This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_VariableSizeBokehBlurOperation.cc

534 lines
19 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2011 Blender Foundation. */
#include "COM_VariableSizeBokehBlurOperation.h"
#include "COM_OpenCLDevice.h"
namespace blender::compositor {
VariableSizeBokehBlurOperation::VariableSizeBokehBlurOperation()
{
this->add_input_socket(DataType::Color);
this->add_input_socket(DataType::Color, ResizeMode::Align); /* Do not resize the bokeh image. */
this->add_input_socket(DataType::Value); /* Radius. */
#ifdef COM_DEFOCUS_SEARCH
/* Inverse search radius optimization structure. */
this->add_input_socket(DataType::Color, ResizeMode::None);
#endif
this->add_output_socket(DataType::Color);
flags_.complex = true;
flags_.open_cl = true;
input_program_ = nullptr;
input_bokeh_program_ = nullptr;
input_size_program_ = nullptr;
max_blur_ = 32.0f;
threshold_ = 1.0f;
do_size_scale_ = false;
#ifdef COM_DEFOCUS_SEARCH
input_search_program_ = nullptr;
#endif
}
void VariableSizeBokehBlurOperation::init_execution()
{
input_program_ = get_input_socket_reader(0);
input_bokeh_program_ = get_input_socket_reader(1);
input_size_program_ = get_input_socket_reader(2);
#ifdef COM_DEFOCUS_SEARCH
input_search_program_ = get_input_socket_reader(3);
#endif
QualityStepHelper::init_execution(COM_QH_INCREASE);
}
struct VariableSizeBokehBlurTileData {
MemoryBuffer *color;
MemoryBuffer *bokeh;
MemoryBuffer *size;
int max_blur_scalar;
};
void *VariableSizeBokehBlurOperation::initialize_tile_data(rcti *rect)
{
VariableSizeBokehBlurTileData *data = new VariableSizeBokehBlurTileData();
data->color = (MemoryBuffer *)input_program_->initialize_tile_data(rect);
data->bokeh = (MemoryBuffer *)input_bokeh_program_->initialize_tile_data(rect);
data->size = (MemoryBuffer *)input_size_program_->initialize_tile_data(rect);
rcti rect2 = COM_AREA_NONE;
this->determine_depending_area_of_interest(
rect, (ReadBufferOperation *)input_size_program_, &rect2);
const float max_dim = MAX2(this->get_width(), this->get_height());
const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
data->max_blur_scalar = int(data->size->get_max_value(rect2) * scalar);
CLAMP(data->max_blur_scalar, 1.0f, max_blur_);
return data;
}
void VariableSizeBokehBlurOperation::deinitialize_tile_data(rcti * /*rect*/, void *data)
{
VariableSizeBokehBlurTileData *result = (VariableSizeBokehBlurTileData *)data;
delete result;
}
void VariableSizeBokehBlurOperation::execute_pixel(float output[4], int x, int y, void *data)
{
VariableSizeBokehBlurTileData *tile_data = (VariableSizeBokehBlurTileData *)data;
MemoryBuffer *input_program_buffer = tile_data->color;
MemoryBuffer *input_bokeh_buffer = tile_data->bokeh;
MemoryBuffer *input_size_buffer = tile_data->size;
float *input_size_float_buffer = input_size_buffer->get_buffer();
float *input_program_float_buffer = input_program_buffer->get_buffer();
float read_color[4];
float bokeh[4];
float temp_size[4];
float multiplier_accum[4];
float color_accum[4];
const float max_dim = MAX2(get_width(), get_height());
const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
int max_blur_scalar = tile_data->max_blur_scalar;
BLI_assert(input_bokeh_buffer->get_width() == COM_BLUR_BOKEH_PIXELS);
BLI_assert(input_bokeh_buffer->get_height() == COM_BLUR_BOKEH_PIXELS);
#ifdef COM_DEFOCUS_SEARCH
float search[4];
input_search_program_->read(search,
x / InverseSearchRadiusOperation::DIVIDER,
y / InverseSearchRadiusOperation::DIVIDER,
nullptr);
int minx = search[0];
