This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/view_map/ViewMapBuilder.cpp

2572 lines
80 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup freestyle
* \brief Class to build silhouette edges from a Winged-Edge structure
*/
#include <algorithm>
#include <memory>
#include <sstream>
#include <stdexcept>
#include "FRS_freestyle.h"
#include "BoxGrid.h"
#include "CulledOccluderSource.h"
#include "HeuristicGridDensityProviderFactory.h"
#include "OccluderSource.h"
#include "SphericalGrid.h"
#include "ViewMapBuilder.h"
#include "../geometry/GeomUtils.h"
#include "../geometry/GridHelpers.h"
#include "../winged_edge/WFillGrid.h"
#include "BKE_global.h"
namespace Freestyle {
// XXX Grmll... G is used as template's typename parameter :/
static const Global &_global = G;
#define LOGGING 0
using namespace std;
template<typename G, typename I>
static void findOccludee(FEdge *fe,
G & /*grid*/,
I &occluders,
real epsilon,
WFace **oaWFace,
Vec3r &u,
Vec3r &A,
Vec3r &origin,
Vec3r &edgeDir,
vector<WVertex *> &faceVertices)
{
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
WFace *oface;
bool skipFace;
WVertex::incoming_edge_iterator ie;
*oaWFace = nullptr;
if (((fe)->getNature() & Nature::SILHOUETTE) || ((fe)->getNature() & Nature::BORDER)) {
// we cast a ray from A in the same direction but looking behind
Vec3r v(-u[0], -u[1], -u[2]);
bool noIntersection = true;
real mint = FLT_MAX;
for (occluders.initAfterTarget(); occluders.validAfterTarget(); occluders.nextOccludee()) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tEvaluating intersection for occludee " << occluders.getWFace() << " and ray "
<< A << " * " << u << endl;
}
#endif
oface = occluders.getWFace();
Polygon3r *p = occluders.getCameraSpacePolygon();
real d = -((p->getVertices())[0] * p->getNormal());
real t, t_u, t_v;
if (nullptr != face) {
skipFace = false;
if (face == oface) {
continue;
}
if (faceVertices.empty()) {
continue;
}
for (vector<WVertex *>::iterator fv = faceVertices.begin(), fvend = faceVertices.end();
fv != fvend;
++fv) {
if ((*fv)->isBoundary()) {
continue;
}
WVertex::incoming_edge_iterator iebegin = (*fv)->incoming_edges_begin();
WVertex::incoming_edge_iterator ieend = (*fv)->incoming_edges_end();
for (ie = iebegin; ie != ieend; ++ie) {
if ((*ie) == nullptr) {
continue;
}
WFace *sface = (*ie)->GetbFace();
if (sface == oface) {
skipFace = true;
break;
}
}
if (skipFace) {
break;
}
}
if (skipFace) {
continue;
}
}
else {
// check whether the edge and the polygon plane are coincident:
//-------------------------------------------------------------
// first let us compute the plane equation.
