This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/bmesh/intern/bmesh_polygon.c
Campbell Barton a28e014313 BMesh: Add API call BM_face_calc_point_in_face
Was local to knife code, but this is generally useful.
2015-11-27 22:08:16 +11:00

1409 lines
34 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar, Geoffrey Bantle, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/intern/bmesh_polygon.c
* \ingroup bmesh
*
* This file contains code for dealing
* with polygons (normal/area calculation,
* tessellation, etc)
*/
#include "DNA_listBase.h"
#include "DNA_modifier_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_polyfill2d.h"
#include "BLI_polyfill2d_beautify.h"
#include "BLI_linklist.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "BKE_customdata.h"
#include "intern/bmesh_private.h"
/**
* \brief TEST EDGE SIDE and POINT IN TRIANGLE
*
* Point in triangle tests stolen from scanfill.c.
* Used for tessellator
*/
static bool testedgesidef(const float v1[2], const float v2[2], const float v3[2])
{
/* is v3 to the right of v1 - v2 ? With exception: v3 == v1 || v3 == v2 */
double inp;
//inp = (v2[cox] - v1[cox]) * (v1[coy] - v3[coy]) + (v1[coy] - v2[coy]) * (v1[cox] - v3[cox]);
inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) + (v1[1] - v2[1]) * (v1[0] - v3[0]);
if (inp < 0.0) {
return false;
}
else if (inp == 0) {
if (v1[0] == v3[0] && v1[1] == v3[1]) return false;
if (v2[0] == v3[0] && v2[1] == v3[1]) return false;
}
return true;
}
/**
* \brief COMPUTE POLY NORMAL (BMFace)
*
* Same as #normal_poly_v3 but operates directly on a bmesh face.
*/
static float bm_face_calc_poly_normal(const BMFace *f, float n[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter = l_first;
const float *v_prev = l_first->prev->v->co;
const float *v_curr = l_first->v->co;
zero_v3(n);
/* Newell's Method */
do {
add_newell_cross_v3_v3v3(n, v_prev, v_curr);
l_iter = l_iter->next;
v_prev = v_curr;
v_curr = l_iter->v->co;
} while (l_iter != l_first);
return normalize_v3(n);
}
/**
* \brief COMPUTE POLY NORMAL (BMFace)
*
* Same as #bm_face_calc_poly_normal
* but takes an array of vertex locations.
*/
static float bm_face_calc_poly_normal_vertex_cos(
const BMFace *f, float r_no[3],
float const (*vertexCos)[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter = l_first;
const float *v_prev = vertexCos[BM_elem_index_get(l_first->prev->v)];
const float *v_curr = vertexCos[BM_elem_index_get(l_first->v)];
zero_v3(r_no);
/* Newell's Method */
do {
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
l_iter = l_iter->next;
v_prev = v_curr;
v_curr = vertexCos[BM_elem_index_get(l_iter->v)];
} while (l_iter != l_first);
return normalize_v3(r_no);
}
/**
* \brief COMPUTE POLY CENTER (BMFace)
*/
static void bm_face_calc_poly_center_mean_vertex_cos(
const BMFace *f, float r_cent[3],
float const (*vertexCos)[3])
{
const BMLoop *l_first, *l_iter;
zero_v3(r_cent);
/* Newell's Method */
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
add_v3_v3(r_cent, vertexCos[BM_elem_index_get(l_iter->v)]);
} while ((l_iter = l_iter->next) != l_first);
mul_v3_fl(r_cent, 1.0f / f->len);
}
/**
* For tools that insist on using triangles, ideally we would cache this data.
*
* \param use_fixed_quad: When true, always split quad along (0 -> 2) regardless of concave corners,
* (as done in #BM_mesh_calc_tessellation).
* \param r_loops: Store face loop pointers, (f->len)
* \param r_index: Store triangle triples, indices into \a r_loops, `((f->len - 2) * 3)`
*/
void BM_face_calc_tessellation(
const BMFace *f, const bool use_fixed_quad,
BMLoop **r_loops, unsigned int (*r_index)[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter;
if (f->len == 3) {
*r_loops++ = (l_iter = l_first);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = ( l_iter->next);
r_index[0][0] = 0;
r_index[0][1] = 1;
r_index[0][2] = 2;
}
else if (f->len == 4 && use_fixed_quad) {
*r_loops++ = (l_iter = l_first);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = ( l_iter->next);
r_index[0][0] = 0;
r_index[0][1] = 1;
r_index[0][2] = 2;
r_index[1][0] = 0;
r_index[1][1] = 2;
r_index[1][2] = 3;
}
else {
float axis_mat[3][3];
float (*projverts)[2] = BLI_array_alloca(projverts, f->len);
int j;
axis_dominant_v3_to_m3(axis_mat, f->no);
j = 0;
l_iter = l_first;
do {
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
r_loops[j] = l_iter;
j++;
} while ((l_iter = l_iter->next) != l_first);
/* complete the loop */
BLI_polyfill_calc((const float (*)[2])projverts, f->len, -1, r_index);
}
}
/**
* Return a point inside the face.
