == 0) {
pos_id = GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
}
/* Create vertex buffer. */
GPUVertBuf *vbo_surface = GPU_vertbuf_create_with_format(&format);
GPU_vertbuf_data_alloc(vbo_surface, totvert);
GPU_vertbuf_attr_fill(vbo_surface, pos_id, verts);
/* Create index buffer. */
GPUIndexBufBuilder elb;
GPU_indexbuf_init(&elb, GPU_PRIM_TRIS, tottris, totvert);
for (int i = 0; i < tottris; i++) {
GPU_indexbuf_add_tri_verts(&elb, UNPACK3(tris[i]));
}
GPUIndexBuf *ibo_surface = GPU_indexbuf_build(&elb);
cache->selection_surface = GPU_batch_create_ex(
GPU_PRIM_TRIS, vbo_surface, ibo_surface, GPU_BATCH_OWNS_VBO | GPU_BATCH_OWNS_INDEX);
}
GPUBatch *DRW_volume_batch_cache_get_selection_surface(Volume *volume)
{
VolumeBatchCache *cache = volume_batch_cache_get(volume);
if (cache->selection_surface == NULL) {
VolumeGrid *volume_grid = BKE_volume_grid_active_get(volume);
if (volume_grid == NULL) {
return NULL;
}
BKE_volume_grid_selection_surface(
volume, volume_grid, drw_volume_selection_surface_cb, volume);
}
return cache->selection_surface;
}
static DRWVolumeGrid *volume_grid_cache_get(Volume *volume,
VolumeGrid *grid,
VolumeBatchCache *cache)
{
const char *name = BKE_volume_grid_name(grid);
/* Return cached grid. */
DRWVolumeGrid *cache_grid;
for (cache_grid = cache->grids.first; cache_grid; cache_grid = cache_grid->next) {
if (STREQ(cache_grid->name, name)) {
return cache_grid;
}
}
/* Allocate new grid. */
cache_grid = MEM_callocN(sizeof(DRWVolumeGrid), __func__);
cache_grid->name = BLI_strdup(name);
BLI_addtail(&cache->grids, cache_grid);
/* TODO: can we load this earlier, avoid accessing the global and take
* advantage of dependency graph multithreading? */
BKE_volume_load(volume, G.main);
/* Test if we support textures with the number of channels. */
size_t channels = BKE_volume_grid_channels(grid);
if (!ELEM(channels, 1, 3)) {
return cache_grid;
}
/* Load grid tree into memory, if not loaded already. */
const bool was_loaded = BKE_volume_grid_is_loaded(grid);
BKE_volume_grid_load(volume, grid);
/* Compute dense voxel grid size. */
int64_t dense_min[3], dense_max[3], resolution[3] = {0};
if (BKE_volume_grid_dense_bounds(volume, grid, dense_min, dense_max)) {
resolution[0] = dense_max[0] - dense_min[0];
resolution[1] = dense_max[1] - dense_min[1];
resolution[2] = dense_max[2] - dense_min[2];
}
size_t num_voxels = resolution[0] * resolution[1] * resolution[2];
size_t elem_size = sizeof(float) * channels;
/* Allocate and load voxels. */
float *voxels = (num_voxels > 0) ? MEM_malloc_arrayN(num_voxels, elem_size, __func__) : NULL;
if (voxels != NULL) {
BKE_volume_grid_dense_voxels(volume, grid, dense_min, dense_max, voxels);
/* Create GPU texture. */
eGPUTextureFormat format = (channels == 3) ? GPU_RGB16F : GPU_R16F;
cache_grid->texture = GPU_texture_create_3d(
"volume_grid", UNPACK3(resolution), 1, format, GPU_DATA_FLOAT, voxels);
GPU_texture_swizzle_set(cache_grid->texture, (channels == 3) ? "rgb1" : "rrr1");
GPU_texture_wrap_mode(cache_grid->texture, false, false);
MEM_freeN(voxels);
/* Compute transform matrices. */
BKE_volume_grid_dense_transform_matrix(
grid, dense_min, dense_max, cache_grid->texture_to_object);
invert_m4_m4(cache_grid->object_to_texture, cache_grid->texture_to_object);
}
/* Free grid from memory if it wasn't previously loaded. */
if (!was_loaded) {
BKE_volume_grid_unload(volume, grid);
}
return cache_grid;
}
DRWVolumeGrid *DRW_volume_batch_cache_get_grid(Volume *volume, VolumeGrid *volume_grid)
{
VolumeBatchCache *cache = volume_batch_cache_get(volume);
DRWVolumeGrid *grid = volume_grid_cache_get(volume, volume_grid, cache);
return (grid->texture != NULL) ? grid : NULL;
}
int DRW_volume_material_count_get(Volume *volume)
{
return max_ii(1, volume->totcol);
}