This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/intern/COM_MemoryBuffer.h
Campbell Barton c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00

732 lines
19 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2011 Blender Foundation. */
#pragma once
#include "COM_BufferArea.h"
#include "COM_BufferRange.h"
#include "COM_BuffersIterator.h"
#include "COM_Enums.h"
#include "BLI_math_interp.h"
#include "BLI_rect.h"
#include "IMB_colormanagement.h"
struct ImBuf;
namespace blender::compositor {
/**
* \brief state of a memory buffer
* \ingroup Memory
*/
enum class MemoryBufferState {
/** \brief memory has been allocated on creator device and CPU machine,
* but kernel has not been executed */
Default = 0,
/** \brief chunk is consolidated from other chunks. special state. */
Temporary = 6,
};
enum class MemoryBufferExtend {
Clip,
Extend,
Repeat,
};
class MemoryProxy;
/**
* \brief a MemoryBuffer contains access to the data of a chunk
*/
class MemoryBuffer {
public:
/**
* Offset between elements.
*
* Should always be used for the x dimension when calculating buffer offsets.
* It will be 0 when is_a_single_elem=true.
* e.g: buffer_index = y * buffer.row_stride + x * buffer.elem_stride
*/
int elem_stride;
/**
* Offset between rows.
*
* Should always be used for the y dimension when calculating buffer offsets.
* It will be 0 when is_a_single_elem=true.
* e.g: buffer_index = y * buffer.row_stride + x * buffer.elem_stride
*/
int row_stride;
private:
/**
* \brief proxy of the memory (same for all chunks in the same buffer)
*/
MemoryProxy *memory_proxy_;
/**
* \brief the type of buffer DataType::Value, DataType::Vector, DataType::Color
*/
DataType datatype_;
/**
* \brief region of this buffer inside relative to the MemoryProxy
*/
rcti rect_;
/**
* \brief state of the buffer
*/
MemoryBufferState state_;
/**
* \brief the actual float buffer/data
*/
float *buffer_;
/**
* \brief the number of channels of a single value in the buffer.
* For value buffers this is 1, vector 3 and color 4
*/
uint8_t num_channels_;
/**
* Whether buffer is a single element in memory.
*/
bool is_a_single_elem_;
/**
* Whether MemoryBuffer owns buffer data.
*/
bool owns_data_;
/** Stride to make any x coordinate within buffer positive (non-zero). */
int to_positive_x_stride_;
/** Stride to make any y coordinate within buffer positive (non-zero). */
int to_positive_y_stride_;
public:
/**
* \brief construct new temporarily MemoryBuffer for an area
*/
MemoryBuffer(MemoryProxy *memory_proxy, const rcti &rect, MemoryBufferState state);
/**
* \brief construct new temporarily MemoryBuffer for an area
*/
MemoryBuffer(DataType data_type, const rcti &rect, bool is_a_single_elem = false);
/**
* Construct MemoryBuffer from a float buffer. MemoryBuffer is not responsible for
* freeing it.
*/
MemoryBuffer(
float *buffer, int num_channels, int width, int height, bool is_a_single_elem = false);
/**
* Construct MemoryBuffer from a float buffer area. MemoryBuffer is not responsible for
* freeing given buffer.
*/
MemoryBuffer(float *buffer, int num_channels, const rcti &rect, bool is_a_single_elem = false);
/**
* Copy constructor
*/
MemoryBuffer(const MemoryBuffer &src);
/**
* \brief destructor
*/
~MemoryBuffer();
/**
* Whether buffer is a single element in memory independently of its resolution. True for set
* operations buffers.
*/
bool is_a_single_elem() const
{
return is_a_single_elem_;
}
float &operator[](int index)
{
BLI_assert(is_a_single_elem_ ? index < num_channels_ :
index < get_coords_offset(get_width(), get_height()));
return buffer_[index];
}
const float &operator[](int index) const
{
BLI_assert(is_a_single_elem_ ? index < num_channels_ :
index < get_coords_offset(get_width(), get_height()));
return buffer_[index];
}
/**
* Get offset needed to jump from buffer start to given coordinates.
*/
intptr_t get_coords_offset(int x, int y) const
{
return ((intptr_t)y - rect_.ymin) * row_stride + ((intptr_t)x - rect_.xmin) * elem_stride;
}
/**
* Get buffer element at given coordinates.
*/
float *get_elem(int x, int y)
{
BLI_assert(has_coords(x, y));
return buffer_ + get_coords_offset(x, y);
}
/**
* Get buffer element at given coordinates.