*/
void BM_face_calc_point_in_face(const BMFace *f, float r_co[3])
{
const BMLoop *l_tri[3];
if (f->len == 3) {
const BMLoop *l = BM_FACE_FIRST_LOOP(f);
ARRAY_SET_ITEMS(l_tri, l, l->next, l->prev);
}
else {
/* tessellation here seems overkill when in many cases this will be the center,
* but without this we can't be sure the point is inside a concave face. */
const int tottri = f->len - 2;
BMLoop **loops = BLI_array_alloca(loops, f->len);
unsigned int (*index)[3] = BLI_array_alloca(index, tottri);
int j;
int j_best = 0; /* use as fallback when unset */
float area_best = -1.0f;
BM_face_calc_tessellation(f, false, loops, index);
for (j = 0; j < tottri; j++) {
const float *p1 = loops[index[j][0]]->v->co;
const float *p2 = loops[index[j][1]]->v->co;
const float *p3 = loops[index[j][2]]->v->co;
const float area = area_squared_tri_v3(p1, p2, p3);
if (area > area_best) {
j_best = j;
area_best = area;
}
}
ARRAY_SET_ITEMS(l_tri, loops[index[j_best][0]], loops[index[j_best][1]], loops[index[j_best][2]]);
}
mid_v3_v3v3v3(r_co, l_tri[0]->v->co, l_tri[1]->v->co, l_tri[2]->v->co);
}
/**
* get the area of the face
*/
float BM_face_calc_area(const BMFace *f)
{
const BMLoop *l_iter, *l_first;
float (*verts)[3] = BLI_array_alloca(verts, f->len);
float area;
unsigned int i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
copy_v3_v3(verts[i++], l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
if (f->len == 3) {
area = area_tri_v3(verts[0], verts[1], verts[2]);
}
else {
area = area_poly_v3((const float (*)[3])verts, f->len);
}
return area;
}
/**
* compute the perimeter of an ngon
*/
float BM_face_calc_perimeter(const BMFace *f)
{
const BMLoop *l_iter, *l_first;
float perimeter = 0.0f;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
perimeter += len_v3v3(l_iter->v->co, l_iter->next->v->co);
} while ((l_iter = l_iter->next) != l_first);
return perimeter;
}
void BM_vert_tri_calc_plane(BMVert *verts[3], float r_plane[3])
{
float lens[3];
float difs[3];
int order[3] = {0, 1, 2};
lens[0] = len_v3v3(verts[0]->co, verts[1]->co);
lens[1] = len_v3v3(verts[1]->co, verts[2]->co);
lens[2] = len_v3v3(verts[2]->co, verts[0]->co);
/* find the shortest or the longest loop */
difs[0] = fabsf(lens[1] - lens[2]);
difs[1] = fabsf(lens[2] - lens[0]);
difs[2] = fabsf(lens[0] - lens[1]);
axis_sort_v3(difs, order);
sub_v3_v3v3(r_plane, verts[order[0]]->co, verts[(order[0] + 1) % 3]->co);
}
/**
* Compute a meaningful direction along the face (use for manipulator axis).
* \note result isnt normalized.
*/
void BM_face_calc_plane(const BMFace *f, float r_plane[3])
{
if (f->len == 3) {
BMVert *verts[3];
BM_face_as_array_vert_tri((BMFace *)f, verts);
BM_vert_tri_calc_plane(verts, r_plane);
}
else if (f->len == 4) {
BMVert *verts[4];
float vec[3], vec_a[3], vec_b[3];
// BM_iter_as_array(NULL, BM_VERTS_OF_FACE, efa, (void **)verts, 4);
BM_face_as_array_vert_quad((BMFace *)f, verts);
sub_v3_v3v3(vec_a, verts[3]->co, verts[2]->co);
sub_v3_v3v3(vec_b, verts[0]->co, verts[1]->co);
add_v3_v3v3(r_plane, vec_a, vec_b);
sub_v3_v3v3(vec_a, verts[0]->co, verts[3]->co);
sub_v3_v3v3(vec_b, verts[1]->co, verts[2]->co);
add_v3_v3v3(vec, vec_a, vec_b);
/* use the biggest edge length */
if (len_squared_v3(r_plane) < len_squared_v3(vec)) {
copy_v3_v3(r_plane, vec);
}
}
else {
const BMLoop *l_long = BM_face_find_longest_loop((BMFace *)f);
sub_v3_v3v3(r_plane, l_long->v->co, l_long->next->v->co);
}
normalize_v3(r_plane);
}
/**
* computes center of face in 3d. uses center of bounding box.
