From recent experience, turns out we often do want to use something else than basic range of parallelized forloop as control parameter over threads usage, so now BLI func only takes a boolean, and caller defines best check for its own case.
742 lines
19 KiB
C
742 lines
19 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenlib/intern/task.c
|
|
* \ingroup bli
|
|
*
|
|
* A generic task system which can be used for any task based subsystem.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_task.h"
|
|
#include "BLI_threads.h"
|
|
|
|
#include "atomic_ops.h"
|
|
|
|
/* Types */
|
|
|
|
typedef struct Task {
|
|
struct Task *next, *prev;
|
|
|
|
TaskRunFunction run;
|
|
void *taskdata;
|
|
bool free_taskdata;
|
|
TaskFreeFunction freedata;
|
|
TaskPool *pool;
|
|
} Task;
|
|
|
|
struct TaskPool {
|
|
TaskScheduler *scheduler;
|
|
|
|
volatile size_t num;
|
|
volatile size_t done;
|
|
size_t num_threads;
|
|
size_t currently_running_tasks;
|
|
ThreadMutex num_mutex;
|
|
ThreadCondition num_cond;
|
|
|
|
void *userdata;
|
|
ThreadMutex user_mutex;
|
|
|
|
volatile bool do_cancel;
|
|
|
|
/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler has to use its special
|
|
* background fallback thread in case we are in single-threaded situation. */
|
|
bool run_in_background;
|
|
};
|
|
|
|
struct TaskScheduler {
|
|
pthread_t *threads;
|
|
struct TaskThread *task_threads;
|
|
int num_threads;
|
|
bool background_thread_only;
|
|
|
|
ListBase queue;
|
|
ThreadMutex queue_mutex;
|
|
ThreadCondition queue_cond;
|
|
|
|
volatile bool do_exit;
|
|
};
|
|
|
|
typedef struct TaskThread {
|
|
TaskScheduler *scheduler;
|
|
int id;
|
|
} TaskThread;
|
|
|
|
/* Helper */
|
|
static void task_data_free(Task *task, const int thread_id)
|
|
{
|
|
if (task->free_taskdata) {
|
|
if (task->freedata) {
|
|
task->freedata(task->pool, task->taskdata, thread_id);
|
|
}
|
|
else {
|
|
MEM_freeN(task->taskdata);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Task Scheduler */
|
|
|
|
static void task_pool_num_decrease(TaskPool *pool, size_t done)
|
|
{
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
BLI_assert(pool->num >= done);
|
|
|
|
pool->num -= done;
|
|
atomic_sub_z(&pool->currently_running_tasks, done);
|
|
pool->done += done;
|
|
|
|
if (pool->num == 0)
|
|
BLI_condition_notify_all(&pool->num_cond);
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
}
|
|
|
|
static void task_pool_num_increase(TaskPool *pool)
|
|
{
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
pool->num++;
|
|
BLI_condition_notify_all(&pool->num_cond);
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
}
|
|
|
|
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
|
|
{
|
|
bool found_task = false;
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
while (!scheduler->queue.first && !scheduler->do_exit)
|
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
|
|
|
do {
|
|
Task *current_task;
|
|
|
|
/* Assuming we can only have a void queue in 'exit' case here seems logical (we should only be here after
|
|
* our worker thread has been woken up from a condition_wait(), which only happens after a new task was
|
|
* added to the queue), but it is wrong.
|
|
* Waiting on condition may wake up the thread even if condition is not signaled (spurious wake-ups), and some
|
|
* race condition may also empty the queue **after** condition has been signaled, but **before** awoken thread
|
|
* reaches this point...
|
|
* See http://stackoverflow.com/questions/8594591
|
|
*
|
|
* So we only abort here if do_exit is set.
