This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_statistics.c
Bastien Montagne 5f405728bb BLI_task: Cleanup: rename some structs to make them more generic.
TLS and Settings can be used by other types of parallel 'for loops', so
removing 'Range' from their names.

No functional changes expected here.
2019-07-30 14:56:47 +02:00

162 lines
5.1 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 by Blender Foundation.
* All rights reserved.
* */
/** \file
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
/********************************** Covariance Matrices *********************************/
typedef struct CovarianceData {
const float *cos_vn;
const float *center;
float *r_covmat;
float covfac;
int n;
int nbr_cos_vn;
} CovarianceData;
static void covariance_m_vn_ex_task_cb(void *__restrict userdata,
const int a,
const TaskParallelTLS *__restrict UNUSED(tls))
{
CovarianceData *data = userdata;
const float *cos_vn = data->cos_vn;
const float *center = data->center;
float *r_covmat = data->r_covmat;
const int n = data->n;
const int nbr_cos_vn = data->nbr_cos_vn;
int k;
/* Covariance matrices are always symmetrical, so we can compute only one half of it,
* and mirror it to the other half (at the end of the func).
*
* This allows using a flat loop of n*n with same results as imbricated one over half the matrix:
*
* for (i = 0; i < n; i++) {
* for (j = i; j < n; j++) {
* ...
* }
* }
*/
const int i = a / n;
const int j = a % n;
if (j < i) {
return;
}
if (center) {
for (k = 0; k < nbr_cos_vn; k++) {
r_covmat[a] += (cos_vn[k * n + i] - center[i]) * (cos_vn[k * n + j] - center[j]);
}
}
else {
for (k = 0; k < nbr_cos_vn; k++) {
r_covmat[a] += cos_vn[k * n + i] * cos_vn[k * n + j];
}
}
r_covmat[a] *= data->covfac;
if (j != i) {
/* Mirror result to other half... */
r_covmat[j * n + i] = r_covmat[a];
}
}
/**
* \brief Compute the covariance matrix of given set of nD coordinates.
*
* \param n: the dimension of the vectors (and hence, of the covariance matrix to compute).
* \param cos_vn: the nD points to compute covariance from.
* \param nbr_cos_vn: the number of nD coordinates in cos_vn.
* \param center: the center (or mean point) of cos_vn. If NULL,
* it is assumed cos_vn is already centered.
* \param use_sample_correction: whether to apply sample correction
* (i.e. get 'sample varince' instead of 'population variance').
* \return r_covmat the computed covariance matrix.
*/
void BLI_covariance_m_vn_ex(const int n,
const float *cos_vn,
const int nbr_cos_vn,
const float *center,
const bool use_sample_correction,
float *r_covmat)
{
/* Note about that division: see https://en.wikipedia.org/wiki/Bessel%27s_correction.
* In a nutshell, it must be 1 / (n - 1) for 'sample data', and 1 / n for 'population data'...
*/
const float covfac = 1.0f / (float)(use_sample_correction ? nbr_cos_vn - 1 : nbr_cos_vn);
memset(r_covmat, 0, sizeof(*r_covmat) * (size_t)(n * n));
CovarianceData data = {
.cos_vn = cos_vn,
.center = center,
.r_covmat = r_covmat,
.covfac = covfac,
.n = n,
.nbr_cos_vn = nbr_cos_vn,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = ((nbr_cos_vn * n * n) >= 10000);
BLI_task_parallel_range(0, n * n, &data, covariance_m_vn_ex_task_cb, &settings);
}
/**
* \brief Compute the covariance matrix of given set of 3D coordinates.
*
* \param cos_v3: the 3D points to compute covariance from.
* \param nbr_cos_v3: the number of 3D coordinates in cos_v3.
* \return r_covmat the computed covariance matrix.
* \return r_center the computed center (mean) of 3D points (may be NULL).
*/
void BLI_covariance_m3_v3n(const float (*cos_v3)[3],
const int nbr_cos_v3,
const bool use_sample_correction,
float r_covmat[3][3],
float r_center[3])
{
float center[3];
const float mean_fac = 1.0f / (float)nbr_cos_v3;
int i;
zero_v3(center);
for (i = 0; i < nbr_cos_v3; i++) {
/* Applying mean_fac here rather than once at the end reduce compute errors... */
madd_v3_v3fl(center, cos_v3[i], mean_fac);
}
if (r_center) {
copy_v3_v3(r_center, center);
}
BLI_covariance_m_vn_ex(
3, (const float *)cos_v3, nbr_cos_v3, center, use_sample_correction, (float *)r_covmat);
}