*/
const float *get_elem(int x, int y) const
{
BLI_assert(has_coords(x, y));
return buffer_ + get_coords_offset(x, y);
}
void read_elem(int x, int y, float *out) const
{
memcpy(out, get_elem(x, y), get_elem_bytes_len());
}
void read_elem_checked(int x, int y, float *out) const
{
if (!has_coords(x, y)) {
clear_elem(out);
}
else {
read_elem(x, y, out);
}
}
void read_elem_checked(float x, float y, float *out) const
{
read_elem_checked(floor_x(x), floor_y(y), out);
}
void read_elem_bilinear(float x, float y, float *out) const
{
/* Only clear past +/-1 borders to be able to smooth edges. */
if (x <= rect_.xmin - 1.0f || x >= rect_.xmax || y <= rect_.ymin - 1.0f || y >= rect_.ymax) {
clear_elem(out);
return;
}
if (is_a_single_elem_) {
if (x >= rect_.xmin && x < rect_.xmax - 1.0f && y >= rect_.ymin && y < rect_.ymax - 1.0f) {
memcpy(out, buffer_, get_elem_bytes_len());
return;
}
/* Do sampling at borders to smooth edges. */
const float last_x = get_width() - 1.0f;
const float rel_x = get_relative_x(x);
float single_x = 0.0f;
if (rel_x < 0.0f) {
single_x = rel_x;
}
else if (rel_x > last_x) {
single_x = rel_x - last_x;
}
const float last_y = get_height() - 1.0f;
const float rel_y = get_relative_y(y);
float single_y = 0.0f;
if (rel_y < 0.0f) {
single_y = rel_y;
}
else if (rel_y > last_y) {
single_y = rel_y - last_y;
}
BLI_bilinear_interpolation_fl(buffer_, out, 1, 1, num_channels_, single_x, single_y);
return;
}
BLI_bilinear_interpolation_fl(buffer_,
out,
get_width(),
get_height(),
num_channels_,
get_relative_x(x),
get_relative_y(y));
}
void read_elem_sampled(float x, float y, PixelSampler sampler, float *out) const
{
switch (sampler) {
case PixelSampler::Nearest:
read_elem_checked(x, y, out);
break;
case PixelSampler::Bilinear:
case PixelSampler::Bicubic:
/* No bicubic. Current implementation produces fuzzy results. */
read_elem_bilinear(x, y, out);
break;
}
}
void read_elem_filtered(float x, float y, float dx[2], float dy[2], float *out) const;
/**
* Get channel value at given coordinates.
*/
float &get_value(int x, int y, int channel)
{
BLI_assert(has_coords(x, y) && channel >= 0 && channel < num_channels_);
return buffer_[get_coords_offset(x, y) + channel];
}
/**
* Get channel value at given coordinates.
*/
const float &get_value(int x, int y, int channel) const
{
BLI_assert(has_coords(x, y) && channel >= 0 && channel < num_channels_);
return buffer_[get_coords_offset(x, y) + channel];
}
/**
* Get the buffer row end.
*/
const float *get_row_end(int y) const
{
BLI_assert(has_y(y));
return buffer_ + (is_a_single_elem() ? num_channels_ : get_coords_offset(get_width(), y));
}
/**
* Get the number of elements in memory for a row. For single element buffers it will always
* be 1.
*/
int get_memory_width() const
{
return is_a_single_elem() ? 1 : get_width();
}
/**
* Get number of elements in memory for a column. For single element buffers it will
* always be 1.
*/
int get_memory_height() const
{
return is_a_single_elem() ? 1 : get_height();
}
uint8_t get_num_channels() const
{
return num_channels_;
}
uint8_t get_elem_bytes_len() const
{
return num_channels_ * sizeof(float);
}
/**
* Get all buffer elements as a range with no offsets.
*/
BufferRange<float> as_range()
{
return BufferRange<float>(buffer_, 0, buffer_len(), elem_stride);
}
BufferRange<const float> as_range() const
{
return BufferRange<const float>(buffer_, 0, buffer_len(), elem_stride);
}
BufferArea<float> get_buffer_area(const rcti &area)
{
return BufferArea<float>(buffer_, get_width(), area, elem_stride);
}
BufferArea<const float> get_buffer_area(const rcti &area) const
{
return BufferArea<const float>(buffer_, get_width(), area, elem_stride);
}
BuffersIterator<float> iterate_with(Span<MemoryBuffer *> inputs);
BuffersIterator<float> iterate_with(Span<MemoryBuffer *> inputs, const rcti &area);
/**
* \brief get the data of this MemoryBuffer
* \note buffer should already be available in memory
*/
float *get_buffer()
{
return buffer_;
}
float *release_ownership_buffer()
{
owns_data_ = false;
return buffer_;
}
/**
* Converts a single elem buffer to a full size buffer (allocates memory for all
* elements in resolution).
