This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_OpenCLKernels.cl

297 lines
11 KiB
Common Lisp

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2011 Blender Foundation. */
/// This file contains all opencl kernels for node-operation implementations
// Global SAMPLERS
const sampler_t SAMPLER_NEAREST = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
const sampler_t SAMPLER_NEAREST_CLAMP = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
__constant const int2 zero = {0,0};
// KERNEL --- BOKEH BLUR ---
__kernel void bokeh_blur_kernel(__read_only image2d_t bounding_box, __read_only image2d_t input_image,
__read_only image2d_t bokeh_image, __write_only image2d_t output,
int2 offset_input, int2 offset_output, int radius, int step, int2 dimension, int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
float temp_bounding_box;
float4 color = {0.0f,0.0f,0.0f,0.0f};
float4 multiplyer = {0.0f,0.0f,0.0f,0.0f};
float4 bokeh;
const float radius2 = radius*2.0f;
const int2 real_coordinate = coords + offset_output;
int2 image_coordinates = real_coordinate - offset_input;
temp_bounding_box = read_imagef(bounding_box, SAMPLER_NEAREST, coords).s0;
if (temp_bounding_box > 0.0f && radius > 0 ) {
const int2 bokeh_image_dim = get_image_dim(bokeh_image);
const int2 bokeh_image_center = bokeh_image_dim/2;
const int2 minXY = max(real_coordinate - radius, zero);
const int2 maxXY = min(real_coordinate + radius, dimension);
int nx, ny;
float2 uv;
int2 input_xy;
if (radius < 2) {
color = read_imagef(input_image, SAMPLER_NEAREST, image_coordinates);
multiplyer = (float4)(1.0f, 1.0f, 1.0f, 1.0f);
}
for (ny = minXY.y, input_xy.y = ny - offset_input.y ; ny < maxXY.y ; ny += step, input_xy.y += step) {
uv.y = ((real_coordinate.y-ny)/radius2)*bokeh_image_dim.y+bokeh_image_center.y;
for (nx = minXY.x, input_xy.x = nx - offset_input.x; nx < maxXY.x ; nx += step, input_xy.x += step) {
uv.x = ((real_coordinate.x-nx)/radius2)*bokeh_image_dim.x+bokeh_image_center.x;
bokeh = read_imagef(bokeh_image, SAMPLER_NEAREST, uv);
color += bokeh * read_imagef(input_image, SAMPLER_NEAREST, input_xy);
multiplyer += bokeh;
}
}
color /= multiplyer;
}
else {
color = read_imagef(input_image, SAMPLER_NEAREST, image_coordinates);
}
write_imagef(output, coords, color);
}
//KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR ---
__kernel void defocus_kernel(__read_only image2d_t input_image, __read_only image2d_t bokeh_image,
__read_only image2d_t input_size,
__write_only image2d_t output, int2 offset_input, int2 offset_output,
int step, int max_blur_scalar, float threshold, float scalar, int2 dimension, int2 offset)
{
float4 color = {1.0f, 0.0f, 0.0f, 1.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
float4 read_color;
float4 temp_color;
float4 bokeh;
float size;
float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f};
float4 color_accum;
int minx = max(real_coordinate.s0 - max_blur_scalar, 0);
int miny = max(real_coordinate.s1 - max_blur_scalar, 0);
int maxx = min(real_coordinate.s0 + max_blur_scalar, dimension.s0);
int maxy = min(real_coordinate.s1 + max_blur_scalar, dimension.s1);
{
int2 input_coordinate = real_coordinate - offset_input;
float size_center = read_imagef(input_size, SAMPLER_NEAREST, input_coordinate).s0 * scalar;
color_accum = read_imagef(input_image, SAMPLER_NEAREST, input_coordinate);
read_color = color_accum;
if (size_center > threshold) {
for (int ny = miny; ny < maxy; ny += step) {
input_coordinate.s1 = ny - offset_input.s1;
float dy = ny - real_coordinate.s1;
for (int nx = minx; nx < maxx; nx += step) {
float dx = nx - real_coordinate.s0;
if (dx != 0 || dy != 0) {
input_coordinate.s0 = nx - offset_input.s0;
size = min(read_imagef(input_size, SAMPLER_NEAREST, input_coordinate).s0 * scalar, size_center);
if (size > threshold) {
if (size >= fabs(dx) && size >= fabs(dy)) {
float2 uv = {256.0f + dx * 255.0f / size,
256.0f + dy * 255.0f / size};
bokeh = read_imagef(bokeh_image, SAMPLER_NEAREST, uv);
temp_color = read_imagef(input_image, SAMPLER_NEAREST, input_coordinate);
color_accum += bokeh * temp_color;
multiplier_accum += bokeh;
}
}
}
}
}
}
color = color_accum * (1.0f / multiplier_accum);
/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
if ((size_center > threshold) &&
(size_center < threshold * 2.0f))
{
/* factor from 0-1 */
float fac = (size_center - threshold) / threshold;
color = (read_color * (1.0f - fac)) + (color * fac);
}
write_imagef(output, coords, color);
}
}
// KERNEL --- DILATE ---
__kernel void dilate_kernel(__read_only image2d_t input_image, __write_only image2d_t output,
int2 offset_input, int2 offset_output, int scope, int distance_squared, int2 dimension,
