This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_RotateOperation.cc

263 lines
9.6 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2011 Blender Foundation. */
#include "COM_RotateOperation.h"
namespace blender::compositor {
RotateOperation::RotateOperation()
{
this->add_input_socket(DataType::Color, ResizeMode::None);
this->add_input_socket(DataType::Value, ResizeMode::None);
this->add_output_socket(DataType::Color);
this->set_canvas_input_index(0);
image_socket_ = nullptr;
degree_socket_ = nullptr;
do_degree2_rad_conversion_ = false;
is_degree_set_ = false;
sampler_ = PixelSampler::Bilinear;
}
void RotateOperation::get_rotation_center(const rcti &area, float &r_x, float &r_y)
{
r_x = (BLI_rcti_size_x(&area) - 1) / 2.0;
r_y = (BLI_rcti_size_y(&area) - 1) / 2.0;
}
void RotateOperation::get_rotation_offset(const rcti &input_canvas,
const rcti &rotate_canvas,
float &r_offset_x,
float &r_offset_y)
{
r_offset_x = (BLI_rcti_size_x(&input_canvas) - BLI_rcti_size_x(&rotate_canvas)) / 2.0f;
r_offset_y = (BLI_rcti_size_y(&input_canvas) - BLI_rcti_size_y(&rotate_canvas)) / 2.0f;
}
void RotateOperation::get_area_rotation_bounds(const rcti &area,
const float center_x,
const float center_y,
const float sine,
const float cosine,
rcti &r_bounds)
{
const float dxmin = area.xmin - center_x;
const float dymin = area.ymin - center_y;
const float dxmax = area.xmax - center_x;
const float dymax = area.ymax - center_y;
const float x1 = center_x + (cosine * dxmin + (-sine) * dymin);
const float x2 = center_x + (cosine * dxmax + (-sine) * dymin);
const float x3 = center_x + (cosine * dxmin + (-sine) * dymax);
const float x4 = center_x + (cosine * dxmax + (-sine) * dymax);
const float y1 = center_y + (sine * dxmin + cosine * dymin);
const float y2 = center_y + (sine * dxmax + cosine * dymin);
const float y3 = center_y + (sine * dxmin + cosine * dymax);
const float y4 = center_y + (sine * dxmax + cosine * dymax);
const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4)));
const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4)));
const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4)));
const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4)));
r_bounds.xmin = floor(minx);
r_bounds.xmax = ceil(maxx);
r_bounds.ymin = floor(miny);
r_bounds.ymax = ceil(maxy);
}
void RotateOperation::get_area_rotation_bounds_inverted(const rcti &area,
const float center_x,
const float center_y,
const float sine,
const float cosine,
rcti &r_bounds)
{
get_area_rotation_bounds(area, center_x, center_y, -sine, cosine, r_bounds);
}
void RotateOperation::get_rotation_area_of_interest(const rcti &input_canvas,
const rcti &rotate_canvas,
const float sine,
const float cosine,
const rcti &output_area,
rcti &r_input_area)
{
float center_x, center_y;
get_rotation_center(input_canvas, center_x, center_y);
float rotate_offset_x, rotate_offset_y;
get_rotation_offset(input_canvas, rotate_canvas, rotate_offset_x, rotate_offset_y);
r_input_area = output_area;
BLI_rcti_translate(&r_input_area, rotate_offset_x, rotate_offset_y);
get_area_rotation_bounds_inverted(r_input_area, center_x, center_y, sine, cosine, r_input_area);
}
void RotateOperation::get_rotation_canvas(const rcti &input_canvas,
const float sine,
const float cosine,
rcti &r_canvas)
{
float center_x, center_y;
get_rotation_center(input_canvas, center_x, center_y);
rcti rot_bounds;
get_area_rotation_bounds(input_canvas, center_x, center_y, sine, cosine, rot_bounds);
float offset_x, offset_y;
get_rotation_offset(input_canvas, rot_bounds, offset_x, offset_y);
r_canvas = rot_bounds;
BLI_rcti_translate(&r_canvas, -offset_x, -offset_y);
}
void RotateOperation::init_data()
{
if (execution_model_ == eExecutionModel::Tiled) {
get_rotation_center(get_canvas(), center_x_, center_y_);
}
}
void RotateOperation::init_execution()
{
image_socket_ = this->get_input_socket_reader(0);
degree_socket_ = this->get_input_socket_reader(1);
}
void RotateOperation::deinit_execution()