*/
void BM_face_calc_center_bounds(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter, *l_first;
float min[3], max[3];
INIT_MINMAX(min, max);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
minmax_v3v3_v3(min, max, l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
mid_v3_v3v3(r_cent, min, max);
}
/**
* computes the center of a face, using the mean average
*/
void BM_face_calc_center_mean(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter, *l_first;
zero_v3(r_cent);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
add_v3_v3(r_cent, l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
mul_v3_fl(r_cent, 1.0f / (float) f->len);
}
/**
* computes the center of a face, using the mean average
* weighted by edge length
*/
void BM_face_calc_center_mean_weighted(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter;
const BMLoop *l_first;
float totw = 0.0f;
float w_prev;
zero_v3(r_cent);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
w_prev = BM_edge_calc_length(l_iter->prev->e);
do {
const float w_curr = BM_edge_calc_length(l_iter->e);
const float w = (w_curr + w_prev);
madd_v3_v3fl(r_cent, l_iter->v->co, w);
totw += w;
w_prev = w_curr;
} while ((l_iter = l_iter->next) != l_first);
if (totw != 0.0f)
mul_v3_fl(r_cent, 1.0f / (float) totw);
}
/**
* \brief BM LEGAL EDGES
*
* takes in a face and a list of edges, and sets to NULL any edge in
* the list that bridges a concave region of the face or intersects
* any of the faces's edges.
*/
static void scale_edge_v2f(float v1[2], float v2[2], const float fac)
{
float mid[2];
mid_v2_v2v2(mid, v1, v2);
sub_v2_v2v2(v1, v1, mid);
sub_v2_v2v2(v2, v2, mid);
mul_v2_fl(v1, fac);
mul_v2_fl(v2, fac);
add_v2_v2v2(v1, v1, mid);
add_v2_v2v2(v2, v2, mid);
}
/**
* \brief POLY ROTATE PLANE
*
* Rotates a polygon so that it's
* normal is pointing towards the mesh Z axis
*/
void poly_rotate_plane(const float normal[3], float (*verts)[3], const unsigned int nverts)
{
float mat[3][3];
float co[3];
unsigned int i;
co[2] = 0.0f;
axis_dominant_v3_to_m3(mat, normal);
for (i = 0; i < nverts; i++) {
mul_v2_m3v3(co, mat, verts[i]);
copy_v3_v3(verts[i], co);
}
}
/**
* updates face and vertex normals incident on an edge
*/
void BM_edge_normals_update(BMEdge *e)
{
BMIter iter;
BMFace *f;
BM_ITER_ELEM (f, &iter, e, BM_FACES_OF_EDGE) {
BM_face_normal_update(f);
}
BM_vert_normal_update(e->v1);
BM_vert_normal_update(e->v2);
}
static void bm_loop_normal_accum(const BMLoop *l, float no[3])
{
float vec1[3], vec2[3], fac;
/* Same calculation used in BM_mesh_normals_update */
sub_v3_v3v3(vec1, l->v->co, l->prev->v->co);
sub_v3_v3v3(vec2, l->next->v->co, l->v->co);
normalize_v3(vec1);
normalize_v3(vec2);
fac = saacos(-dot_v3v3(vec1, vec2));
madd_v3_v3fl(no, l->f->no, fac);
}
bool BM_vert_calc_normal_ex(const BMVert *v, const char hflag, float r_no[3])
{
int len = 0;
zero_v3(r_no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
if (BM_elem_flag_test(l->f, hflag)) {
bm_loop_normal_accum(l, r_no);
len++;
}
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(r_no);
return true;
}
else {
return false;
}
}
bool BM_vert_calc_normal(const BMVert *v, float r_no[3])
{
int len = 0;
zero_v3(r_no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
bm_loop_normal_accum(l, r_no);
len++;
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(r_no);
return true;
}
else {
return false;
}
}
void BM_vert_normal_update_all(BMVert *v)
{
int len = 0;
zero_v3(v->no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
BM_face_normal_update(l->f);
bm_loop_normal_accum(l, v->no);
len++;
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(v->no);
}
}
/**
* update a vert normal (but not the faces incident on it)
*/
void BM_vert_normal_update(BMVert *v)
{
BM_vert_calc_normal(v, v->no);
}
/**
* \brief BMESH UPDATE FACE NORMAL
*
* Updates the stored normal for the
* given face. Requires that a buffer
* of sufficient length to store projected
* coordinates for all of the face's vertices
* is passed in as well.