if (GeomUtils::COINCIDENT ==
GeomUtils::intersectRayPlane(origin, edgeDir, p->getNormal(), d, t, epsilon)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRejecting occluder for target coincidence." << endl;
}
#endif
continue;
}
}
if (p->rayIntersect(A, v, t, t_u, t_v)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRay " << A << " * " << v << " intersects at time " << t << endl;
cout << "\t\t(v * normal) == " << (v * p->getNormal()) << " for normal "
<< p->getNormal() << endl;
}
#endif
if (fabs(v * p->getNormal()) > 0.0001) {
if ((t > 0.0) /* && (t<1.0) */) {
if (t < mint) {
*oaWFace = oface;
mint = t;
noIntersection = false;
fe->setOccludeeIntersection(Vec3r(A + t * v));
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tIs occludee" << endl;
}
#endif
}
}
}
occluders.reportDepth(A, v, t);
}
}
if (noIntersection) {
*oaWFace = nullptr;
}
}
}
template<typename G, typename I>
static void findOccludee(FEdge *fe, G &grid, real epsilon, ViewEdge * /*ve*/, WFace **oaFace)
{
Vec3r A;
Vec3r edgeDir;
Vec3r origin;
A = Vec3r(((fe)->vertexA()->point3D() + (fe)->vertexB()->point3D()) / 2.0);
edgeDir = Vec3r((fe)->vertexB()->point3D() - (fe)->vertexA()->point3D());
edgeDir.normalize();
origin = Vec3r((fe)->vertexA()->point3D());
Vec3r u;
if (grid.orthographicProjection()) {
u = Vec3r(0.0, 0.0, grid.viewpoint().z() - A.z());
}
else {
u = Vec3r(grid.viewpoint() - A);
}
u.normalize();
vector<WVertex *> faceVertices;
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
if (face) {
face->RetrieveVertexList(faceVertices);
}
I occluders(grid, A, epsilon);
findOccludee<G, I>(fe, grid, occluders, epsilon, oaFace, u, A, origin, edgeDir, faceVertices);
}
// computeVisibility takes a pointer to foundOccluders, instead of using a reference,
// so that computeVeryFastVisibility can skip the AddOccluders step with minimal overhead.
template<typename G, typename I>
static int computeVisibility(ViewMap *viewMap,
FEdge *fe,
G &grid,
real epsilon,
ViewEdge * /*ve*/,
WFace **oaWFace,
set<ViewShape *> *foundOccluders)
{
int qi = 0;
Vec3r center;
Vec3r edgeDir;
Vec3r origin;
center = fe->center3d();
edgeDir = Vec3r(fe->vertexB()->point3D() - fe->vertexA()->point3D());
edgeDir.normalize();
origin = Vec3r(fe->vertexA()->point3D());
Vec3r vp;
if (grid.orthographicProjection()) {
vp = Vec3r(center.x(), center.y(), grid.viewpoint().z());
}
else {
vp = Vec3r(grid.viewpoint());
}
Vec3r u(vp - center);
real raylength = u.norm();
u.normalize();
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
vector<WVertex *> faceVertices;
WVertex::incoming_edge_iterator ie;
WFace *oface;
bool skipFace;
if (face) {
face->RetrieveVertexList(faceVertices);
}
I occluders(grid, center, epsilon);
for (occluders.initBeforeTarget(); occluders.validBeforeTarget(); occluders.nextOccluder()) {
// If we're dealing with an exact silhouette, check whether we must take care of this occluder
// of not. (Indeed, we don't consider the occluders that share at least one vertex with the
// face containing this edge).
//-----------
oface = occluders.getWFace();
Polygon3r *p = occluders.getCameraSpacePolygon();
real t, t_u, t_v;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tEvaluating intersection for occluder " << (p->getVertices())[0]
<< (p->getVertices())[1] << (p->getVertices())[2] << endl
<< "\t\t\tand ray " << vp << " * " << u << " (center " << center << ")" << endl;
}
#endif
#if LOGGING
Vec3r v(vp - center);
real rl = v.norm();
v.normalize();
vector<Vec3r> points;
// Iterate over vertices, storing projections in points
for (vector<WOEdge *>::const_iterator woe = oface->getEdgeList().begin(),
woend = oface->getEdgeList().end();
woe != woend;
woe++) {
points.push_back(Vec3r((*woe)->GetaVertex()->GetVertex()));
}
Polygon3r p1(points, oface->GetNormal());
Vec3r v1((p1.getVertices())[0]);
real d = -(v1 * p->getNormal());
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tp: " << (p->getVertices())[0] << (p->getVertices())[1] << (p->getVertices())[2]
<< ", norm: " << p->getNormal() << endl;
cout << "\t\tp1: " << (p1.getVertices())[0] << (p1.getVertices())[1] << (p1.getVertices())[2]
<< ", norm: " << p1.getNormal() << endl;
}
#else
real d = -((p->getVertices())[0] * p->getNormal());
#endif
if (face) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tDetermining face adjacency...";
}
#endif
skipFace = false;
if (face == oface) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << " Rejecting occluder for face concurrency." << endl;
}
#endif
continue;
}
for (vector<WVertex *>::iterator fv = faceVertices.begin(), fvend = faceVertices.end();
fv != fvend;
++fv) {
if ((*fv)->isBoundary()) {
continue;
}
WVertex::incoming_edge_iterator iebegin = (*fv)->incoming_edges_begin();
WVertex::incoming_edge_iterator ieend = (*fv)->incoming_edges_end();
for (ie = iebegin; ie != ieend; ++ie) {
if ((*ie) == nullptr) {
continue;
}
WFace *sface = (*ie)->GetbFace();
// WFace *sfacea = (*ie)->GetaFace();
// if ((sface == oface) || (sfacea == oface))
if (sface == oface) {
skipFace = true;
break;
}
}
if (skipFace) {
break;
}
}
if (skipFace) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << " Rejecting occluder for face adjacency." << endl;
}
#endif
continue;
}
}
else {
// check whether the edge and the polygon plane are coincident:
//-------------------------------------------------------------
// first let us compute the plane equation.
