Expands Color Mix nodes with new Exclusion mode. Similar to Difference but produces less contrast. Requested by Pierre Schiller @3D_director and @OmarSquircleArt on twitter. Differential Revision: https://developer.blender.org/D16543
1461 lines
42 KiB
C++
1461 lines
42 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2011 Blender Foundation. */
|
|
|
|
#include "COM_MixOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
/* ******** Mix Base Operation ******** */
|
|
|
|
MixBaseOperation::MixBaseOperation()
|
|
{
|
|
this->add_input_socket(DataType::Value);
|
|
this->add_input_socket(DataType::Color);
|
|
this->add_input_socket(DataType::Color);
|
|
this->add_output_socket(DataType::Color);
|
|
input_value_operation_ = nullptr;
|
|
input_color1_operation_ = nullptr;
|
|
input_color2_operation_ = nullptr;
|
|
this->set_use_value_alpha_multiply(false);
|
|
this->set_use_clamp(false);
|
|
flags_.can_be_constant = true;
|
|
}
|
|
|
|
void MixBaseOperation::init_execution()
|
|
{
|
|
input_value_operation_ = this->get_input_socket_reader(0);
|
|
input_color1_operation_ = this->get_input_socket_reader(1);
|
|
input_color2_operation_ = this->get_input_socket_reader(2);
|
|
}
|
|
|
|
void MixBaseOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color2[0]);
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color2[1]);
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
}
|
|
|
|
void MixBaseOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
NodeOperationInput *socket;
|
|
rcti temp_area = COM_AREA_NONE;
|
|
|
|
socket = this->get_input_socket(1);
|
|
bool determined = socket->determine_canvas(COM_AREA_NONE, temp_area);
|
|
if (determined) {
|
|
this->set_canvas_input_index(1);
|
|
}
|
|
else {
|
|
socket = this->get_input_socket(2);
|
|
determined = socket->determine_canvas(COM_AREA_NONE, temp_area);
|
|
if (determined) {
|
|
this->set_canvas_input_index(2);
|
|
}
|
|
else {
|
|
this->set_canvas_input_index(0);
|
|
}
|
|
}
|
|
NodeOperation::determine_canvas(preferred_area, r_area);
|
|
}
|
|
|
|
void MixBaseOperation::deinit_execution()
|
|
{
|
|
input_value_operation_ = nullptr;
|
|
input_color1_operation_ = nullptr;
|
|
input_color2_operation_ = nullptr;
|
|
}
|
|
|
|
void MixBaseOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
const MemoryBuffer *input_value = inputs[0];
|
|
const MemoryBuffer *input_color1 = inputs[1];
|
|
const MemoryBuffer *input_color2 = inputs[2];
|
|
const int width = BLI_rcti_size_x(&area);
|
|
PixelCursor p;
|
|
p.out_stride = output->elem_stride;
|
|
p.value_stride = input_value->elem_stride;
|
|
p.color1_stride = input_color1->elem_stride;
|
|
p.color2_stride = input_color2->elem_stride;
|
|
for (int y = area.ymin; y < area.ymax; y++) {
|
|
p.out = output->get_elem(area.xmin, y);
|
|
p.row_end = p.out + width * output->elem_stride;
|
|
p.value = input_value->get_elem(area.xmin, y);
|
|
p.color1 = input_color1->get_elem(area.xmin, y);
|
|
p.color2 = input_color2->get_elem(area.xmin, y);
|
|
update_memory_buffer_row(p);
|
|
}
|
|
}
|
|
|
|
void MixBaseOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
|
|
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
|
|
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Add Operation ******** */
|
|
|
|
void MixAddOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
output[0] = input_color1[0] + value * input_color2[0];
|
|
output[1] = input_color1[1] + value * input_color2[1];
|
|
output[2] = input_color1[2] + value * input_color2[2];
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixAddOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
p.out[0] = p.color1[0] + value * p.color2[0];
|
|
p.out[1] = p.color1[1] + value * p.color2[1];
|
|
p.out[2] = p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Blend Operation ******** */
|
|
|
|
void MixBlendOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float value;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
value = input_value[0];
|
|
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color2[0]);
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color2[1]);
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixBlendOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
|
|
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
|
|
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Burn Operation ******** */
|
|
|
|
void MixColorBurnOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float tmp;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
tmp = valuem + value * input_color2[0];
|
|
if (tmp <= 0.0f) {
|
|