*/
float BM_face_calc_normal(const BMFace *f, float r_no[3])
{
BMLoop *l;
/* common cases first */
switch (f->len) {
case 4:
{
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
const float *co2 = (l = l->next)->v->co;
const float *co3 = (l = l->next)->v->co;
const float *co4 = (l->next)->v->co;
return normal_quad_v3(r_no, co1, co2, co3, co4);
}
case 3:
{
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
const float *co2 = (l = l->next)->v->co;
const float *co3 = (l->next)->v->co;
return normal_tri_v3(r_no, co1, co2, co3);
}
default:
{
return bm_face_calc_poly_normal(f, r_no);
}
}
}
void BM_face_normal_update(BMFace *f)
{
BM_face_calc_normal(f, f->no);
}
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
float BM_face_calc_normal_vcos(
const BMesh *bm, const BMFace *f, float r_no[3],
float const (*vertexCos)[3])
{
BMLoop *l;
/* must have valid index data */
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
(void)bm;
/* common cases first */
switch (f->len) {
case 4:
{
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co3 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co4 = vertexCos[BM_elem_index_get((l->next)->v)];
return normal_quad_v3(r_no, co1, co2, co3, co4);
}
case 3:
{
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co3 = vertexCos[BM_elem_index_get((l->next)->v)];
return normal_tri_v3(r_no, co1, co2, co3);
}
default:
{
return bm_face_calc_poly_normal_vertex_cos(f, r_no, vertexCos);
}
}
}
/**
* Calculates the face subset normal.
*/
float BM_face_calc_normal_subset(const BMLoop *l_first, const BMLoop *l_last, float r_no[3])
{
const float *v_prev, *v_curr;
/* Newell's Method */
const BMLoop *l_iter = l_first;
const BMLoop *l_term = l_last->next;
zero_v3(r_no);
v_prev = l_last->v->co;
do {
v_curr = l_iter->v->co;
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
v_prev = v_curr;
} while ((l_iter = l_iter->next) != l_term);
return normalize_v3(r_no);
}
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
void BM_face_calc_center_mean_vcos(
const BMesh *bm, const BMFace *f, float r_cent[3],
float const (*vertexCos)[3])
{
/* must have valid index data */
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
(void)bm;
bm_face_calc_poly_center_mean_vertex_cos(f, r_cent, vertexCos);
}
/**
* \brief Face Flip Normal
*
* Reverses the winding of a face.
* \note This updates the calculated normal.
*/
void BM_face_normal_flip(BMesh *bm, BMFace *f)
{
bmesh_loop_reverse(bm, f);
negate_v3(f->no);
}
/* detects if two line segments cross each other (intersects).
* note, there could be more winding cases then there needs to be. */
static bool line_crosses_v2f(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
{
#define GETMIN2_AXIS(a, b, ma, mb, axis) \
{ \
ma[axis] = min_ff(a[axis], b[axis]); \
mb[axis] = max_ff(a[axis], b[axis]); \
} (void)0
#define GETMIN2(a, b, ma, mb) \
{ \
GETMIN2_AXIS(a, b, ma, mb, 0); \
GETMIN2_AXIS(a, b, ma, mb, 1); \
} (void)0
#define EPS (FLT_EPSILON * 15)
int w1, w2, w3, w4, w5 /*, re */;
float mv1[2], mv2[2], mv3[2], mv4[2];
/* now test winding */
w1 = testedgesidef(v1, v3, v2);
w2 = testedgesidef(v2, v4, v1);
w3 = !testedgesidef(v1, v2, v3);
w4 = testedgesidef(v3, v2, v4);
w5 = !testedgesidef(v3, v1, v4);
if (w1 == w2 && w2 == w3 && w3 == w4 && w4 == w5) {
return true;
}
GETMIN2(v1, v2, mv1, mv2);
GETMIN2(v3, v4, mv3, mv4);
/* do an interval test on the x and y axes */
/* first do x axis */
if (fabsf(v1[1] - v2[1]) < EPS &&
fabsf(v3[1] - v4[1]) < EPS &&
fabsf(v1[1] - v3[1]) < EPS)
{
return (mv4[0] >= mv1[0] && mv3[0] <= mv2[0]);
}
/* now do y axis */
if (fabsf(v1[0] - v2[0]) < EPS &&
fabsf(v3[0] - v4[0]) < EPS &&
fabsf(v1[0] - v3[0]) < EPS)
{
return (mv4[1] >= mv1[1] && mv3[1] <= mv2[1]);
}
return false;
#undef GETMIN2_AXIS
#undef GETMIN2
#undef EPS
}
/**
* BM POINT IN FACE
*
* Projects co onto face f, and returns true if it is inside
* the face bounds.