int miny = search[1];
int maxx = search[2];
int maxy = search[3];
#else
int minx = MAX2(x - max_blur_scalar, 0);
int miny = MAX2(y - max_blur_scalar, 0);
int maxx = MIN2(x + max_blur_scalar, int(get_width()));
int maxy = MIN2(y + max_blur_scalar, int(get_height()));
#endif
{
input_size_buffer->read_no_check(temp_size, x, y);
input_program_buffer->read_no_check(read_color, x, y);
copy_v4_v4(color_accum, read_color);
copy_v4_fl(multiplier_accum, 1.0f);
float size_center = temp_size[0] * scalar;
const int add_xstep_value = QualityStepHelper::get_step();
const int add_ystep_value = add_xstep_value;
const int add_xstep_color = add_xstep_value * COM_DATA_TYPE_COLOR_CHANNELS;
if (size_center > threshold_) {
for (int ny = miny; ny < maxy; ny += add_ystep_value) {
float dy = ny - y;
int offset_value_ny = ny * input_size_buffer->get_width();
int offset_value_nx_ny = offset_value_ny + (minx);
int offset_color_nx_ny = offset_value_nx_ny * COM_DATA_TYPE_COLOR_CHANNELS;
for (int nx = minx; nx < maxx; nx += add_xstep_value) {
if (nx != x || ny != y) {
float size = MIN2(input_size_float_buffer[offset_value_nx_ny] * scalar, size_center);
if (size > threshold_) {
float dx = nx - x;
if (size > fabsf(dx) && size > fabsf(dy)) {
float uv[2] = {
float(COM_BLUR_BOKEH_PIXELS / 2) +
(dx / size) * float((COM_BLUR_BOKEH_PIXELS / 2) - 1),
float(COM_BLUR_BOKEH_PIXELS / 2) +
(dy / size) * float((COM_BLUR_BOKEH_PIXELS / 2) - 1),
};
input_bokeh_buffer->read(bokeh, uv[0], uv[1]);
madd_v4_v4v4(color_accum, bokeh, &input_program_float_buffer[offset_color_nx_ny]);
add_v4_v4(multiplier_accum, bokeh);
}
}
}
offset_color_nx_ny += add_xstep_color;
offset_value_nx_ny += add_xstep_value;
}
}
}
output[0] = color_accum[0] / multiplier_accum[0];
output[1] = color_accum[1] / multiplier_accum[1];
output[2] = color_accum[2] / multiplier_accum[2];
output[3] = color_accum[3] / multiplier_accum[3];
/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
if ((size_center > threshold_) && (size_center < threshold_ * 2.0f)) {
/* factor from 0-1 */
float fac = (size_center - threshold_) / threshold_;
interp_v4_v4v4(output, read_color, output, fac);
}
}
}
void VariableSizeBokehBlurOperation::execute_opencl(
OpenCLDevice *device,
MemoryBuffer *output_memory_buffer,
cl_mem cl_output_buffer,
MemoryBuffer **input_memory_buffers,
std::list<cl_mem> *cl_mem_to_clean_up,
std::list<cl_kernel> * /*cl_kernels_to_clean_up*/)
{
cl_kernel defocus_kernel = device->COM_cl_create_kernel("defocus_kernel", nullptr);
cl_int step = this->get_step();
cl_int max_blur;
cl_float threshold = threshold_;
MemoryBuffer *size_memory_buffer = input_size_program_->get_input_memory_buffer(
input_memory_buffers);
const float max_dim = MAX2(get_width(), get_height());
cl_float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
max_blur = (cl_int)min_ff(size_memory_buffer->get_max_value() * scalar, float(max_blur_));
device->COM_cl_attach_memory_buffer_to_kernel_parameter(
defocus_kernel, 0, -1, cl_mem_to_clean_up, input_memory_buffers, input_program_);
device->COM_cl_attach_memory_buffer_to_kernel_parameter(
defocus_kernel, 1, -1, cl_mem_to_clean_up, input_memory_buffers, input_bokeh_program_);
device->COM_cl_attach_memory_buffer_to_kernel_parameter(
defocus_kernel, 2, 4, cl_mem_to_clean_up, input_memory_buffers, input_size_program_);
device->COM_cl_attach_output_memory_buffer_to_kernel_parameter(
defocus_kernel, 3, cl_output_buffer);
device->COM_cl_attach_memory_buffer_offset_to_kernel_parameter(
defocus_kernel, 5, output_memory_buffer);