output[0] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[0]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[0] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
output[0] = tmp;
|
|
}
|
|
}
|
|
|
|
tmp = valuem + value * input_color2[1];
|
|
if (tmp <= 0.0f) {
|
|
output[1] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[1]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[1] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
output[1] = tmp;
|
|
}
|
|
}
|
|
|
|
tmp = valuem + value * input_color2[2];
|
|
if (tmp <= 0.0f) {
|
|
output[2] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[2]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[2] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
output[2] = tmp;
|
|
}
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixColorBurnOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float tmp = value_m + value * p.color2[0];
|
|
if (tmp <= 0.0f) {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[0]) / tmp;
|
|
p.out[0] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
|
|
tmp = value_m + value * p.color2[1];
|
|
if (tmp <= 0.0f) {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[1]) / tmp;
|
|
p.out[1] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
|
|
tmp = value_m + value * p.color2[2];
|
|
if (tmp <= 0.0f) {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[2]) / tmp;
|
|
p.out[2] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Color Operation ******** */
|
|
|
|
void MixColorOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
|
|
output[0] = (valuem * input_color1[0]) + (value * tmpr);
|
|
output[1] = (valuem * input_color1[1]) + (value * tmpg);
|
|
output[2] = (valuem * input_color1[2]) + (value * tmpb);
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixColorOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
|
|
p.out[0] = (value_m * p.color1[0]) + (value * tmpr);
|
|
p.out[1] = (value_m * p.color1[1]) + (value * tmpg);
|
|
p.out[2] = (value_m * p.color1[2]) + (value * tmpb);
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Darken Operation ******** */
|
|
|
|
void MixDarkenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = min_ff(input_color1[0], input_color2[0]) * value + input_color1[0] * valuem;
|
|
output[1] = min_ff(input_color1[1], input_color2[1]) * value + input_color1[1] * valuem;
|
|
output[2] = min_ff(input_color1[2], input_color2[2]) * value + input_color1[2] * valuem;
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDarkenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
p.out[0] = min_ff(p.color1[0], p.color2[0]) * value + p.color1[0] * value_m;
|
|
p.out[1] = min_ff(p.color1[1], p.color2[1]) * value + p.color1[1] * value_m;
|
|
p.out[2] = min_ff(p.color1[2], p.color2[2]) * value + p.color1[2] * value_m;
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Difference Operation ******** */
|
|
|
|
void MixDifferenceOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * input_color1[0] + value * fabsf(input_color1[0] - input_color2[0]);
|
|
output[1] = valuem * input_color1[1] + value * fabsf(input_color1[1] - input_color2[1]);
|
|
output[2] = valuem * input_color1[2] + value * fabsf(input_color1[2] - input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDifferenceOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * fabsf(p.color1[0] - p.color2[0]);
|
|
p.out[1] = value_m * p.color1[1] + value * fabsf(p.color1[1] - p.color2[1]);
|
|
p.out[2] = value_m * p.color1[2] + value * fabsf(p.color1[2] - p.color2[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Exclusion Operation ******** */
|
|
|
|
void MixExclusionOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = max_ff(valuem * input_color1[0] + value * (input_color1[0] + input_color2[0] -
|
|
2.0f * input_color1[0] * input_color2[0]),
|
|
0.0f);
|
|
output[1] = max_ff(valuem * input_color1[1] + value * (input_color1[1] + input_color2[1] -
|
|
2.0f * input_color1[1] * input_color2[1]),
|
|
0.0f);
|
|
output[2] = max_ff(valuem * input_color1[2] + value * (input_color1[2] + input_color2[2] -
|
|
2.0f * input_color1[2] * input_color2[2]),
|
|
0.0f);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixExclusionOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = max_ff(value_m * p.color1[0] +
|
|
value * (p.color1[0] + p.color2[0] - 2.0f * p.color1[0] * p.color2[0]),
|
|
0.0f);
|
|
p.out[1] = max_ff(value_m * p.color1[1] +
|
|
value * (p.color1[1] + p.color2[1] - 2.0f * p.color1[1] * p.color2[1]),
|
|
0.0f);
|
|
p.out[2] = max_ff(value_m * p.color1[2] +
|
|
value * (p.color1[2] + p.color2[2] - 2.0f * p.color1[2] * p.color2[2]),