*/
MemoryBuffer *inflate() const;
inline void wrap_pixel(int &x, int &y, MemoryBufferExtend extend_x, MemoryBufferExtend extend_y)
{
const int w = get_width();
const int h = get_height();
x = x - rect_.xmin;
y = y - rect_.ymin;
switch (extend_x) {
case MemoryBufferExtend::Clip:
break;
case MemoryBufferExtend::Extend:
if (x < 0) {
x = 0;
}
if (x >= w) {
x = w - 1;
}
break;
case MemoryBufferExtend::Repeat:
x %= w;
if (x < 0) {
x += w;
}
break;
}
switch (extend_y) {
case MemoryBufferExtend::Clip:
break;
case MemoryBufferExtend::Extend:
if (y < 0) {
y = 0;
}
if (y >= h) {
y = h - 1;
}
break;
case MemoryBufferExtend::Repeat:
y %= h;
if (y < 0) {
y += h;
}
break;
}
x = x + rect_.xmin;
y = y + rect_.ymin;
}
inline void wrap_pixel(float &x,
float &y,
MemoryBufferExtend extend_x,
MemoryBufferExtend extend_y) const
{
const float w = (float)get_width();
const float h = (float)get_height();
x = x - rect_.xmin;
y = y - rect_.ymin;
switch (extend_x) {
case MemoryBufferExtend::Clip:
break;
case MemoryBufferExtend::Extend:
if (x < 0) {
x = 0.0f;
}
if (x >= w) {
x = w - 1;
}
break;
case MemoryBufferExtend::Repeat:
x = fmodf(x, w);
if (x < 0.0f) {
x += w;
}
break;
}
switch (extend_y) {
case MemoryBufferExtend::Clip:
break;
case MemoryBufferExtend::Extend:
if (y < 0) {
y = 0.0f;
}
if (y >= h) {
y = h - 1;
}
break;
case MemoryBufferExtend::Repeat:
y = fmodf(y, h);
if (y < 0.0f) {
y += h;
}
break;
}
x = x + rect_.xmin;
y = y + rect_.ymin;
}
/* TODO(manzanilla): to be removed with tiled implementation. For applying #MemoryBufferExtend
* use #wrap_pixel. */
inline void read(float *result,
int x,
int y,
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip)
{
bool clip_x = (extend_x == MemoryBufferExtend::Clip && (x < rect_.xmin || x >= rect_.xmax));
bool clip_y = (extend_y == MemoryBufferExtend::Clip && (y < rect_.ymin || y >= rect_.ymax));
if (clip_x || clip_y) {
/* clip result outside rect is zero */
memset(result, 0, num_channels_ * sizeof(float));
}
else {
int u = x;
int v = y;
this->wrap_pixel(u, v, extend_x, extend_y);
const int offset = get_coords_offset(u, v);
float *buffer = &buffer_[offset];
memcpy(result, buffer, sizeof(float) * num_channels_);
}
}
/* TODO(manzanilla): to be removed with tiled implementation. */
inline void read_no_check(float *result,
int x,
int y,
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip)
{
int u = x;
int v = y;
this->wrap_pixel(u, v, extend_x, extend_y);
const int offset = get_coords_offset(u, v);
BLI_assert(offset >= 0);
BLI_assert(offset < this->buffer_len() * num_channels_);
BLI_assert(!(extend_x == MemoryBufferExtend::Clip && (u < rect_.xmin || u >= rect_.xmax)) &&
!(extend_y == MemoryBufferExtend::Clip && (v < rect_.ymin || v >= rect_.ymax)));
float *buffer = &buffer_[offset];
memcpy(result, buffer, sizeof(float) * num_channels_);
}
void write_pixel(int x, int y, const float color[4]);
void add_pixel(int x, int y, const float color[4]);
inline void read_bilinear(float *result,
float x,
float y,
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip) const
{
float u = x;
float v = y;
this->wrap_pixel(u, v, extend_x, extend_y);
if ((extend_x != MemoryBufferExtend::Repeat && (u < 0.0f || u >= get_width())) ||
(extend_y != MemoryBufferExtend::Repeat && (v < 0.0f || v >= get_height()))) {
copy_vn_fl(result, num_channels_, 0.0f);
return;
}
if (is_a_single_elem_) {
memcpy(result, buffer_, sizeof(float) * num_channels_);
}
else {
BLI_bilinear_interpolation_wrap_fl(buffer_,
result,
get_width(),
get_height(),
num_channels_,
u,
v,
extend_x == MemoryBufferExtend::Repeat,
extend_y == MemoryBufferExtend::Repeat);
}
}
void readEWA(float *result, const float uv[2], const float derivatives[2][2]);
/**
* \brief is this MemoryBuffer a temporarily buffer (based on an area, not on a chunk)
*/
inline bool is_temporarily() const
{
return state_ == MemoryBufferState::Temporary;
}
/**
* \brief Apply a color processor on the given area.
