This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/matrix.c
Benoit Bolsee 0ab2f675c3 Fix bug in Mathutil with matrix/matrix and matrix/vector multiplication order.
MathUtil matrix type follows Blender convention of column
major storage.  This means that the elements on one column
are contiguous in memory. Vectors are one dimensional
arrays that can be considered in row or in column but
the Blender convention is column so vector should only
be considered as row. This means that the only logical
multiplication operation between matrix and vector is
matrix * vector.

This convention is respected in all parts of MathUtil
except in matrix/matrix and matrix/vector multiplication
where the row major convention is assumed, which in the
and is equivalent to reversing the order of multiplication.

This is clearly a bug and must be corrected but the side
effect is that it will break all scripts using these
operations. Script writers who care about the correctness
of the matrix operations have already implemented work around:

1) change order of matrix/vector multiplication.
vec2 = vec1 * mat1

This must be changed to the normal order:
vec2 = mat1 * vec1

2) change order of matrix/matrix multiplication
(with matl a local transform in matw reference)
mat3 = matl * matw

This must be changed to the normal order:
mat3 = matw * matl

3) transpose before an after the multiplication
matl.transpose()
matw.transpose()
mat3 = matw * matl
mat3.transpose()

This must be changed to:
mat3 = matw * matl;
2009-09-07 22:26:23 +00:00

1327 lines
39 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Michel Selten & Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
/* matrix vector callbacks */
int mathutils_matrix_vector_cb_index= -1;
static int mathutils_matrix_vector_check(PyObject *self_p)
{
MatrixObject *self= (MatrixObject*)self_p;
return BaseMath_ReadCallback(self);
}
static int mathutils_matrix_vector_get(PyObject *self_p, int subtype, float *vec_from)
{
MatrixObject *self= (MatrixObject*)self_p;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i<self->colSize; i++)
vec_from[i]= self->matrix[subtype][i];
return 1;
}
static int mathutils_matrix_vector_set(PyObject *self_p, int subtype, float *vec_to)
{
MatrixObject *self= (MatrixObject*)self_p;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i<self->colSize; i++)
self->matrix[subtype][i]= vec_to[i];
BaseMath_WriteCallback(self);
return 1;
}
static int mathutils_matrix_vector_get_index(PyObject *self_p, int subtype, float *vec_from, int index)
{
MatrixObject *self= (MatrixObject*)self_p;
if(!BaseMath_ReadCallback(self))
return 0;
vec_from[index]= self->matrix[subtype][index];
return 1;
}
static int mathutils_matrix_vector_set_index(PyObject *self_p, int subtype, float *vec_to, int index)
{
MatrixObject *self= (MatrixObject*)self_p;
if(!BaseMath_ReadCallback(self))
return 0;
self->matrix[subtype][index]= vec_to[index];
BaseMath_WriteCallback(self);
return 1;
}
Mathutils_Callback mathutils_matrix_vector_cb = {
mathutils_matrix_vector_check,
mathutils_matrix_vector_get,
mathutils_matrix_vector_set,
mathutils_matrix_vector_get_index,
mathutils_matrix_vector_set_index
};
/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
/*-------------------------DOC STRINGS ---------------------------*/
static PyObject *Matrix_Zero( MatrixObject * self );
static PyObject *Matrix_Identity( MatrixObject * self );
static PyObject *Matrix_Transpose( MatrixObject * self );
static PyObject *Matrix_Determinant( MatrixObject * self );
static PyObject *Matrix_Invert( MatrixObject * self );
static PyObject *Matrix_TranslationPart( MatrixObject * self );
static PyObject *Matrix_RotationPart( MatrixObject * self );
static PyObject *Matrix_scalePart( MatrixObject * self );
static PyObject *Matrix_Resize4x4( MatrixObject * self );
static PyObject *Matrix_toEuler( MatrixObject * self, PyObject *args );
static PyObject *Matrix_toQuat( MatrixObject * self );
static PyObject *Matrix_copy( MatrixObject * self );
/*-----------------------METHOD DEFINITIONS ----------------------*/
static struct PyMethodDef Matrix_methods[] = {
{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, NULL},
{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, NULL},
{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, NULL},
{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, NULL},
{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, NULL},
{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, NULL},
{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, NULL},
{"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, NULL},
{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, NULL},
{"toEuler", (PyCFunction) Matrix_toEuler, METH_VARARGS, NULL},
{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, NULL},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
{NULL, NULL, 0, NULL}
};
//----------------------------------Mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//create a new matrix type
static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *argObject, *m, *s;
MatrixObject *mat;
int argSize, seqSize = 0, i, j;
float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
float scalar;
argSize = PyTuple_GET_SIZE(args);
if(argSize > 4){ //bad arg nums
PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
} else if (argSize == 0) { //return empty 4D matrix
return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
}else if (argSize == 1){
//copy constructor for matrix objects
argObject = PyTuple_GET_ITEM(args, 0);
if(MatrixObject_Check(argObject)){
mat = (MatrixObject*)argObject;
if(!BaseMath_ReadCallback(mat))
return NULL;
memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
}
}else{ //2-4 arguments (all seqs? all same size?)