clSetKernelArg(defocus_kernel, 6, sizeof(cl_int), &step);
clSetKernelArg(defocus_kernel, 7, sizeof(cl_int), &max_blur);
clSetKernelArg(defocus_kernel, 8, sizeof(cl_float), &threshold);
clSetKernelArg(defocus_kernel, 9, sizeof(cl_float), &scalar);
device->COM_cl_attach_size_to_kernel_parameter(defocus_kernel, 10, this);
device->COM_cl_enqueue_range(defocus_kernel, output_memory_buffer, 11, this);
}
void VariableSizeBokehBlurOperation::deinit_execution()
{
input_program_ = nullptr;
input_bokeh_program_ = nullptr;
input_size_program_ = nullptr;
#ifdef COM_DEFOCUS_SEARCH
input_search_program_ = nullptr;
#endif
}
bool VariableSizeBokehBlurOperation::determine_depending_area_of_interest(
rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
rcti new_input;
rcti bokeh_input;
const float max_dim = MAX2(get_width(), get_height());
const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
int max_blur_scalar = max_blur_ * scalar;
new_input.xmax = input->xmax + max_blur_scalar + 2;
new_input.xmin = input->xmin - max_blur_scalar + 2;
new_input.ymax = input->ymax + max_blur_scalar - 2;
new_input.ymin = input->ymin - max_blur_scalar - 2;
bokeh_input.xmax = COM_BLUR_BOKEH_PIXELS;
bokeh_input.xmin = 0;
bokeh_input.ymax = COM_BLUR_BOKEH_PIXELS;
bokeh_input.ymin = 0;
NodeOperation *operation = get_input_operation(2);
if (operation->determine_depending_area_of_interest(&new_input, read_operation, output)) {
return true;
}
operation = get_input_operation(1);
if (operation->determine_depending_area_of_interest(&bokeh_input, read_operation, output)) {
return true;
}
#ifdef COM_DEFOCUS_SEARCH
rcti search_input;
search_input.xmax = (input->xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
search_input.xmin = (input->xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
search_input.ymax = (input->ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
search_input.ymin = (input->ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
operation = get_input_operation(3);
if (operation->determine_depending_area_of_interest(&search_input, read_operation, output)) {
return true;
}
#endif
operation = get_input_operation(0);
if (operation->determine_depending_area_of_interest(&new_input, read_operation, output)) {
return true;
}
return false;
}
void VariableSizeBokehBlurOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
switch (input_idx) {
case IMAGE_INPUT_INDEX:
case SIZE_INPUT_INDEX: {
const float max_dim = MAX2(get_width(), get_height());
const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
const int max_blur_scalar = max_blur_ * scalar;
r_input_area.xmax = output_area.xmax + max_blur_scalar + 2;
r_input_area.xmin = output_area.xmin - max_blur_scalar - 2;
r_input_area.ymax = output_area.ymax + max_blur_scalar + 2;
r_input_area.ymin = output_area.ymin - max_blur_scalar - 2;
break;
}
case BOKEH_INPUT_INDEX: {
r_input_area = output_area;
r_input_area.xmax = r_input_area.xmin + COM_BLUR_BOKEH_PIXELS;
r_input_area.ymax = r_input_area.ymin + COM_BLUR_BOKEH_PIXELS;
break;
}
#ifdef COM_DEFOCUS_SEARCH
case DEFOCUS_INPUT_INDEX: {
r_input_area.xmax = (output_area.xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
r_input_area.xmin = (output_area.xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
r_input_area.ymax = (output_area.ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
r_input_area.ymin = (output_area.ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
break;
}
#endif
}
}
struct PixelData {
float multiplier_accum[4];
float color_accum[4];
float threshold;