|
|
*/
|
|
if (scheduler->do_exit) {
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
return false;
|
|
}
|
|
|
|
for (current_task = scheduler->queue.first;
|
|
current_task != NULL;
|
|
current_task = current_task->next)
|
|
{
|
|
TaskPool *pool = current_task->pool;
|
|
|
|
if (scheduler->background_thread_only && !pool->run_in_background) {
|
|
continue;
|
|
}
|
|
|
|
if (pool->num_threads == 0 ||
|
|
pool->currently_running_tasks < pool->num_threads)
|
|
{
|
|
*task = current_task;
|
|
found_task = true;
|
|
atomic_add_z(&pool->currently_running_tasks, 1);
|
|
BLI_remlink(&scheduler->queue, *task);
|
|
break;
|
|
}
|
|
}
|
|
if (!found_task)
|
|
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
|
} while (!found_task);
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void *task_scheduler_thread_run(void *thread_p)
|
|
{
|
|
TaskThread *thread = (TaskThread *) thread_p;
|
|
TaskScheduler *scheduler = thread->scheduler;
|
|
int thread_id = thread->id;
|
|
Task *task;
|
|
|
|
/* keep popping off tasks */
|
|
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
|
|
TaskPool *pool = task->pool;
|
|
|
|
/* run task */
|
|
task->run(pool, task->taskdata, thread_id);
|
|
|
|
/* delete task */
|
|
task_data_free(task, thread_id);
|
|
MEM_freeN(task);
|
|
|
|
/* notify pool task was done */
|
|
task_pool_num_decrease(pool, 1);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
TaskScheduler *BLI_task_scheduler_create(int num_threads)
|
|
{
|
|
TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
|
|
|
|
/* multiple places can use this task scheduler, sharing the same
|
|
* threads, so we keep track of the number of users. */
|
|
scheduler->do_exit = false;
|
|
|
|
BLI_listbase_clear(&scheduler->queue);
|
|
BLI_mutex_init(&scheduler->queue_mutex);
|
|
BLI_condition_init(&scheduler->queue_cond);
|
|
|
|
if (num_threads == 0) {
|
|
/* automatic number of threads will be main thread + num cores */
|
|
num_threads = BLI_system_thread_count();
|
|
}
|
|
|
|
/* main thread will also work, so we count it too */
|
|
num_threads -= 1;
|
|
|
|
/* Add background-only thread if needed. */
|
|
if (num_threads == 0) {
|
|
scheduler->background_thread_only = true;
|
|
num_threads = 1;
|
|
}
|
|
|
|
/* launch threads that will be waiting for work */
|
|
if (num_threads > 0) {
|
|
int i;
|
|
|
|
scheduler->num_threads = num_threads;
|
|
scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads");
|
|
scheduler->task_threads = MEM_callocN(sizeof(TaskThread) * num_threads, "TaskScheduler task threads");
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
TaskThread *thread = &scheduler->task_threads[i];
|
|
thread->scheduler = scheduler;
|
|
thread->id = i + 1;
|
|
|
|
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
|
|
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
|
|
}
|
|
}
|
|
}
|
|
|
|
return scheduler;
|
|
}
|
|
|
|
void BLI_task_scheduler_free(TaskScheduler *scheduler)
|
|
{
|
|
Task *task;
|
|
|
|
/* stop all waiting threads */
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
scheduler->do_exit = true;
|
|
BLI_condition_notify_all(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
/* delete threads */
|
|
if (scheduler->threads) {
|
|
int i;
|
|
|
|
for (i = 0; i < scheduler->num_threads; i++) {
|
|
if (pthread_join(scheduler->threads[i], NULL) != 0)
|
|
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
|
|
}
|
|
|
|
MEM_freeN(scheduler->threads);
|
|
}
|
|
|
|
/* Delete task thread data */
|
|
if (scheduler->task_threads) {
|
|
MEM_freeN(scheduler->task_threads);
|
|
}
|
|
|
|