*
* \note this uses a best-axis projection test,
* instead of projecting co directly into f's orientation space,
* so there might be accuracy issues.
*/
bool BM_face_point_inside_test(const BMFace *f, const float co[3])
{
float axis_mat[3][3];
float (*projverts)[2] = BLI_array_alloca(projverts, f->len);
float co_2d[2];
BMLoop *l_iter;
int i;
BLI_assert(BM_face_is_normal_valid(f));
axis_dominant_v3_to_m3(axis_mat, f->no);
mul_v2_m3v3(co_2d, axis_mat, co);
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
}
return isect_point_poly_v2(co_2d, (const float (*)[2])projverts, f->len, false);
}
/**
* \brief BMESH TRIANGULATE FACE
*
* Breaks all quads and ngons down to triangles.
* It uses polyfill for the ngons splitting, and
* the beautify operator when use_beauty is true.
*
* \param r_faces_new if non-null, must be an array of BMFace pointers,
* with a length equal to (f->len - 3). It will be filled with the new
* triangles (not including the original triangle).
*
* \param r_faces_double: When newly created faces are duplicates of existing faces, they're added to this list.
* Caller must handle de-duplication.
* This is done because its possible _all_ faces exist already,
* and in that case we would have to remove all faces including the one passed,
* which causes complications adding/removing faces while looking over them.
*
* \note The number of faces is _almost_ always (f->len - 3),
* However there may be faces that already occupying the
* triangles we would make, so the caller must check \a r_faces_new_tot.
*
* \note use_tag tags new flags and edges.
*/
void BM_face_triangulate(
BMesh *bm, BMFace *f,
BMFace **r_faces_new,
int *r_faces_new_tot,
BMEdge **r_edges_new,
int *r_edges_new_tot,
LinkNode **r_faces_double,
const int quad_method,
const int ngon_method,
const bool use_tag,
MemArena *pf_arena,
/* use for MOD_TRIANGULATE_NGON_BEAUTY only! */
struct Heap *pf_heap, struct EdgeHash *pf_ehash)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
const bool use_beauty = (ngon_method == MOD_TRIANGULATE_NGON_BEAUTY);
BMLoop *l_first, *l_new;
BMFace *f_new;
int nf_i = 0;
int ne_i = 0;
BLI_assert(BM_face_is_normal_valid(f));
/* ensure both are valid or NULL */
BLI_assert((r_faces_new == NULL) == (r_faces_new_tot == NULL));
BLI_assert(f->len > 3);
{
BMLoop **loops = BLI_array_alloca(loops, f->len);
unsigned int (*tris)[3] = BLI_array_alloca(tris, f->len);
const int totfilltri = f->len - 2;
const int last_tri = f->len - 3;
int i;
/* for mdisps */
float f_center[3];
if (f->len == 4) {
/* even though we're not using BLI_polyfill, fill in 'tris' and 'loops'
* so we can share code to handle face creation afterwards. */
BMLoop *l_v1, *l_v2;
l_first = BM_FACE_FIRST_LOOP(f);
switch (quad_method) {
case MOD_TRIANGULATE_QUAD_FIXED:
{
l_v1 = l_first;
l_v2 = l_first->next->next;
break;
}
case MOD_TRIANGULATE_QUAD_ALTERNATE:
{
l_v1 = l_first->next;
l_v2 = l_first->prev;
break;
}
case MOD_TRIANGULATE_QUAD_SHORTEDGE:
case MOD_TRIANGULATE_QUAD_BEAUTY:
default:
{
BMLoop *l_v3, *l_v4;
bool split_24;
l_v1 = l_first->next;
l_v2 = l_first->next->next;
l_v3 = l_first->prev;
l_v4 = l_first;
if (quad_method == MOD_TRIANGULATE_QUAD_SHORTEDGE) {
float d1, d2;
d1 = len_squared_v3v3(l_v4->v->co, l_v2->v->co);
d2 = len_squared_v3v3(l_v1->v->co, l_v3->v->co);