{
image_socket_ = nullptr;
degree_socket_ = nullptr;
}
inline void RotateOperation::ensure_degree()
{
if (!is_degree_set_) {
float degree[4];
switch (execution_model_) {
case eExecutionModel::Tiled:
degree_socket_->read_sampled(degree, 0, 0, PixelSampler::Nearest);
break;
case eExecutionModel::FullFrame:
degree[0] = get_input_operation(DEGREE_INPUT_INDEX)->get_constant_value_default(0.0f);
break;
}
double rad;
if (do_degree2_rad_conversion_) {
rad = DEG2RAD(double(degree[0]));
}
else {
rad = degree[0];
}
cosine_ = cos(rad);
sine_ = sin(rad);
is_degree_set_ = true;
}
}
void RotateOperation::execute_pixel_sampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
ensure_degree();
const float dy = y - center_y_;
const float dx = x - center_x_;
const float nx = center_x_ + (cosine_ * dx + sine_ * dy);
const float ny = center_y_ + (-sine_ * dx + cosine_ * dy);
image_socket_->read_sampled(output, nx, ny, sampler);
}
bool RotateOperation::determine_depending_area_of_interest(rcti *input,
ReadBufferOperation *read_operation,
rcti *output)
{
ensure_degree();
rcti new_input;
const float dxmin = input->xmin - center_x_;
const float dymin = input->ymin - center_y_;
const float dxmax = input->xmax - center_x_;
const float dymax = input->ymax - center_y_;
const float x1 = center_x_ + (cosine_ * dxmin + sine_ * dymin);
const float x2 = center_x_ + (cosine_ * dxmax + sine_ * dymin);
const float x3 = center_x_ + (cosine_ * dxmin + sine_ * dymax);
const float x4 = center_x_ + (cosine_ * dxmax + sine_ * dymax);
const float y1 = center_y_ + (-sine_ * dxmin + cosine_ * dymin);
const float y2 = center_y_ + (-sine_ * dxmax + cosine_ * dymin);
const float y3 = center_y_ + (-sine_ * dxmin + cosine_ * dymax);
const float y4 = center_y_ + (-sine_ * dxmax + cosine_ * dymax);
const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4)));
const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4)));
const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4)));
const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4)));
new_input.xmax = ceil(maxx) + 1;
new_input.xmin = floor(minx) - 1;
new_input.ymax = ceil(maxy) + 1;
new_input.ymin = floor(miny) - 1;
return NodeOperation::determine_depending_area_of_interest(&new_input, read_operation, output);
}
void RotateOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
if (execution_model_ == eExecutionModel::Tiled) {
NodeOperation::determine_canvas(preferred_area, r_area);
return;
}
const bool image_determined =
get_input_socket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
if (image_determined) {
rcti input_canvas = r_area;
rcti unused = COM_AREA_NONE;
get_input_socket(DEGREE_INPUT_INDEX)->determine_canvas(input_canvas, unused);
ensure_degree();
get_rotation_canvas(input_canvas, sine_, cosine_, r_area);
}
}
void RotateOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
if (input_idx == DEGREE_INPUT_INDEX) {
r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST;
return;
}
ensure_degree();
const rcti &input_image_canvas = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas();
get_rotation_area_of_interest(
input_image_canvas, this->get_canvas(), sine_, cosine_, output_area, r_input_area);
expand_area_for_sampler(r_input_area, sampler_);
}
void RotateOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX];
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
float center_x, center_y;
get_rotation_center(image_op->get_canvas(), center_x, center_y);
float rotate_offset_x, rotate_offset_y;
get_rotation_offset(
image_op->get_canvas(), this->get_canvas(), rotate_offset_x, rotate_offset_y);
for (BuffersIterator<float> it = output->iterate_with({}, area); !it.is_end(); ++it) {
float x = rotate_offset_x + it.x + canvas_.xmin;
float y = rotate_offset_y + it.y + canvas_.ymin;
rotate_coords(x, y, center_x, center_y, sine_, cosine_);
input_img->read_elem_sampled(x - canvas_.xmin, y - canvas_.ymin, sampler_, it.out);
}
}
} // namespace blender::compositor