if (GeomUtils::COINCIDENT ==
GeomUtils::intersectRayPlane(origin, edgeDir, p->getNormal(), d, t, epsilon)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRejecting occluder for target coincidence." << endl;
}
#endif
continue;
}
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
real x;
if (p1.rayIntersect(center, v, x, t_u, t_v)) {
cout << "\t\tRay should intersect at time " << (rl - x) << ". Center: " << center
<< ", V: " << v << ", RL: " << rl << ", T:" << x << endl;
}
else {
cout << "\t\tRay should not intersect. Center: " << center << ", V: " << v
<< ", RL: " << rl << endl;
}
}
#endif
if (p->rayIntersect(center, u, t, t_u, t_v)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRay " << center << " * " << u << " intersects at time " << t
<< " (raylength is " << raylength << ")" << endl;
cout << "\t\t(u * normal) == " << (u * p->getNormal()) << " for normal " << p->getNormal()
<< endl;
}
#endif
if (fabs(u * p->getNormal()) > 0.0001) {
if ((t > 0.0) && (t < raylength)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tIs occluder" << endl;
}
#endif
if (foundOccluders != nullptr) {
ViewShape *vshape = viewMap->viewShape(oface->GetVertex(0)->shape()->GetId());
foundOccluders->insert(vshape);
}
++qi;
if (!grid.enableQI()) {
break;
}
}
occluders.reportDepth(center, u, t);
}
}
}
// Find occludee
findOccludee<G, I>(
fe, grid, occluders, epsilon, oaWFace, u, center, origin, edgeDir, faceVertices);
return qi;
}
// computeCumulativeVisibility returns the lowest x such that the majority of FEdges have QI <= x
//
// This was probably the original intention of the "normal" algorithm on which
// computeDetailedVisibility is based. But because the "normal" algorithm chooses the most popular
// QI, without considering any other values, a ViewEdge with FEdges having QIs of 0, 21, 22, 23, 24
// and 25 will end up having a total QI of 0, even though most of the FEdges are heavily occluded.
// computeCumulativeVisibility will treat this case as a QI of 22 because 3 out of 6 occluders have
// QI <= 22.