for(i =0; i < argSize; i++){
argObject = PyTuple_GET_ITEM(args, i);
if (PySequence_Check(argObject)) { //seq?
if(seqSize){ //0 at first
if(PySequence_Length(argObject) != seqSize){ //seq size not same
PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
seqSize = PySequence_Length(argObject);
}else{ //arg not a sequence
PyErr_SetString(PyExc_TypeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
//all is well... let's continue parsing
for (i = 0; i < argSize; i++){
m = PyTuple_GET_ITEM(args, i);
if (m == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
for (j = 0; j < seqSize; j++) {
s = PySequence_GetItem(m, j);
if (s == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
scalar= (float)PyFloat_AsDouble(s);
Py_DECREF(s);
if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
matrix[(seqSize*i)+j]= scalar;
}
}
}
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
/*-----------------------------METHODS----------------------------*/
/*---------------------------Matrix.toQuat() ---------------------*/
static PyObject *Matrix_toQuat(MatrixObject * self)
{
float quat[4];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
PyErr_SetString(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
if(self->colSize == 3){
Mat3ToQuat((float (*)[3])*self->matrix, quat);
}else{
Mat4ToQuat((float (*)[4])*self->matrix, quat);
}
return newQuaternionObject(quat, Py_NEW, NULL);
}
/*---------------------------Matrix.toEuler() --------------------*/
PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
{
float eul[3], eul_compatf[3];
EulerObject *eul_compat = NULL;
#ifdef USE_MATHUTILS_DEG
int x;
#endif
if(!BaseMath_ReadCallback(self))
return NULL;
if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat))
return NULL;
if(eul_compat) {
if(!BaseMath_ReadCallback(eul_compat))
return NULL;
#ifdef USE_MATHUTILS_DEG
for(x = 0; x < 3; x++) {
eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180);
}
#else
VECCOPY(eul_compatf, eul_compat->eul);
#endif
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize ==3 && self->rowSize ==3) {
if(eul_compat) Mat3ToCompatibleEul((float (*)[3])*self->matrix, eul, eul_compatf);
else Mat3ToEul((float (*)[3])*self->matrix, eul);
}else if (self->colSize ==4 && self->rowSize ==4) {
float tempmat3[3][3];
Mat3CpyMat4(tempmat3, (float (*)[4])*self->matrix);
Mat3ToEul(tempmat3, eul);
if(eul_compat) Mat3ToCompatibleEul(tempmat3, eul, eul_compatf);
else Mat3ToEul(tempmat3, eul);
}else {
PyErr_SetString(PyExc_AttributeError, "Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
#ifdef USE_MATHUTILS_DEG
/*have to convert to degrees*/
for(x = 0; x < 3; x++) {
eul[x] *= (float) (180 / Py_PI);
}
#endif
return newEulerObject(eul, Py_NEW, NULL);
}
/*---------------------------Matrix.resize4x4() ------------------*/
PyObject *Matrix_Resize4x4(MatrixObject * self)
{
int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
if(self->wrapped==Py_WRAP){
PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
return NULL;
}
if(self->cb_user){
PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
return NULL;
}
self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
if(self->contigPtr == NULL) {
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
return NULL;
}
self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
if(self->matrix == NULL) {
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
return NULL;
}
/*set row pointers*/
for(x = 0; x < 4; x++) {
self->matrix[x] = self->contigPtr + (x * 4);
}
/*move data to new spot in array + clean*/
for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
for(x = 0; x < 4; x++){
index = (4 * (self->rowSize + (blank_rows - 1))) + x;
if (index == 10 || index == 15){
self->contigPtr[index] = 1.0f;
}else{
self->contigPtr[index] = 0.0f;
}
}
}
for(x = 1; x <= self->rowSize; x++){
first_row_elem = (self->colSize * (self->rowSize - x));
curr_pos = (first_row_elem + (self->colSize -1));
new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
self->contigPtr[new_pos + blank_columns] = 0.0f;
}
for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
self->contigPtr[new_pos] = self->contigPtr[curr_pos];
new_pos--;
}
}
self->rowSize = 4;
self->colSize = 4;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.translationPart() ------------*/
PyObject *Matrix_TranslationPart(MatrixObject * self)