split_24 = ((d2 - d1) > 0.0f);
}
else {
/* first check if the quad is concave on either diagonal */
const int flip_flag = is_quad_flip_v3(l_v1->v->co, l_v2->v->co, l_v3->v->co, l_v4->v->co);
if (UNLIKELY(flip_flag & (1 << 0))) {
split_24 = true;
}
else if (UNLIKELY(flip_flag & (1 << 1))) {
split_24 = false;
}
else {
split_24 = (BM_verts_calc_rotate_beauty(l_v1->v, l_v2->v, l_v3->v, l_v4->v, 0, 0) > 0.0f);
}
}
/* named confusingly, l_v1 is in fact the second vertex */
if (split_24) {
l_v1 = l_v4;
//l_v2 = l_v2;
}
else {
//l_v1 = l_v1;
l_v2 = l_v3;
}
break;
}
}
loops[0] = l_v1;
loops[1] = l_v1->next;
loops[2] = l_v2;
loops[3] = l_v2->next;
ARRAY_SET_ITEMS(tris[0], 0, 1, 2);
ARRAY_SET_ITEMS(tris[1], 0, 2, 3);
}
else {
BMLoop *l_iter;
float axis_mat[3][3];
float (*projverts)[2] = BLI_array_alloca(projverts, f->len);
axis_dominant_v3_to_m3_negate(axis_mat, f->no);
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
loops[i] = l_iter;
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
}
BLI_polyfill_calc_arena((const float (*)[2])projverts, f->len, 1, tris,
pf_arena);
if (use_beauty) {
BLI_polyfill_beautify(
(const float (*)[2])projverts, f->len, tris,
pf_arena, pf_heap, pf_ehash);
}
BLI_memarena_clear(pf_arena);
}
if (cd_loop_mdisp_offset != -1) {
BM_face_calc_center_mean(f, f_center);
}
/* loop over calculated triangles and create new geometry */
for (i = 0; i < totfilltri; i++) {
BMLoop *l_tri[3] = {
loops[tris[i][0]],
loops[tris[i][1]],
loops[tris[i][2]]};
BMVert *v_tri[3] = {
l_tri[0]->v,
l_tri[1]->v,
l_tri[2]->v};
f_new = BM_face_create_verts(bm, v_tri, 3, f, BM_CREATE_NOP, true);
l_new = BM_FACE_FIRST_LOOP(f_new);
BLI_assert(v_tri[0] == l_new->v);
/* check for duplicate */
if (l_new->radial_next != l_new) {
BMLoop *l_iter = l_new->radial_next;
do {
if (UNLIKELY((l_iter->f->len == 3) && (l_new->prev->v == l_iter->prev->v))) {
/* Check the last tri because we swap last f_new with f at the end... */
BLI_linklist_prepend(r_faces_double, (i != last_tri) ? f_new : f);
break;
}
} while ((l_iter = l_iter->radial_next) != l_new);
}
/* copy CD data */
BM_elem_attrs_copy(bm, bm, l_tri[0], l_new);
BM_elem_attrs_copy(bm, bm, l_tri[1], l_new->next);
BM_elem_attrs_copy(bm, bm, l_tri[2], l_new->prev);
/* add all but the last face which is swapped and removed (below) */
if (i != last_tri) {
if (use_tag) {
BM_elem_flag_enable(f_new, BM_ELEM_TAG);
}
if (r_faces_new) {
r_faces_new[nf_i++] = f_new;
}
}
if (use_tag || r_edges_new) {
/* new faces loops */
BMLoop *l_iter;
l_iter = l_first = l_new;
do {
BMEdge *e = l_iter->e;
/* confusing! if its not a boundary now, we know it will be later
* since this will be an edge of one of the new faces which we're in the middle of creating */
bool is_new_edge = (l_iter == l_iter->radial_next);
if (is_new_edge) {
if (use_tag) {
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
if (r_edges_new) {
r_edges_new[ne_i++] = e;
}
}
/* note, never disable tag's */
} while ((l_iter = l_iter->next) != l_first);
}
if (cd_loop_mdisp_offset != -1) {
float f_new_center[3];
BM_face_calc_center_mean(f_new, f_new_center);
BM_face_interp_multires_ex(bm, f_new, f, f_new_center, f_center, cd_loop_mdisp_offset);
}
}
{
/* we can't delete the real face, because some of the callers expect it to remain valid.