template<typename G, typename I>
static void computeCumulativeVisibility(ViewMap *ioViewMap,
G &grid,
real epsilon,
RenderMonitor *iRenderMonitor)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
FEdge *fe, *festart;
int nSamples = 0;
vector<WFace *> wFaces;
WFace *wFace = nullptr;
unsigned cnt = 0;
unsigned cntStep = (unsigned)ceil(0.01f * vedges.size());
unsigned tmpQI = 0;
unsigned qiClasses[256];
unsigned maxIndex, maxCard;
unsigned qiMajority;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
if (iRenderMonitor) {
if (iRenderMonitor->testBreak()) {
break;
}
if (cnt % cntStep == 0) {
stringstream ss;
ss << "Freestyle: Visibility computations " << (100 * cnt / vedges.size()) << "%";
iRenderMonitor->setInfo(ss.str());
iRenderMonitor->progress((float)cnt / vedges.size());
}
cnt++;
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Processing ViewEdge " << (*ve)->getId() << endl;
}
#endif
// Find an edge to test
if (!(*ve)->isInImage()) {
// This view edge has been proscenium culled
(*ve)->setQI(255);
(*ve)->setaShape(nullptr);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tCulled." << endl;
}
#endif
continue;
}
// Test edge
festart = (*ve)->fedgeA();
fe = (*ve)->fedgeA();
qiMajority = 0;
do {
if (fe != nullptr && fe->isInImage()) {
qiMajority++;
}
fe = fe->nextEdge();
} while (fe && fe != festart);
if (qiMajority == 0) {
// There are no occludable FEdges on this ViewEdge
// This should be impossible.
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
}
// We can recover from this error:
// Treat this edge as fully visible with no occludee
(*ve)->setQI(0);
(*ve)->setaShape(nullptr);
continue;
}
++qiMajority;
qiMajority >>= 1;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tqiMajority: " << qiMajority << endl;
}
#endif
tmpQI = 0;
maxIndex = 0;
maxCard = 0;
nSamples = 0;
memset(qiClasses, 0, 256 * sizeof(*qiClasses));
set<ViewShape *> foundOccluders;
fe = (*ve)->fedgeA();
do {
if (!fe || !fe->isInImage()) {
fe = fe->nextEdge();
continue;
}
if (maxCard < qiMajority) {
// ARB: change &wFace to wFace and use reference in called function
tmpQI = computeVisibility<G, I>(
ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: visibility " << tmpQI << endl;
}
#endif
// ARB: This is an error condition, not an alert condition.
// Some sort of recovery or abort is necessary.
if (tmpQI >= 256) {
cerr << "Warning: too many occluding levels" << endl;
// ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
tmpQI = 255;
}
if (++qiClasses[tmpQI] > maxCard) {
maxCard = qiClasses[tmpQI];
maxIndex = tmpQI;
}
}
else {
// ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
// ARB: change &wFace to wFace and use reference in called function
findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: occludee only (" << (wFace != NULL ? "found" : "not found") << ")"
<< endl;
}
#endif
}
// Store test results
if (wFace) {
vector<Vec3r> vertices;
for (int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i) {
vertices.emplace_back(wFace->GetVertex(i)->GetVertex());
}
Polygon3r poly(vertices, wFace->GetNormal());
poly.userdata = (void *)wFace;
fe->setaFace(poly);
wFaces.push_back(wFace);
fe->setOccludeeEmpty(false);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFound occludee" << endl;
}
#endif
}
else {
fe->setOccludeeEmpty(true);
}
++nSamples;
fe = fe->nextEdge();
} while ((maxCard < qiMajority) && (fe) && (fe != festart));
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
}
#endif
// ViewEdge
// qi --
// Find the minimum value that is >= the majority of the QI
for (unsigned count = 0, i = 0; i < 256; ++i) {
count += qiClasses[i];
if (count >= qiMajority) {
(*ve)->setQI(i);
break;
}
}
// occluders --
// I would rather not have to go through the effort of creating this set and then copying out
// its contents. Is there a reason why ViewEdge::_Occluders cannot be converted to a set<>?
for (set<ViewShape *>::iterator o = foundOccluders.begin(), oend = foundOccluders.end();
o != oend;
++o) {
(*ve)->AddOccluder((*o));
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders."