*/
void apply_processor(ColormanageProcessor &processor, const rcti area);
void copy_from(const MemoryBuffer *src, const rcti &area);
void copy_from(const MemoryBuffer *src, const rcti &area, int to_x, int to_y);
void copy_from(const MemoryBuffer *src,
const rcti &area,
int channel_offset,
int elem_size,
int to_channel_offset);
void copy_from(const MemoryBuffer *src,
const rcti &area,
int channel_offset,
int elem_size,
int to_x,
int to_y,
int to_channel_offset);
void copy_from(const uchar *src, const rcti &area);
void copy_from(const uchar *src,
const rcti &area,
int channel_offset,
int elem_size,
int elem_stride,
int row_stride,
int to_channel_offset);
void copy_from(const uchar *src,
const rcti &area,
int channel_offset,
int elem_size,
int elem_stride,
int row_stride,
int to_x,
int to_y,
int to_channel_offset);
void copy_from(const struct ImBuf *src, const rcti &area, bool ensure_linear_space = false);
void copy_from(const struct ImBuf *src,
const rcti &area,
int channel_offset,
int elem_size,
int to_channel_offset,
bool ensure_linear_space = false);
void copy_from(const struct ImBuf *src,
const rcti &src_area,
int channel_offset,
int elem_size,
int to_x,
int to_y,
int to_channel_offset,
bool ensure_linear_space = false);
void fill(const rcti &area, const float *value);
void fill(const rcti &area, int channel_offset, const float *value, int value_size);
/**
* \brief add the content from other_buffer to this MemoryBuffer
* \param other_buffer: source buffer
*
* \note take care when running this on a new buffer since it won't fill in
* uninitialized values in areas where the buffers don't overlap.
*/
void fill_from(const MemoryBuffer &src);
/**
* \brief get the rect of this MemoryBuffer
*/
const rcti &get_rect() const
{
return rect_;
}
/**
* \brief get the width of this MemoryBuffer
*/
const int get_width() const
{
return BLI_rcti_size_x(&rect_);
}
/**
* \brief get the height of this MemoryBuffer
*/
const int get_height() const
{
return BLI_rcti_size_y(&rect_);
}
/**
* \brief clear the buffer. Make all pixels black transparent.
*/
void clear();
float get_max_value() const;
float get_max_value(const rcti &rect) const;
private:
void set_strides();
const int buffer_len() const
{
return get_memory_width() * get_memory_height();
}
void clear_elem(float *out) const
{
memset(out, 0, num_channels_ * sizeof(float));
}
template<typename T> T get_relative_x(T x) const
{
return x - rect_.xmin;
}
template<typename T> T get_relative_y(T y) const
{
return y - rect_.ymin;
}
template<typename T> bool has_coords(T x, T y) const
{
return has_x(x) && has_y(y);
}
template<typename T> bool has_x(T x) const
{
return x >= rect_.xmin && x < rect_.xmax;
}
template<typename T> bool has_y(T y) const
{
return y >= rect_.ymin && y < rect_.ymax;
}
/* Fast `floor(..)` functions. The caller should check result is within buffer bounds.
* It `ceil(..)` in near cases and when given coordinate
* is negative and less than buffer rect `min - 1`. */
int floor_x(float x) const
{
return (int)(x + to_positive_x_stride_) - to_positive_x_stride_;
}
int floor_y(float y) const
{
return (int)(y + to_positive_y_stride_) - to_positive_y_stride_;
}
void copy_single_elem_from(const MemoryBuffer *src,
int channel_offset,
int elem_size,
int to_channel_offset);
void copy_rows_from(const MemoryBuffer *src, const rcti &src_area, int to_x, int to_y);
void copy_elems_from(const MemoryBuffer *src,
const rcti &area,
int channel_offset,
int elem_size,
int to_x,
int to_y,
int to_channel_offset);
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("COM:MemoryBuffer")
#endif
};
} // namespace blender::compositor