/* delete leftover tasks */
|
|
for (task = scheduler->queue.first; task; task = task->next) {
|
|
task_data_free(task, 0);
|
|
}
|
|
BLI_freelistN(&scheduler->queue);
|
|
|
|
/* delete mutex/condition */
|
|
BLI_mutex_end(&scheduler->queue_mutex);
|
|
BLI_condition_end(&scheduler->queue_cond);
|
|
|
|
MEM_freeN(scheduler);
|
|
}
|
|
|
|
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
|
|
{
|
|
return scheduler->num_threads + 1;
|
|
}
|
|
|
|
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
|
|
{
|
|
task_pool_num_increase(task->pool);
|
|
|
|
/* add task to queue */
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
if (priority == TASK_PRIORITY_HIGH)
|
|
BLI_addhead(&scheduler->queue, task);
|
|
else
|
|
BLI_addtail(&scheduler->queue, task);
|
|
|
|
BLI_condition_notify_one(&scheduler->queue_cond);
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
}
|
|
|
|
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
|
|
{
|
|
Task *task, *nexttask;
|
|
size_t done = 0;
|
|
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
/* free all tasks from this pool from the queue */
|
|
for (task = scheduler->queue.first; task; task = nexttask) {
|
|
nexttask = task->next;
|
|
|
|
if (task->pool == pool) {
|
|
task_data_free(task, 0);
|
|
BLI_freelinkN(&scheduler->queue, task);
|
|
|
|
done++;
|
|
}
|
|
}
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
/* notify done */
|
|
task_pool_num_decrease(pool, done);
|
|
}
|
|
|
|
/* Task Pool */
|
|
|
|
static TaskPool *task_pool_create_ex(TaskScheduler *scheduler, void *userdata, const bool is_background)
|
|
{
|
|
TaskPool *pool = MEM_callocN(sizeof(TaskPool), "TaskPool");
|
|
|
|
#ifndef NDEBUG
|
|
/* Assert we do not try to create a background pool from some parent task - those only work OK from main thread. */
|
|
if (is_background) {
|
|
const pthread_t thread_id = pthread_self();
|
|
int i = scheduler->num_threads;
|
|
|
|
while (i--) {
|
|
BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
pool->scheduler = scheduler;
|
|
pool->num = 0;
|
|
pool->num_threads = 0;
|
|
pool->currently_running_tasks = 0;
|
|
pool->do_cancel = false;
|
|
pool->run_in_background = is_background;
|
|
|
|
BLI_mutex_init(&pool->num_mutex);
|
|
BLI_condition_init(&pool->num_cond);
|
|
|
|
pool->userdata = userdata;
|
|
BLI_mutex_init(&pool->user_mutex);
|
|
|
|
/* Ensure malloc will go fine from threads,
|
|
*
|
|
* This is needed because we could be in main thread here
|
|
* and malloc could be non-threda safe at this point because
|
|
* no other jobs are running.
|
|
*/
|
|
BLI_begin_threaded_malloc();
|
|
|
|
return pool;
|
|
}
|
|
|
|
/**
|
|
* Create a normal task pool.
|
|
* This means that in single-threaded context, it will not be executed at all until you call
|
|
* \a BLI_task_pool_work_and_wait() on it.
|
|
*/
|
|
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata)
|
|
{
|
|
return task_pool_create_ex(scheduler, userdata, false);
|
|
}
|
|
|
|
/**
|
|
* Create a background task pool.
|
|
* In multi-threaded context, there is no differences with \a BLI_task_pool_create(), but in single-threaded case
|
|
* it is ensured to have at least one worker thread to run on (i.e. you do not have to call
|
|
* \a BLI_task_pool_work_and_wait() on it to be sure it will be processed).
|
|
*
|
|
* \note Background pools are non-recursive (that is, you should not create other background pools in tasks assigned
|
|
* to a background pool, they could end never being executed, since the 'fallback' background thread is already
|
|
* busy with parent task in single-threaded context).