|
|
0.0f);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Divide Operation ******** */
|
|
|
|
void MixDivideOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
if (input_color2[0] != 0.0f) {
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color1[0]) / input_color2[0];
|
|
}
|
|
else {
|
|
output[0] = 0.0f;
|
|
}
|
|
if (input_color2[1] != 0.0f) {
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color1[1]) / input_color2[1];
|
|
}
|
|
else {
|
|
output[1] = 0.0f;
|
|
}
|
|
if (input_color2[2] != 0.0f) {
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color1[2]) / input_color2[2];
|
|
}
|
|
else {
|
|
output[2] = 0.0f;
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDivideOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
if (p.color2[0] != 0.0f) {
|
|
p.out[0] = value_m * (p.color1[0]) + value * (p.color1[0]) / p.color2[0];
|
|
}
|
|
else {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
if (p.color2[1] != 0.0f) {
|
|
p.out[1] = value_m * (p.color1[1]) + value * (p.color1[1]) / p.color2[1];
|
|
}
|
|
else {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
if (p.color2[2] != 0.0f) {
|
|
p.out[2] = value_m * (p.color1[2]) + value * (p.color1[2]) / p.color2[2];
|
|
}
|
|
else {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Dodge Operation ******** */
|
|
|
|
void MixDodgeOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float tmp;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
|
|
if (input_color1[0] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[0];
|
|
if (tmp <= 0.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[0] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
output[0] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[0] = 0.0f;
|
|
}
|
|
|
|
if (input_color1[1] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[1];
|
|
if (tmp <= 0.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[1] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
output[1] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[1] = 0.0f;
|
|
}
|
|
|
|
if (input_color1[2] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[2];
|
|
if (tmp <= 0.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[2] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
output[2] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[2] = 0.0f;
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDodgeOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
|
|
float tmp;
|
|
if (p.color1[0] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[0];
|
|
if (tmp <= 0.0f) {
|
|
p.out[0] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[0] = p.color1[0] / tmp;
|
|
CLAMP_MAX(p.out[0], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
|
|
if (p.color1[1] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[1];
|
|
if (tmp <= 0.0f) {
|
|
p.out[1] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[1] = p.color1[1] / tmp;
|
|
CLAMP_MAX(p.out[1], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
|
|
if (p.color1[2] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[2];
|
|
if (tmp <= 0.0f) {
|
|
p.out[2] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[2] = p.color1[2] / tmp;
|
|
CLAMP_MAX(p.out[2], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Glare Operation ******** */
|
|
|
|
void MixGlareOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float value, input_weight, glare_weight;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
value = input_value[0];
|
|
/* Linear interpolation between 3 cases:
|
|
* value=-1:output=input value=0:output=input+glare value=1:output=glare
|
|
*/
|
|
if (value < 0.0f) {
|
|
input_weight = 1.0f;
|
|
glare_weight = 1.0f + value;
|
|
}
|
|
else {
|
|
input_weight = 1.0f - value;
|
|
glare_weight = 1.0f;
|
|
}
|
|
output[0] = input_weight * MAX2(input_color1[0], 0.0f) + glare_weight * input_color2[0];
|
|
output[1] = input_weight * MAX2(input_color1[1], 0.0f) + glare_weight * input_color2[1];
|
|
output[2] = input_weight * MAX2(input_color1[2], 0.0f) + glare_weight * input_color2[2];
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixGlareOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
const float value = p.value[0];
|
|
/* Linear interpolation between 3 cases:
|
|
* value=-1:output=input value=0:output=input+glare value=1:output=glare
|
|
*/
|
|
float input_weight;
|
|
float glare_weight;
|
|
if (value < 0.0f) {
|
|
input_weight = 1.0f;
|
|
glare_weight = 1.0f + value;
|
|
}
|
|
else {
|
|
input_weight = 1.0f - value;
|
|
glare_weight = 1.0f;
|
|
}
|
|