* so swap data and delete the last created tri */
bmesh_face_swap_data(f, f_new);
BM_face_kill(bm, f_new);
}
}
bm->elem_index_dirty |= BM_FACE;
if (r_faces_new_tot) {
*r_faces_new_tot = nf_i;
}
if (r_edges_new_tot) {
*r_edges_new_tot = ne_i;
}
}
/**
* each pair of loops defines a new edge, a split. this function goes
* through and sets pairs that are geometrically invalid to null. a
* split is invalid, if it forms a concave angle or it intersects other
* edges in the face, or it intersects another split. in the case of
* intersecting splits, only the first of the set of intersecting
* splits survives
*/
void BM_face_splits_check_legal(BMesh *bm, BMFace *f, BMLoop *(*loops)[2], int len)
{
const int len2 = len * 2;
BMLoop *l;
float v1[2], v2[2], v3[2], mid[2], *p1, *p2, *p3, *p4;
float out[2] = {-FLT_MAX, -FLT_MAX};
float axis_mat[3][3];
float (*projverts)[2] = BLI_array_alloca(projverts, f->len);
float (*edgeverts)[2] = BLI_array_alloca(edgeverts, len2);
float fac1 = 1.0000001f, fac2 = 0.9f; //9999f; //0.999f;
int i, j, a = 0, clen;
BLI_assert(BM_face_is_normal_valid(f));
axis_dominant_v3_to_m3(axis_mat, f->no);
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
BM_elem_index_set(l, i); /* set_dirty */
mul_v2_m3v3(projverts[i], axis_mat, l->v->co);
}
bm->elem_index_dirty |= BM_LOOP;
/* first test for completely convex face */
if (is_poly_convex_v2((const float (*)[2])projverts, f->len)) {
return;
}
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
out[0] = max_ff(out[0], projverts[i][0]);
out[1] = max_ff(out[1], projverts[i][1]);
}
/* ensure we are well outside the face bounds (value is arbitrary) */
add_v2_fl(out, 1.0f);
for (i = 0; i < len; i++) {
copy_v2_v2(edgeverts[a + 0], projverts[BM_elem_index_get(loops[i][0])]);
copy_v2_v2(edgeverts[a + 1], projverts[BM_elem_index_get(loops[i][1])]);
scale_edge_v2f(edgeverts[a + 0], edgeverts[a + 1], fac2);
a += 2;
}
/* do convexity test */
for (i = 0; i < len; i++) {
copy_v2_v2(v2, edgeverts[i * 2 + 0]);
copy_v2_v2(v3, edgeverts[i * 2 + 1]);
mid_v2_v2v2(mid, v2, v3);
clen = 0;
for (j = 0; j < f->len; j++) {
p1 = projverts[j];
p2 = projverts[(j + 1) % f->len];
#if 0
copy_v2_v2(v1, p1);
copy_v2_v2(v2, p2);
scale_edge_v2f(v1, v2, fac1);
if (line_crosses_v2f(v1, v2, mid, out)) {
clen++;
}
#else
if (line_crosses_v2f(p1, p2, mid, out)) {
clen++;
}
#endif
}
if (clen % 2 == 0) {
loops[i][0] = NULL;
}
}
/* do line crossing tests */
for (i = 0; i < f->len; i++) {
p1 = projverts[i];
p2 = projverts[(i + 1) % f->len];
copy_v2_v2(v1, p1);
copy_v2_v2(v2, p2);
scale_edge_v2f(v1, v2, fac1);
for (j = 0; j < len; j++) {
if (!loops[j][0]) {
continue;
}
p3 = edgeverts[j * 2];
p4 = edgeverts[j * 2 + 1];
if (line_crosses_v2f(v1, v2, p3, p4)) {
loops[j][0] = NULL;
}
}
}
for (i = 0; i < len; i++) {
for (j = 0; j < len; j++) {
if (j != i && loops[i][0] && loops[j][0]) {
p1 = edgeverts[i * 2];
p2 = edgeverts[i * 2 + 1];
p3 = edgeverts[j * 2];
p4 = edgeverts[j * 2 + 1];
copy_v2_v2(v1, p1);
copy_v2_v2(v2, p2);
scale_edge_v2f(v1, v2, fac1);
if (line_crosses_v2f(v1, v2, p3, p4)) {
loops[i][0] = NULL;
}
}
}
}
}
/**
* This simply checks that the verts don't connect faces which would have more optimal splits.
* but _not_ check for correctness.