float scalar;
float size_center;
int max_blur_scalar;
int step;
MemoryBuffer *bokeh_input;
MemoryBuffer *size_input;
MemoryBuffer *image_input;
int image_width;
int image_height;
};
static void blur_pixel(int x, int y, PixelData &p)
{
BLI_assert(p.bokeh_input->get_width() == COM_BLUR_BOKEH_PIXELS);
BLI_assert(p.bokeh_input->get_height() == COM_BLUR_BOKEH_PIXELS);
#ifdef COM_DEFOCUS_SEARCH
float search[4];
inputs[DEFOCUS_INPUT_INDEX]->read_elem_checked(x / InverseSearchRadiusOperation::DIVIDER,
y / InverseSearchRadiusOperation::DIVIDER,
search);
const int minx = search[0];
const int miny = search[1];
const int maxx = search[2];
const int maxy = search[3];
#else
const int minx = MAX2(x - p.max_blur_scalar, 0);
const int miny = MAX2(y - p.max_blur_scalar, 0);
const int maxx = MIN2(x + p.max_blur_scalar, p.image_width);
const int maxy = MIN2(y + p.max_blur_scalar, p.image_height);
#endif
const int color_row_stride = p.image_input->row_stride * p.step;
const int color_elem_stride = p.image_input->elem_stride * p.step;
const int size_row_stride = p.size_input->row_stride * p.step;
const int size_elem_stride = p.size_input->elem_stride * p.step;
const float *row_color = p.image_input->get_elem(minx, miny);
const float *row_size = p.size_input->get_elem(minx, miny);
for (int ny = miny; ny < maxy;
ny += p.step, row_size += size_row_stride, row_color += color_row_stride) {
const float dy = ny - y;
const float *size_elem = row_size;
const float *color = row_color;
for (int nx = minx; nx < maxx;
nx += p.step, size_elem += size_elem_stride, color += color_elem_stride) {
if (nx == x && ny == y) {
continue;
}
const float size = MIN2(size_elem[0] * p.scalar, p.size_center);
if (size <= p.threshold) {
continue;
}
const float dx = nx - x;
if (size <= fabsf(dx) || size <= fabsf(dy)) {
continue;
}
/* XXX: There is no way to ensure bokeh input is an actual bokeh with #COM_BLUR_BOKEH_PIXELS
* size, anything may be connected. Use the real input size and remove asserts? */
const float u = float(COM_BLUR_BOKEH_PIXELS / 2) +
(dx / size) * float((COM_BLUR_BOKEH_PIXELS / 2) - 1);
const float v = float(COM_BLUR_BOKEH_PIXELS / 2) +
(dy / size) * float((COM_BLUR_BOKEH_PIXELS / 2) - 1);
float bokeh[4];
p.bokeh_input->read_elem_checked(u, v, bokeh);
madd_v4_v4v4(p.color_accum, bokeh, color);
add_v4_v4(p.multiplier_accum, bokeh);
}
}
}
void VariableSizeBokehBlurOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
PixelData p;
p.bokeh_input = inputs[BOKEH_INPUT_INDEX];
p.size_input = inputs[SIZE_INPUT_INDEX];
p.image_input = inputs[IMAGE_INPUT_INDEX];
p.step = QualityStepHelper::get_step();
p.threshold = threshold_;
p.image_width = this->get_width();
p.image_height = this->get_height();
rcti scalar_area = COM_AREA_NONE;
this->get_area_of_interest(SIZE_INPUT_INDEX, area, scalar_area);
BLI_rcti_isect(&scalar_area, &p.size_input->get_rect(), &scalar_area);
const float max_size = p.size_input->get_max_value(scalar_area);
const float max_dim = MAX2(this->get_width(), this->get_height());
p.scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
p.max_blur_scalar = int(max_size * p.scalar);
CLAMP(p.max_blur_scalar, 1, max_blur_);
for (BuffersIterator<float> it = output->iterate_with({p.image_input, p.size_input}, area);
!it.is_end();
++it) {
const float *color = it.in(0);
const float size = *it.in(1);
copy_v4_v4(p.color_accum, color);
copy_v4_fl(p.multiplier_accum, 1.0f);
p.size_center = size * p.scalar;
if (p.size_center > p.threshold) {
blur_pixel(it.x, it.y, p);
}