p.out[0] = input_weight * MAX2(p.color1[0], 0.0f) + glare_weight * p.color2[0];
|
|
p.out[1] = input_weight * MAX2(p.color1[1], 0.0f) + glare_weight * p.color2[1];
|
|
p.out[2] = input_weight * MAX2(p.color1[2], 0.0f) + glare_weight * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Hue Operation ******** */
|
|
|
|
void MixHueOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
|
|
output[0] = valuem * (input_color1[0]) + value * tmpr;
|
|
output[1] = valuem * (input_color1[1]) + value * tmpg;
|
|
output[2] = valuem * (input_color1[2]) + value * tmpb;
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixHueOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
|
|
p.out[0] = value_m * p.color1[0] + value * tmpr;
|
|
p.out[1] = value_m * p.color1[1] + value * tmpg;
|
|
p.out[2] = value_m * p.color1[2] + value * tmpb;
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Lighten Operation ******** */
|
|
|
|
void MixLightenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float tmp;
|
|
tmp = value * input_color2[0];
|
|
if (tmp > input_color1[0]) {
|
|
output[0] = tmp;
|
|
}
|
|
else {
|
|
output[0] = input_color1[0];
|
|
}
|
|
tmp = value * input_color2[1];
|
|
if (tmp > input_color1[1]) {
|
|
output[1] = tmp;
|
|
}
|
|
else {
|
|
output[1] = input_color1[1];
|
|
}
|
|
tmp = value * input_color2[2];
|
|
if (tmp > input_color1[2]) {
|
|
output[2] = tmp;
|
|
}
|
|
else {
|
|
output[2] = input_color1[2];
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixLightenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
|
|
float tmp = value * p.color2[0];
|
|
p.out[0] = MAX2(tmp, p.color1[0]);
|
|
|
|
tmp = value * p.color2[1];
|
|
p.out[1] = MAX2(tmp, p.color1[1]);
|
|
|
|
tmp = value * p.color2[2];
|
|
p.out[2] = MAX2(tmp, p.color1[2]);
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Linear Light Operation ******** */
|
|
|
|
void MixLinearLightOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
if (input_color2[0] > 0.5f) {
|
|
output[0] = input_color1[0] + value * (2.0f * (input_color2[0] - 0.5f));
|
|
}
|
|
else {
|
|
output[0] = input_color1[0] + value * (2.0f * (input_color2[0]) - 1.0f);
|
|
}
|
|
if (input_color2[1] > 0.5f) {
|
|
output[1] = input_color1[1] + value * (2.0f * (input_color2[1] - 0.5f));
|
|
}
|
|
else {
|
|
output[1] = input_color1[1] + value * (2.0f * (input_color2[1]) - 1.0f);
|
|
}
|
|
if (input_color2[2] > 0.5f) {
|
|
output[2] = input_color1[2] + value * (2.0f * (input_color2[2] - 0.5f));
|
|
}
|
|
else {
|
|
output[2] = input_color1[2] + value * (2.0f * (input_color2[2]) - 1.0f);
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixLinearLightOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
if (p.color2[0] > 0.5f) {
|
|
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0]) - 1.0f);
|
|
}
|
|
if (p.color2[1] > 0.5f) {
|
|
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1]) - 1.0f);
|
|
}
|
|
if (p.color2[2] > 0.5f) {
|
|
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2]) - 1.0f);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Multiply Operation ******** */
|
|
|
|
void MixMultiplyOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = input_color1[0] * (valuem + value * input_color2[0]);
|
|
output[1] = input_color1[1] * (valuem + value * input_color2[1]);
|
|
output[2] = input_color1[2] * (valuem + value * input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixMultiplyOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = p.color1[0] * (value_m + value * p.color2[0]);
|
|
p.out[1] = p.color1[1] * (value_m + value * p.color2[1]);
|
|
p.out[2] = p.color1[2] * (value_m + value * p.color2[2]);
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Overlay Operation ******** */
|
|
|
|
void MixOverlayOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
|
|
float valuem = 1.0f - value;
|
|
|
|
if (input_color1[0] < 0.5f) {
|
|
output[0] = input_color1[0] * (valuem + 2.0f * value * input_color2[0]);
|
|
}
|
|
else {
|
|
output[0] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[0])) * (1.0f - input_color1[0]);
|
|
}
|
|
if (input_color1[1] < 0.5f) {
|
|
output[1] = input_color1[1] * (valuem + 2.0f * value * input_color2[1]);
|
|
}
|
|
else {
|
|
output[1] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[1])) * (1.0f - input_color1[1]);
|
|
}
|
|
if (input_color1[2] < 0.5f) {
|
|
output[2] = input_color1[2] * (valuem + 2.0f * value * input_color2[2]);
|
|
}
|
|
else {
|
|
output[2] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[2])) * (1.0f - input_color1[2]);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixOverlayOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