*/
void BM_face_splits_check_optimal(BMFace *f, BMLoop *(*loops)[2], int len)
{
int i;
for (i = 0; i < len; i++) {
BMLoop *l_a_dummy, *l_b_dummy;
if (f != BM_vert_pair_share_face_by_angle(loops[i][0]->v, loops[i][1]->v, &l_a_dummy, &l_b_dummy, false)) {
loops[i][0] = NULL;
}
}
}
/**
* Small utility functions for fast access
*
* faster alternative to:
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 3);
*/
void BM_face_as_array_vert_tri(BMFace *f, BMVert *r_verts[3])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 3);
r_verts[0] = l->v; l = l->next;
r_verts[1] = l->v; l = l->next;
r_verts[2] = l->v;
}
/**
* faster alternative to:
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 4);
*/
void BM_face_as_array_vert_quad(BMFace *f, BMVert *r_verts[4])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 4);
r_verts[0] = l->v; l = l->next;
r_verts[1] = l->v; l = l->next;
r_verts[2] = l->v; l = l->next;
r_verts[3] = l->v;
}
/**
* Small utility functions for fast access
*
* faster alternative to:
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 3);
*/
void BM_face_as_array_loop_tri(BMFace *f, BMLoop *r_loops[3])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 3);
r_loops[0] = l; l = l->next;
r_loops[1] = l; l = l->next;
r_loops[2] = l;
}
/**
* faster alternative to:
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 4);
*/
void BM_face_as_array_loop_quad(BMFace *f, BMLoop *r_loops[4])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 4);
r_loops[0] = l; l = l->next;
r_loops[1] = l; l = l->next;
r_loops[2] = l; l = l->next;
r_loops[3] = l;
}
/**
* \brief BM_bmesh_calc_tessellation get the looptris and its number from a certain bmesh
* \param looptris
*
* \note \a looptris Must be pre-allocated to at least the size of given by: poly_to_tri_count
*/
void BM_bmesh_calc_tessellation(BMesh *bm, BMLoop *(*looptris)[3], int *r_looptris_tot)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
/* this assumes all faces can be scan-filled, which isn't always true,
* worst case we over alloc a little which is acceptable */
#ifndef NDEBUG
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
#endif
BMIter iter;
BMFace *efa;
int i = 0;
MemArena *arena = NULL;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
/* don't consider two-edged faces */
if (UNLIKELY(efa->len < 3)) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
/* no need to ensure the loop order, we know its ok */
else if (efa->len == 3) {
#if 0
int j;
BM_ITER_ELEM_INDEX (l, &liter, efa, BM_LOOPS_OF_FACE, j) {
looptris[i][j] = l;
}
i += 1;
#else
/* more cryptic but faster */
BMLoop *l;
BMLoop **l_ptr = looptris[i++];
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
l_ptr[1] = l = l->next;
l_ptr[2] = l->next;
#endif
}
else if (efa->len == 4) {
#if 0
BMLoop *ltmp[4];
int j;
BLI_array_grow_items(looptris, 2);
BM_ITER_ELEM_INDEX (l, &liter, efa, BM_LOOPS_OF_FACE, j) {
ltmp[j] = l;
}
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[1];
looptris[i][2] = ltmp[2];
i += 1;
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[2];
looptris[i][2] = ltmp[3];
i += 1;
#else
/* more cryptic but faster */
BMLoop *l;
BMLoop **l_ptr_a = looptris[i++];
BMLoop **l_ptr_b = looptris[i++];
(l_ptr_a[0] = l_ptr_b[0] = l = BM_FACE_FIRST_LOOP(efa));
(l_ptr_a[1] = l = l->next);
(l_ptr_a[2] = l_ptr_b[1] = l = l->next);
( l_ptr_b[2] = l->next);
#endif
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
int j;
BMLoop *l_iter;
BMLoop *l_first;
BMLoop **l_arr;
float axis_mat[3][3];
float (*projverts)[2];
unsigned int (*tris)[3];
const int totfilltri = efa->len - 2;
if (UNLIKELY(arena == NULL)) {
arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
}
tris = BLI_memarena_alloc(arena, sizeof(*tris) * totfilltri);
l_arr = BLI_memarena_alloc(arena, sizeof(*l_arr) * efa->len);
projverts = BLI_memarena_alloc(arena, sizeof(*projverts) * efa->len);
axis_dominant_v3_to_m3_negate(axis_mat, efa->no);
j = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
do {
l_arr[j] = l_iter;
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
j++;
} while ((l_iter = l_iter->next) != l_first);
BLI_polyfill_calc_arena((const float (*)[2])projverts, efa->len, 1, tris, arena);
for (j = 0; j < totfilltri; j++) {
BMLoop **l_ptr = looptris[i++];
unsigned int *tri = tris[j];
l_ptr[0] = l_arr[tri[0]];
l_ptr[1] = l_arr[tri[1]];
l_ptr[2] = l_arr[tri[2]];
}
BLI_memarena_clear(arena);
}
}
if (arena) {
BLI_memarena_free(arena);
arena = NULL;
}
*r_looptris_tot = i;
BLI_assert(i <= looptris_tot);
#undef USE_TESSFACE_SPEEDUP
}