{
float vec[4];
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 4){
PyErr_SetString(PyExc_AttributeError, "Matrix.translationPart: inappropriate matrix size");
return NULL;
}
vec[0] = self->matrix[3][0];
vec[1] = self->matrix[3][1];
vec[2] = self->matrix[3][2];
return newVectorObject(vec, 3, Py_NEW, NULL);
}
/*---------------------------Matrix.rotationPart() ---------------*/
PyObject *Matrix_RotationPart(MatrixObject * self)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 3){
PyErr_SetString(PyExc_AttributeError, "Matrix.rotationPart: inappropriate matrix size\n");
return NULL;
}
mat[0] = self->matrix[0][0];
mat[1] = self->matrix[0][1];
mat[2] = self->matrix[0][2];
mat[3] = self->matrix[1][0];
mat[4] = self->matrix[1][1];
mat[5] = self->matrix[1][2];
mat[6] = self->matrix[2][0];
mat[7] = self->matrix[2][1];
mat[8] = self->matrix[2][2];
return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
}
/*---------------------------Matrix.scalePart() --------------------*/
PyObject *Matrix_scalePart(MatrixObject * self)
{
float scale[3], rot[3];
float mat[3][3], imat[3][3], tmat[3][3];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize == 4 && self->rowSize == 4)
Mat3CpyMat4(mat, (float (*)[4])*self->matrix);
else if(self->colSize == 3 && self->rowSize == 3)
Mat3CpyMat3(mat, (float (*)[3])*self->matrix);
else {
PyErr_SetString(PyExc_AttributeError, "Matrix.scalePart(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
/* functionality copied from editobject.c apply_obmat */
Mat3ToEul(mat, rot);
EulToMat3(rot, tmat);
Mat3Inv(imat, tmat);
Mat3MulMat3(tmat, imat, mat);
scale[0]= tmat[0][0];
scale[1]= tmat[1][1];
scale[2]= tmat[2][2];
return newVectorObject(scale, 3, Py_NEW, NULL);
}
/*---------------------------Matrix.invert() ---------------------*/
PyObject *Matrix_Invert(MatrixObject * self)
{
int x, y, z = 0;
float det = 0.0f;
PyObject *f = NULL;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
return NULL;
}
/*calculate the determinant*/
f = Matrix_Determinant(self);
det = (float)PyFloat_AS_DOUBLE(f); /*Increfs, so we need to decref*/
Py_DECREF(f);
if(det != 0) {
/*calculate the classical adjoint*/
if(self->rowSize == 2) {
mat[0] = self->matrix[1][1];
mat[1] = -self->matrix[0][1];
mat[2] = -self->matrix[1][0];
mat[3] = self->matrix[0][0];
} else if(self->rowSize == 3) {
Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
} else if(self->rowSize == 4) {
Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
}
/*divide by determinate*/
for(x = 0; x < (self->rowSize * self->colSize); x++) {
mat[x] /= det;
}
/*set values*/
for(x = 0; x < self->rowSize; x++) {
for(y = 0; y < self->colSize; y++) {
self->matrix[x][y] = mat[z];
z++;
}
}
/*transpose
Matrix_Transpose(self);*/
} else {
PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
return NULL;
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.determinant() ----------------*/
PyObject *Matrix_Determinant(MatrixObject * self)
{
float det = 0.0f;
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
return NULL;
}
if(self->rowSize == 2) {
det = Det2x2(self->matrix[0][0], self->matrix[0][1],
self->matrix[1][0], self->matrix[1][1]);
} else if(self->rowSize == 3) {
det = Det3x3(self->matrix[0][0], self->matrix[0][1],
self->matrix[0][2], self->matrix[1][0],
self->matrix[1][1], self->matrix[1][2],
self->matrix[2][0], self->matrix[2][1],
self->matrix[2][2]);
} else {
det = Det4x4((float (*)[4]) *self->matrix);
}
return PyFloat_FromDouble( (double) det );
}
/*---------------------------Matrix.transpose() ------------------*/
PyObject *Matrix_Transpose(MatrixObject * self)
{
float t = 0.0f;
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
return NULL;
}
if(self->rowSize == 2) {
t = self->matrix[1][0];
self->matrix[1][0] = self->matrix[0][1];
self->matrix[0][1] = t;
} else if(self->rowSize == 3) {
Mat3Transp((float (*)[3])*self->matrix);
} else {
Mat4Transp((float (*)[4])*self->matrix);
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.zero() -----------------------*/
PyObject *Matrix_Zero(MatrixObject * self)
{
int row, col;
for(row = 0; row < self->rowSize; row++) {
for(col = 0; col < self->colSize; col++) {
self->matrix[row][col] = 0.0f;
}
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.identity(() ------------------*/