if (p.color1[0] < 0.5f) {
|
|
p.out[0] = p.color1[0] * (value_m + 2.0f * value * p.color2[0]);
|
|
}
|
|
else {
|
|
p.out[0] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
|
|
}
|
|
if (p.color1[1] < 0.5f) {
|
|
p.out[1] = p.color1[1] * (value_m + 2.0f * value * p.color2[1]);
|
|
}
|
|
else {
|
|
p.out[1] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
|
|
}
|
|
if (p.color1[2] < 0.5f) {
|
|
p.out[2] = p.color1[2] * (value_m + 2.0f * value * p.color2[2]);
|
|
}
|
|
else {
|
|
p.out[2] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Saturation Operation ******** */
|
|
|
|
void MixSaturationOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
if (rS != 0.0f) {
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, (valuem * rS + value * colS), rV, &output[0], &output[1], &output[2]);
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSaturationOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
if (rS != 0.0f) {
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, (value_m * rS + value * colS), rV, &p.out[0], &p.out[1], &p.out[2]);
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Screen Operation ******** */
|
|
|
|
void MixScreenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
output[0] = 1.0f - (valuem + value * (1.0f - input_color2[0])) * (1.0f - input_color1[0]);
|
|
output[1] = 1.0f - (valuem + value * (1.0f - input_color2[1])) * (1.0f - input_color1[1]);
|
|
output[2] = 1.0f - (valuem + value * (1.0f - input_color2[2])) * (1.0f - input_color1[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixScreenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
p.out[0] = 1.0f - (value_m + value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
|
|
p.out[1] = 1.0f - (value_m + value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
|
|
p.out[2] = 1.0f - (value_m + value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Soft Light Operation ******** */
|
|
|
|
void MixSoftLightOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
float scr, scg, scb;
|
|
|
|
/* first calculate non-fac based Screen mix */
|
|
scr = 1.0f - (1.0f - input_color2[0]) * (1.0f - input_color1[0]);
|
|
scg = 1.0f - (1.0f - input_color2[1]) * (1.0f - input_color1[1]);
|
|
scb = 1.0f - (1.0f - input_color2[2]) * (1.0f - input_color1[2]);
|
|
|
|
output[0] = valuem * (input_color1[0]) +
|
|
value * (((1.0f - input_color1[0]) * input_color2[0] * (input_color1[0])) +
|
|
(input_color1[0] * scr));
|
|
output[1] = valuem * (input_color1[1]) +
|
|
value * (((1.0f - input_color1[1]) * input_color2[1] * (input_color1[1])) +
|
|
(input_color1[1] * scg));
|
|
output[2] = valuem * (input_color1[2]) +
|
|
value * (((1.0f - input_color1[2]) * input_color2[2] * (input_color1[2])) +
|
|
(input_color1[2] * scb));
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSoftLightOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
float scr, scg, scb;
|
|
|
|
/* First calculate non-fac based Screen mix. */
|
|
scr = 1.0f - (1.0f - p.color2[0]) * (1.0f - p.color1[0]);
|
|
scg = 1.0f - (1.0f - p.color2[1]) * (1.0f - p.color1[1]);
|
|
scb = 1.0f - (1.0f - p.color2[2]) * (1.0f - p.color1[2]);
|
|
|
|
p.out[0] = value_m * p.color1[0] +
|
|
value * ((1.0f - p.color1[0]) * p.color2[0] * p.color1[0] + p.color1[0] * scr);
|
|
p.out[1] = value_m * p.color1[1] +
|
|
value * ((1.0f - p.color1[1]) * p.color2[1] * p.color1[1] + p.color1[1] * scg);
|
|
p.out[2] = value_m * p.color1[2] +
|
|
value * ((1.0f - p.color1[2]) * p.color2[2] * p.color1[2] + p.color1[2] * scb);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Subtract Operation ******** */
|
|
|
|
void MixSubtractOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
output[0] = input_color1[0] - value * (input_color2[0]);
|
|
output[1] = input_color1[1] - value * (input_color2[1]);
|
|
output[2] = input_color1[2] - value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSubtractOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
p.out[0] = p.color1[0] - value * p.color2[0];
|
|
p.out[1] = p.color1[1] - value * p.color2[1];
|
|
p.out[2] = p.color1[2] - value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Value Operation ******** */
|
|
|
|
void MixValueOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, rS, (valuem * rV + value * colV), &output[0], &output[1], &output[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixValueOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, rS, (value_m * rV + value * colV), &p.out[0], &p.out[1], &p.out[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|