<< endl;
}
#else
(void)maxIndex;
#endif
// occludee --
if (!wFaces.empty()) {
if (wFaces.size() <= (float)nSamples / 2.0f) {
(*ve)->setaShape(nullptr);
}
else {
ViewShape *vshape = ioViewMap->viewShape(
(*wFaces.begin())->GetVertex(0)->shape()->GetId());
(*ve)->setaShape(vshape);
}
}
wFaces.clear();
}
if (iRenderMonitor && !vedges.empty()) {
stringstream ss;
ss << "Freestyle: Visibility computations " << (100 * cnt / vedges.size()) << "%";
iRenderMonitor->setInfo(ss.str());
iRenderMonitor->progress((float)cnt / vedges.size());
}
}
template<typename G, typename I>
static void computeDetailedVisibility(ViewMap *ioViewMap,
G &grid,
real epsilon,
RenderMonitor *iRenderMonitor)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
FEdge *fe, *festart;
int nSamples = 0;
vector<WFace *> wFaces;
WFace *wFace = nullptr;
unsigned tmpQI = 0;
unsigned qiClasses[256];
unsigned maxIndex, maxCard;
unsigned qiMajority;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
if (iRenderMonitor && iRenderMonitor->testBreak()) {
break;
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Processing ViewEdge " << (*ve)->getId() << endl;
}
#endif
// Find an edge to test
if (!(*ve)->isInImage()) {
// This view edge has been proscenium culled
(*ve)->setQI(255);
(*ve)->setaShape(nullptr);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tCulled." << endl;
}
#endif
continue;
}
// Test edge
festart = (*ve)->fedgeA();
fe = (*ve)->fedgeA();
qiMajority = 0;
do {
if (fe != nullptr && fe->isInImage()) {
qiMajority++;
}
fe = fe->nextEdge();
} while (fe && fe != festart);
if (qiMajority == 0) {
// There are no occludable FEdges on this ViewEdge
// This should be impossible.
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
}
// We can recover from this error:
// Treat this edge as fully visible with no occludee
(*ve)->setQI(0);
(*ve)->setaShape(nullptr);
continue;
}
++qiMajority;
qiMajority >>= 1;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tqiMajority: " << qiMajority << endl;
}
#endif
tmpQI = 0;
maxIndex = 0;
maxCard = 0;
nSamples = 0;
memset(qiClasses, 0, 256 * sizeof(*qiClasses));
set<ViewShape *> foundOccluders;
fe = (*ve)->fedgeA();
do {
if (fe == nullptr || !fe->isInImage()) {
fe = fe->nextEdge();
continue;
}
if (maxCard < qiMajority) {
// ARB: change &wFace to wFace and use reference in called function
tmpQI = computeVisibility<G, I>(
ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: visibility " << tmpQI << endl;
}
#endif
// ARB: This is an error condition, not an alert condition.
// Some sort of recovery or abort is necessary.
if (tmpQI >= 256) {
cerr << "Warning: too many occluding levels" << endl;
// ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
tmpQI = 255;
}
if (++qiClasses[tmpQI] > maxCard) {
maxCard = qiClasses[tmpQI];
maxIndex = tmpQI;
}
}
else {
// ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
// ARB: change &wFace to wFace and use reference in called function
findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: occludee only (" << (wFace != NULL ? "found" : "not found") << ")"
<< endl;
}
#endif
}
// Store test results
if (wFace) {
vector<Vec3r> vertices;
for (int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i) {
vertices.emplace_back(wFace->GetVertex(i)->GetVertex());
}
Polygon3r poly(vertices, wFace->GetNormal());
poly.userdata = (void *)wFace;
fe->setaFace(poly);
wFaces.push_back(wFace);
fe->setOccludeeEmpty(false);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFound occludee" << endl;
}
#endif
}
else {
fe->setOccludeeEmpty(true);
}
++nSamples;
fe = fe->nextEdge();
} while ((maxCard < qiMajority) && (fe) && (fe != festart));
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
}
#endif
// ViewEdge
// qi --
(*ve)->setQI(maxIndex);
// occluders --
// I would rather not have to go through the effort of creating this this set and then copying
// out its contents. Is there a reason why ViewEdge::_Occluders cannot be converted to a set<>?
for (set<ViewShape *>::iterator o = foundOccluders.begin(), oend = foundOccluders.end();
o != oend;
++o) {
(*ve)->AddOccluder((*o));
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders."