it.out[0] = p.color_accum[0] / p.multiplier_accum[0];
it.out[1] = p.color_accum[1] / p.multiplier_accum[1];
it.out[2] = p.color_accum[2] / p.multiplier_accum[2];
it.out[3] = p.color_accum[3] / p.multiplier_accum[3];
/* Blend in out values over the threshold, otherwise we get sharp, ugly transitions. */
if ((p.size_center > p.threshold) && (p.size_center < p.threshold * 2.0f)) {
/* Factor from 0-1. */
const float fac = (p.size_center - p.threshold) / p.threshold;
interp_v4_v4v4(it.out, color, it.out, fac);
}
}
}
#ifdef COM_DEFOCUS_SEARCH
/* #InverseSearchRadiusOperation. */
InverseSearchRadiusOperation::InverseSearchRadiusOperation()
{
this->add_input_socket(DataType::Value, ResizeMode::Align); /* Radius. */
this->add_output_socket(DataType::Color);
this->flags.complex = true;
input_radius_ = nullptr;
}
void InverseSearchRadiusOperation::init_execution()
{
input_radius_ = this->get_input_socket_reader(0);
}
void *InverseSearchRadiusOperation::initialize_tile_data(rcti *rect)
{
MemoryBuffer *data = new MemoryBuffer(DataType::Color, rect);
float *buffer = data->get_buffer();
int x, y;
int width = input_radius_->get_width();
int height = input_radius_->get_height();
float temp[4];
int offset = 0;
for (y = rect->ymin; y < rect->ymax; y++) {
for (x = rect->xmin; x < rect->xmax; x++) {
int rx = x * DIVIDER;
int ry = y * DIVIDER;
buffer[offset] = MAX2(rx - max_blur_, 0);
buffer[offset + 1] = MAX2(ry - max_blur_, 0);
buffer[offset + 2] = MIN2(rx + DIVIDER + max_blur_, width);
buffer[offset + 3] = MIN2(ry + DIVIDER + max_blur_, height);
offset += 4;
}
}
# if 0
for (x = rect->xmin; x < rect->xmax; x++) {
for (y = rect->ymin; y < rect->ymax; y++) {
int rx = x * DIVIDER;
int ry = y * DIVIDER;
float radius = 0.0f;
float maxx = x;
float maxy = y;
for (int x2 = 0; x2 < DIVIDER; x2++) {
for (int y2 = 0; y2 < DIVIDER; y2++) {
input_radius_->read(temp, rx + x2, ry + y2, PixelSampler::Nearest);
if (radius < temp[0]) {
radius = temp[0];
maxx = x2;
maxy = y2;
}
}
}
int impact_radius = ceil(radius / DIVIDER);
for (int x2 = x - impact_radius; x2 < x + impact_radius; x2++) {
for (int y2 = y - impact_radius; y2 < y + impact_radius; y2++) {
data->read(temp, x2, y2);
temp[0] = MIN2(temp[0], maxx);
temp[1] = MIN2(temp[1], maxy);
temp[2] = MAX2(temp[2], maxx);
temp[3] = MAX2(temp[3], maxy);
data->write_pixel(x2, y2, temp);
}
}
}
}
# endif
return data;
}
void InverseSearchRadiusOperation::execute_pixel_chunk(float output[4], int x, int y, void *data)
{
MemoryBuffer *buffer = (MemoryBuffer *)data;
buffer->read_no_check(output, x, y);
}
void InverseSearchRadiusOperation::deinitialize_tile_data(rcti *rect, void *data)
{
if (data) {
MemoryBuffer *mb = (MemoryBuffer *)data;
delete mb;
}
}
void InverseSearchRadiusOperation::deinit_execution()
{
input_radius_ = nullptr;
}
void InverseSearchRadiusOperation::determine_resolution(uint resolution[2],
uint preferred_resolution[2])
{
NodeOperation::determine_resolution(resolution, preferred_resolution);
resolution[0] = resolution[0] / DIVIDER;
resolution[1] = resolution[1] / DIVIDER;
}
bool InverseSearchRadiusOperation::determine_depending_area_of_interest(
rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
rcti new_rect;
new_rect.ymin = input->ymin * DIVIDER - max_blur_;
new_rect.ymax = input->ymax * DIVIDER + max_blur_;
new_rect.xmin = input->xmin * DIVIDER - max_blur_;
new_rect.xmax = input->xmax * DIVIDER + max_blur_;
return NodeOperation::determine_depending_area_of_interest(&new_rect, read_operation, output);
}
#endif
} // namespace blender::compositor