int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
const int2 minXY = max(real_coordinate - scope, zero);
const int2 maxXY = min(real_coordinate + scope, dimension);
float value = 0.0f;
int nx, ny;
int2 input_xy;
for (ny = minXY.y, input_xy.y = ny - offset_input.y ; ny < maxXY.y ; ny ++, input_xy.y++) {
const float deltaY = (real_coordinate.y - ny);
for (nx = minXY.x, input_xy.x = nx - offset_input.x; nx < maxXY.x ; nx ++, input_xy.x++) {
const float deltaX = (real_coordinate.x - nx);
const float measured_distance = deltaX * deltaX + deltaY * deltaY;
if (measured_distance <= distance_squared) {
value = max(value, read_imagef(input_image, SAMPLER_NEAREST, input_xy).s0);
}
}
}
float4 color = {value,0.0f,0.0f,0.0f};
write_imagef(output, coords, color);
}
// KERNEL --- DILATE ---
__kernel void erode_kernel(__read_only image2d_t input_image, __write_only image2d_t output,
int2 offset_input, int2 offset_output, int scope, int distance_squared, int2 dimension,
int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
const int2 minXY = max(real_coordinate - scope, zero);
const int2 maxXY = min(real_coordinate + scope, dimension);
float value = 1.0f;
int nx, ny;
int2 input_xy;
for (ny = minXY.y, input_xy.y = ny - offset_input.y ; ny < maxXY.y ; ny ++, input_xy.y++) {
for (nx = minXY.x, input_xy.x = nx - offset_input.x; nx < maxXY.x ; nx ++, input_xy.x++) {
const float deltaX = (real_coordinate.x - nx);
const float deltaY = (real_coordinate.y - ny);
const float measured_distance = deltaX * deltaX+deltaY * deltaY;
if (measured_distance <= distance_squared) {
value = min(value, read_imagef(input_image, SAMPLER_NEAREST, input_xy).s0);
}
}
}
float4 color = {value,0.0f,0.0f,0.0f};
write_imagef(output, coords, color);
}
// KERNEL --- DIRECTIONAL BLUR ---
__kernel void directional_blur_kernel(__read_only image2d_t input_image, __write_only image2d_t output,
int2 offset_output, int iterations, float scale, float rotation, float2 translate,
float2 center, int2 offset)
{
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
float4 col;
float2 ltxy = translate;
float lsc = scale;
float lrot = rotation;
col = read_imagef(input_image, SAMPLER_NEAREST, real_coordinate);
/* blur the image */
for (int i = 0; i < iterations; ++i) {
const float cs = cos(lrot), ss = sin(lrot);
const float isc = 1.0f / (1.0f + lsc);
const float v = isc * (real_coordinate.s1 - center.s1) + ltxy.s1;
const float u = isc * (real_coordinate.s0 - center.s0) + ltxy.s0;
float2 uv = {
cs * u + ss * v + center.s0,
cs * v - ss * u + center.s1
};
col += read_imagef(input_image, SAMPLER_NEAREST_CLAMP, uv);
/* double transformations */
ltxy += translate;
lrot += rotation;
lsc += scale;
}
col *= (1.0f/(iterations+1));
write_imagef(output, coords, col);
}
// KERNEL --- GAUSSIAN BLUR ---
__kernel void gaussian_xblur_operation_kernel(__read_only image2d_t input_image,
int2 offset_input,
__write_only image2d_t output,
int2 offset_output,
int filter_size,
int2 dimension,
__global float *gausstab,
int2 offset)
{
float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
int2 input_coordinate = real_coordinate - offset_input;
float weight = 0.0f;
int xmin = max(real_coordinate.x - filter_size, 0) - offset_input.x;
int xmax = min(real_coordinate.x + filter_size + 1, dimension.x) - offset_input.x;
for (int nx = xmin, i = max(filter_size - real_coordinate.x, 0); nx < xmax; ++nx, ++i) {
float w = gausstab[i];
input_coordinate.x = nx;
color += read_imagef(input_image, SAMPLER_NEAREST, input_coordinate) * w;
weight += w;
}
color *= (1.0f / weight);
write_imagef(output, coords, color);
}
__kernel void gaussian_yblur_operation_kernel(__read_only image2d_t input_image,
int2 offset_input,
__write_only image2d_t output,
int2 offset_output,
int filter_size,
int2 dimension,
__global float *gausstab,
int2 offset)
{
float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
int2 coords = {get_global_id(0), get_global_id(1)};
coords += offset;
const int2 real_coordinate = coords + offset_output;
int2 input_coordinate = real_coordinate - offset_input;
float weight = 0.0f;
int ymin = max(real_coordinate.y - filter_size, 0) - offset_input.y;
int ymax = min(real_coordinate.y + filter_size + 1, dimension.y) - offset_input.y;
for (int ny = ymin, i = max(filter_size - real_coordinate.y, 0); ny < ymax; ++ny, ++i) {
float w = gausstab[i];
input_coordinate.y = ny;
color += read_imagef(input_image, SAMPLER_NEAREST, input_coordinate) * w;
weight += w;
}
color *= (1.0f / weight);
write_imagef(output, coords, color);
}