|
|
*/
|
|
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata)
|
|
{
|
|
return task_pool_create_ex(scheduler, userdata, true);
|
|
}
|
|
|
|
void BLI_task_pool_free(TaskPool *pool)
|
|
{
|
|
BLI_task_pool_stop(pool);
|
|
|
|
BLI_mutex_end(&pool->num_mutex);
|
|
BLI_condition_end(&pool->num_cond);
|
|
|
|
BLI_mutex_end(&pool->user_mutex);
|
|
|
|
MEM_freeN(pool);
|
|
|
|
BLI_end_threaded_malloc();
|
|
}
|
|
|
|
void BLI_task_pool_push_ex(
|
|
TaskPool *pool, TaskRunFunction run, void *taskdata,
|
|
bool free_taskdata, TaskFreeFunction freedata, TaskPriority priority)
|
|
{
|
|
Task *task = MEM_callocN(sizeof(Task), "Task");
|
|
|
|
task->run = run;
|
|
task->taskdata = taskdata;
|
|
task->free_taskdata = free_taskdata;
|
|
task->freedata = freedata;
|
|
task->pool = pool;
|
|
|
|
task_scheduler_push(pool->scheduler, task, priority);
|
|
}
|
|
|
|
void BLI_task_pool_push(
|
|
TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority)
|
|
{
|
|
BLI_task_pool_push_ex(pool, run, taskdata, free_taskdata, NULL, priority);
|
|
}
|
|
|
|
void BLI_task_pool_work_and_wait(TaskPool *pool)
|
|
{
|
|
TaskScheduler *scheduler = pool->scheduler;
|
|
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
|
|
while (pool->num != 0) {
|
|
Task *task, *work_task = NULL;
|
|
bool found_task = false;
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
|
|
BLI_mutex_lock(&scheduler->queue_mutex);
|
|
|
|
/* find task from this pool. if we get a task from another pool,
|
|
* we can get into deadlock */
|
|
|
|
if (pool->num_threads == 0 ||
|
|
pool->currently_running_tasks < pool->num_threads)
|
|
{
|
|
for (task = scheduler->queue.first; task; task = task->next) {
|
|
if (task->pool == pool) {
|
|
work_task = task;
|
|
found_task = true;
|
|
BLI_remlink(&scheduler->queue, task);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_mutex_unlock(&scheduler->queue_mutex);
|
|
|
|
/* if found task, do it, otherwise wait until other tasks are done */
|
|
if (found_task) {
|
|
/* run task */
|
|
atomic_add_z(&pool->currently_running_tasks, 1);
|
|
work_task->run(pool, work_task->taskdata, 0);
|
|
|
|
/* delete task */
|
|
task_data_free(task, 0);
|
|
MEM_freeN(work_task);
|
|
|
|
/* notify pool task was done */
|
|
task_pool_num_decrease(pool, 1);
|
|
}
|
|
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
if (pool->num == 0)
|
|
break;
|
|
|
|
if (!found_task)
|
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
|
}
|
|
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
}
|
|
|
|
int BLI_pool_get_num_threads(TaskPool *pool)
|
|
{
|
|
if (pool->num_threads != 0) {
|
|
return pool->num_threads;
|
|
}
|
|
else {
|
|
return BLI_task_scheduler_num_threads(pool->scheduler);
|
|
}
|
|
}
|
|
|
|
void BLI_pool_set_num_threads(TaskPool *pool, int num_threads)
|
|
{
|
|
/* NOTE: Don't try to modify threads while tasks are running! */
|
|
pool->num_threads = num_threads;
|
|
}
|
|
|
|
void BLI_task_pool_cancel(TaskPool *pool)
|
|
{
|
|
pool->do_cancel = true;
|
|
|
|
task_scheduler_clear(pool->scheduler, pool);
|
|
|
|
/* wait until all entries are cleared */
|
|
BLI_mutex_lock(&pool->num_mutex);
|
|
while (pool->num)
|
|
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