PyObject *Matrix_Identity(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
return NULL;
}
if(self->rowSize == 2) {
self->matrix[0][0] = 1.0f;
self->matrix[0][1] = 0.0f;
self->matrix[1][0] = 0.0f;
self->matrix[1][1] = 1.0f;
} else if(self->rowSize == 3) {
Mat3One((float (*)[3]) *self->matrix);
} else {
Mat4One((float (*)[4]) *self->matrix);
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.inverted() ------------------*/
PyObject *Matrix_copy(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return (PyObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
}
/*----------------------------print object (internal)-------------*/
/*print the object to screen*/
static PyObject *Matrix_repr(MatrixObject * self)
{
int x, y;
char buffer[48], str[1024];
if(!BaseMath_ReadCallback(self))
return NULL;
BLI_strncpy(str,"",1024);
for(x = 0; x < self->rowSize; x++){
sprintf(buffer, "[");
strcat(str,buffer);
for(y = 0; y < (self->colSize - 1); y++) {
sprintf(buffer, "%.6f, ", self->matrix[x][y]);
strcat(str,buffer);
}
if(x < (self->rowSize-1)){
sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
strcat(str,buffer);
}
}
return PyUnicode_FromString(str);
}
/*------------------------tp_richcmpr*/
/*returns -1 execption, 0 false, 1 true*/
static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
MatrixObject *matA = NULL, *matB = NULL;
int result = 0;
if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
matA = (MatrixObject*)objectA;
matB = (MatrixObject*)objectB;
if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
return NULL;
if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
switch (comparison_type){
case Py_EQ:
/*contigPtr is basically a really long vector*/
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
(matA->rowSize * matA->colSize), 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
(matA->rowSize * matA->colSize), 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
static int Matrix_len(MatrixObject * self)
{
return (self->rowSize);
}
/*----------------------------object[]---------------------------
sequence accessor (get)
the wrapped vector gives direct access to the matrix data*/
static PyObject *Matrix_item(MatrixObject * self, int i)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(i < 0 || i >= self->rowSize) {
PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
return NULL;
}
return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
{
int y, x, size = 0;
float vec[4];
PyObject *m, *f;
if(!BaseMath_ReadCallback(self))
return -1;
if(i >= self->rowSize || i < 0){
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad row\n");
return -1;
}
if(PySequence_Check(ob)){
size = PySequence_Length(ob);
if(size != self->colSize){
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
return -1;
}
for (x = 0; x < size; x++) {
m = PySequence_GetItem(ob, x);
if (m == NULL) { /*Failed to read sequence*/
PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
return -1;
}
f = PyNumber_Float(m);
if(f == NULL) { /*parsed item not a number*/
Py_DECREF(m);
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
return -1;
}
vec[x] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(m);
Py_DECREF(f);
}
/*parsed well - now set in matrix*/
for(y = 0; y < size; y++){
self->matrix[i][y] = vec[y];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
return -1;
}
}
/*----------------------------object[z:y]------------------------
sequence slice (get)*/
static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
}
return list;
}
/*----------------------------object[z:y]------------------------
sequence slice (set)*/
static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
{
int i, x, y, size, sub_size = 0;
float mat[16], f;
PyObject *subseq;
PyObject *m;
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
begin = MIN2(begin,end);
if(PySequence_Check(seq)){
size = PySequence_Length(seq);
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
return -1;
}
/*parse sub items*/
for (i = 0; i < size; i++) {
/*parse each sub sequence*/
subseq = PySequence_GetItem(seq, i);
if (subseq == NULL) { /*Failed to read sequence*/
PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
return -1;
}
if(PySequence_Check(subseq)){
/*subsequence is also a sequence*/
sub_size = PySequence_Length(subseq);
if(sub_size != self->colSize){