|
BLI_mutex_unlock(&pool->num_mutex);
|
|
|
|
pool->do_cancel = false;
|
|
}
|
|
|
|
void BLI_task_pool_stop(TaskPool *pool)
|
|
{
|
|
task_scheduler_clear(pool->scheduler, pool);
|
|
|
|
BLI_assert(pool->num == 0);
|
|
}
|
|
|
|
bool BLI_task_pool_canceled(TaskPool *pool)
|
|
{
|
|
return pool->do_cancel;
|
|
}
|
|
|
|
void *BLI_task_pool_userdata(TaskPool *pool)
|
|
{
|
|
return pool->userdata;
|
|
}
|
|
|
|
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
|
|
{
|
|
return &pool->user_mutex;
|
|
}
|
|
|
|
size_t BLI_task_pool_tasks_done(TaskPool *pool)
|
|
{
|
|
return pool->done;
|
|
}
|
|
|
|
/* Parallel range routines */
|
|
|
|
/**
|
|
*
|
|
* Main functions:
|
|
* - #BLI_task_parallel_range
|
|
*
|
|
* TODO:
|
|
* - #BLI_task_parallel_foreach_listbase (#ListBase - double linked list)
|
|
* - #BLI_task_parallel_foreach_link (#Link - single linked list)
|
|
* - #BLI_task_parallel_foreach_ghash/gset (#GHash/#GSet - hash & set)
|
|
* - #BLI_task_parallel_foreach_mempool (#BLI_mempool - iterate over mempools)
|
|
*
|
|
* Possible improvements:
|
|
*
|
|
* - Chunk iterations to reduce number of spin locks.
|
|
*/
|
|
|
|
/* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */
|
|
#define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__)
|
|
#define MALLOCA_FREE(_mem, _size) if (((_mem) != NULL) && ((_size) > 8192)) MEM_freeN((_mem))
|
|
|
|
typedef struct ParallelRangeState {
|
|
int start, stop;
|
|
void *userdata;
|
|
void *userdata_chunk;
|
|
size_t userdata_chunk_size;
|
|
TaskParallelRangeFunc func;
|
|
|
|
int iter;
|
|
int chunk_size;
|
|
SpinLock lock;
|
|
} ParallelRangeState;
|
|
|
|
BLI_INLINE bool parallel_range_next_iter_get(
|
|
ParallelRangeState * __restrict state,
|
|
int * __restrict iter, int * __restrict count)
|
|
{
|
|
bool result = false;
|
|
BLI_spin_lock(&state->lock);
|
|
if (state->iter < state->stop) {
|
|
*count = min_ii(state->chunk_size, state->stop - state->iter);
|
|
*iter = state->iter;
|
|
state->iter += *count;
|
|
result = true;
|
|
}
|
|
BLI_spin_unlock(&state->lock);
|
|
return result;
|
|
}
|
|
|
|
static void parallel_range_func(
|
|
TaskPool * __restrict pool,
|
|
void *UNUSED(taskdata),
|
|
int UNUSED(threadid))
|
|
{
|
|
ParallelRangeState * __restrict state = BLI_task_pool_userdata(pool);
|
|
int iter, count;
|
|
|
|
const bool use_userdata_chunk = (state->userdata_chunk_size != 0) && (state->userdata_chunk != NULL);
|
|
void *userdata_chunk = use_userdata_chunk ? MALLOCA(state->userdata_chunk_size) : NULL;
|
|
|
|
while (parallel_range_next_iter_get(state, &iter, &count)) {
|
|
int i;
|
|
|
|
if (use_userdata_chunk) {
|
|
memcpy(userdata_chunk, state->userdata_chunk, state->userdata_chunk_size);
|
|
}
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
state->func(state->userdata, userdata_chunk, iter + i);
|
|
}
|
|
}
|
|
|
|
MALLOCA_FREE(userdata_chunk, state->userdata_chunk_size);
|
|
}
|
|
|
|
/**
|
|
* This function allows to parallelized for loops in a similar way to OpenMP's 'parallel for' statement.
|
|
*
|
|
* \param start First index to process.
|
|
* \param stop Index to stop looping (excluded).
|
|
* \param userdata Common userdata passed to all instances of \a func.
|
|
* \param userdata_chunk Optional, each instance of looping chunks will get a copy of this data
|
|
* (similar to OpenMP's firstprivate).
|
|
* \param userdata_chunk_size Memory size of \a userdata_chunk.
|
|
* \param func Callback function.
|
|
* \param use_threading If \a true, actually split-execute loop in threads, else just do a sequential forloop
|
|
* (allows caller to use any kind of test to switch on parallelization or not).
|
|
* \param use_dynamic_scheduling If \a true, the whole range is divided in a lot of small chunks (of size 32 currently),
|
|
* otherwise whole range is split in a few big chunks (num_threads * 2 chunks currently).
|
|
*/
|
|
void BLI_task_parallel_range_ex(
|
|
int start, int stop,
|
|
void *userdata,
|
|
void *userdata_chunk,
|
|
const size_t userdata_chunk_size,
|
|
TaskParallelRangeFunc func,
|
|
const bool use_threading,
|
|
const bool use_dynamic_scheduling)
|
|
{
|
|
TaskScheduler *task_scheduler;
|
|
TaskPool *task_pool;
|
|
ParallelRangeState state;
|
|
int i, num_threads, num_tasks;
|
|
|
|
BLI_assert(start < stop);
|
|
|
|
/* If it's not enough data to be crunched, don't bother with tasks at all,
|
|
* do everything from the main thread.
|
|
*/
|
|
if (!use_threading) {
|
|
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
|
void *userdata_chunk_local = NULL;
|
|
|
|
if (use_userdata_chunk) {
|
|
userdata_chunk_local = MALLOCA(userdata_chunk_size);
|
|
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
|
}
|
|
|
|
for (i = start; i < stop; ++i) {
|
|
func(userdata, userdata_chunk_local, i);
|
|
}
|
|
|
|
MALLOCA_FREE(userdata_chunk_local, userdata_chunk_size);
|
|
return;
|
|
}
|
|
|
|
task_scheduler = BLI_task_scheduler_get();
|
|
task_pool = BLI_task_pool_create(task_scheduler, &state);
|
|
num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
|
|
|
/* The idea here is to prevent creating task for each of the loop iterations
|
|
* and instead have tasks which are evenly distributed across CPU cores and
|
|
* pull next iter to be crunched using the queue.
|
|
*/
|
|
num_tasks = num_threads * 2;
|
|
|
|
BLI_spin_init(&state.lock);
|
|
state.start = start;
|
|
state.stop = stop;
|
|
state.userdata = userdata;
|
|
state.userdata_chunk = userdata_chunk;
|
|
state.userdata_chunk_size = userdata_chunk_size;
|
|
state.func = func;
|
|
state.iter = start;
|
|
if (use_dynamic_scheduling) {
|
|
state.chunk_size = 32;
|
|
}
|
|
else {
|
|
state.chunk_size = max_ii(1, (stop - start) / (num_tasks));
|
|
}
|
|
|
|
num_tasks = max_ii(1, (stop - start) / state.chunk_size);
|
|
|
|
for (i = 0; i < num_tasks; i++) {
|
|
BLI_task_pool_push(task_pool,
|
|
parallel_range_func,
|
|
NULL, false,
|
|
TASK_PRIORITY_HIGH);
|
|
}
|
|
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
BLI_spin_end(&state.lock);
|
|
}
|
|
|
|
/**
|
|
* A simpler version of \a BLI_task_parallel_range_ex, which does not use \a use_dynamic_scheduling,
|
|
* has a \a range_threshold of 64, and does not handle 'firstprivate'-like \a userdata_chunk.
|
|
*/
|
|
void BLI_task_parallel_range(
|
|
int start, int stop,
|
|
void *userdata,
|
|
TaskParallelRangeFunc func)
|
|
{
|
|
BLI_task_parallel_range_ex(start, stop, userdata, NULL, 0, func, (stop - start) > 64, false);
|
|
}
|
|
|
|
#undef MALLOCA
|
|
#undef MALLOCA_FREE
|
|
|