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
return -1;
}
for (y = 0; y < sub_size; y++) {
m = PySequence_GetItem(subseq, y);
if (m == NULL) { /*Failed to read sequence*/
Py_DECREF(subseq);
PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
return -1;
}
f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
Py_DECREF(m);
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
return -1;
}
mat[(i * self->colSize) + y] = f;
Py_DECREF(m);
}
}else{
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
return -1;
}
Py_DECREF(subseq);
}
/*parsed well - now set in matrix*/
for(x = 0; x < (size * sub_size); x++){
self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
return -1;
}
}
/*------------------------NUMERIC PROTOCOLS----------------------
------------------------obj + obj------------------------------*/
static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
{
int x, y;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
}
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj - obj------------------------------
subtraction*/
static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
{
int x, y;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
}
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj * obj------------------------------
mulplication*/
static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
{
int x, y, z;
float scalar;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
double dot = 0.0f;
MatrixObject *mat1 = NULL, *mat2 = NULL;
if(MatrixObject_Check(m1)) {
mat1 = (MatrixObject*)m1;
if(!BaseMath_ReadCallback(mat1))
return NULL;
}
if(MatrixObject_Check(m2)) {
mat2 = (MatrixObject*)m2;
if(!BaseMath_ReadCallback(mat2))
return NULL;
}
if(mat1 && mat2) { /*MATRIX * MATRIX*/
if(mat1->rowSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
return NULL;
}
for(x = 0; x < mat2->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
for(z = 0; z < mat1->rowSize; z++) {
dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
}
mat[((x * mat1->colSize) + y)] = (float)dot;
dot = 0.0f;
}
}
return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
}
if(mat1==NULL){
scalar=PyFloat_AsDouble(m1); // may not be a float...
if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
for(x = 0; x < mat2->rowSize; x++) {
for(y = 0; y < mat2->colSize; y++) {
mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
return NULL;
}
else /* if(mat1) { */ {
if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
}
else {
scalar= PyFloat_AsDouble(m2);
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
return NULL;
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
return NULL;
}
static PyObject* Matrix_inv(MatrixObject *self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return Matrix_Invert(self);
}
/*-----------------PROTOCOL DECLARATIONS--------------------------*/
static PySequenceMethods Matrix_SeqMethods = {
(lenfunc) Matrix_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(ssizeargfunc) 0, /* sq_repeat */
(ssizeargfunc) Matrix_item, /* sq_item */
(ssizessizeargfunc) Matrix_slice, /* sq_slice */
(ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */
};
static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += self->rowSize;
return Matrix_item(self, i);
} else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyList_New(0);
}
else if (step == 1) {
return Matrix_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"vector indices must be integers, not %.200s",
item->ob_type->tp_name);
return NULL;
}
}
static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += self->rowSize;
return Matrix_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Matrix_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"matrix indices must be integers, not %.200s",
item->ob_type->tp_name);
return -1;
}
}
static PyMappingMethods Matrix_AsMapping = {
(lenfunc)Matrix_len,
(binaryfunc)Matrix_subscript,
(objobjargproc)Matrix_ass_subscript
};
static PyNumberMethods Matrix_NumMethods = {
(binaryfunc) Matrix_add, /*nb_add*/
(binaryfunc) Matrix_sub, /*nb_subtract*/
(binaryfunc) Matrix_mul, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
(unaryfunc) 0, /*nb_negative*/
(unaryfunc) 0, /*tp_positive*/
(unaryfunc) 0, /*tp_absolute*/
(inquiry) 0, /*tp_bool*/
(unaryfunc) Matrix_inv, /*nb_invert*/
0, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
0, /*nb_int*/
0, /*nb_reserved*/
0, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
};
static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
{
return PyLong_FromLong((long) self->rowSize);
}
static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
{
return PyLong_FromLong((long) self->colSize);
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Matrix_getseters[] = {
{"rowSize", (getter)Matrix_getRowSize, (setter)NULL, "", NULL},
{"colSize", (getter)Matrix_getColSize, (setter)NULL, "", NULL},
{"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "", NULL},
{"__owner__",(getter)BaseMathObject_getOwner, (setter)NULL, "",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*------------------PY_OBECT DEFINITION--------------------------*/
PyTypeObject matrix_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"matrix", /*tp_name*/
sizeof(MatrixObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)BaseMathObject_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) Matrix_repr, /*tp_repr*/
&Matrix_NumMethods, /*tp_as_number*/
&Matrix_SeqMethods, /*tp_as_sequence*/
&Matrix_AsMapping, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
(richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
Matrix_methods, /*tp_methods*/
0, /*tp_members*/
Matrix_getseters, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
0, /*tp_init*/
0, /*tp_alloc*/
Matrix_new, /*tp_new*/
0, /*tp_free*/
0, /*tp_is_gc*/
0, /*tp_bases*/
0, /*tp_mro*/
0, /*tp_cache*/
0, /*tp_subclasses*/
0, /*tp_weaklist*/
0 /*tp_del*/
};
/*------------------------newMatrixObject (internal)-------------
creates a new matrix object
self->matrix self->contiguous_ptr (reference to data.xxx)
[0]------------->[0]
[1]
[2]
[1]------------->[3]
[4]
[5]
....
self->matrix[1][1] = self->contigPtr[4] */
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
{
MatrixObject *self;
int x, row, col;
/*matrix objects can be any 2-4row x 2-4col matrix*/
if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
return NULL;
}
if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(MatrixObject, &matrix_Type);
self->rowSize = rowSize;
self->colSize = colSize;
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
self->contigPtr = mat;
/*create pointer array*/
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
if(self->matrix == NULL) { /*allocation failure*/
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
return NULL;
}
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
}
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
if(self->contigPtr == NULL) { /*allocation failure*/
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
return NULL;
}
/*create pointer array*/
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
if(self->matrix == NULL) { /*allocation failure*/
PyMem_Free(self->contigPtr);
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
return NULL;
}
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
}
/*parse*/
if(mat) { /*if a float array passed*/
for(row = 0; row < rowSize; row++) {
for(col = 0; col < colSize; col++) {
self->matrix[row][col] = mat[(row * colSize) + col];
}
}
} else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
Matrix_Identity(self);
Py_DECREF(self);
}
self->wrapped = Py_NEW;
}else{ /*bad type*/
return NULL;
}
return (PyObject *) self;
}
PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
{
MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *) self;
}
//----------------column_vector_multiplication (internal)---------
//COLUMN VECTOR Multiplication (Matrix X Vector)
// [1][4][7] [a]
// [2][5][8] * [b]
// [3][6][9] [c]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
{
float vecNew[4], vecCopy[4];
double dot = 0.0f;
int x, y, z = 0;
if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
return NULL;
if(mat->rowSize != vec->size){
if(mat->rowSize == 4 && vec->size != 3){
PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
return NULL;
}else{
vecCopy[3] = 1.0f;
}
}
for(x = 0; x < vec->size; x++){
vecCopy[x] = vec->vec[x];
}
vecNew[3] = 1.0f;
for(x = 0; x < mat->colSize; z++) {
for(y = 0; y < mat->rowSize; y++) {
dot += mat->matrix[y][x] * vecCopy[y];
}
vecNew[z++] = (float)dot;
dot = 0.0f;
}
return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
}