<< endl;
}
#endif
// occludee --
if (!wFaces.empty()) {
if (wFaces.size() <= (float)nSamples / 2.0f) {
(*ve)->setaShape(nullptr);
}
else {
ViewShape *vshape = ioViewMap->viewShape(
(*wFaces.begin())->GetVertex(0)->shape()->GetId());
(*ve)->setaShape(vshape);
}
}
wFaces.clear();
}
}
template<typename G, typename I>
static void computeFastVisibility(ViewMap *ioViewMap, G &grid, real epsilon)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
FEdge *fe, *festart;
unsigned nSamples = 0;
vector<WFace *> wFaces;
WFace *wFace = nullptr;
unsigned tmpQI = 0;
unsigned qiClasses[256];
unsigned maxIndex, maxCard;
unsigned qiMajority;
bool even_test;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
// Find an edge to test
if (!(*ve)->isInImage()) {
// This view edge has been proscenium culled
(*ve)->setQI(255);
(*ve)->setaShape(nullptr);
continue;
}
// Test edge
festart = (*ve)->fedgeA();
fe = (*ve)->fedgeA();
even_test = true;
qiMajority = 0;
do {
if (even_test && fe && fe->isInImage()) {
qiMajority++;
even_test = !even_test;
}
fe = fe->nextEdge();
} while (fe && fe != festart);
if (qiMajority == 0) {
// There are no occludable FEdges on this ViewEdge
// This should be impossible.
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
}
// We can recover from this error:
// Treat this edge as fully visible with no occludee
(*ve)->setQI(0);
(*ve)->setaShape(nullptr);
continue;
}
++qiMajority;
qiMajority >>= 1;
even_test = true;
maxIndex = 0;
maxCard = 0;
nSamples = 0;
memset(qiClasses, 0, 256 * sizeof(*qiClasses));
set<ViewShape *> foundOccluders;
fe = (*ve)->fedgeA();
do {
if (!fe || !fe->isInImage()) {
fe = fe->nextEdge();
continue;
}
if (even_test) {
if (maxCard < qiMajority) {
// ARB: change &wFace to wFace and use reference in called function
tmpQI = computeVisibility<G, I>(
ioViewMap, fe, grid, epsilon, *ve, &wFace, &foundOccluders);
// ARB: This is an error condition, not an alert condition.
// Some sort of recovery or abort is necessary.
if (tmpQI >= 256) {
cerr << "Warning: too many occluding levels" << endl;
// ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
tmpQI = 255;
}
if (++qiClasses[tmpQI] > maxCard) {
maxCard = qiClasses[tmpQI];
maxIndex = tmpQI;
}
}
else {
// ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
// ARB: change &wFace to wFace and use reference in called function
findOccludee<G, I>(fe, grid, epsilon, *ve, &wFace);
}
if (wFace) {
vector<Vec3r> vertices;
for (int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i) {
vertices.emplace_back(wFace->GetVertex(i)->GetVertex());
}
Polygon3r poly(vertices, wFace->GetNormal());
poly.userdata = (void *)wFace;
fe->setaFace(poly);
wFaces.push_back(wFace);
}
++nSamples;
}
even_test = !even_test;
fe = fe->nextEdge();
} while ((maxCard < qiMajority) && (fe) && (fe != festart));
// qi --
(*ve)->setQI(maxIndex);
// occluders --
for (set<ViewShape *>::iterator o = foundOccluders.begin(), oend = foundOccluders.end();
o != oend;
++o) {
(*ve)->AddOccluder((*o));
}
// occludee --
if (!wFaces.empty()) {
if (wFaces.size() < nSamples / 2) {
(*ve)->setaShape(nullptr);
}
else {
ViewShape *vshape = ioViewMap->viewShape(
(*wFaces.begin())->GetVertex(0)->shape()->GetId());
(*ve)->setaShape(vshape);
}
}
wFaces.clear();
}
}
template<typename G, typename I>
static void computeVeryFastVisibility(ViewMap *ioViewMap, G &grid, real epsilon)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
FEdge *fe;
unsigned qi = 0;
WFace *wFace = nullptr;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
// Find an edge to test
if (!(*ve)->isInImage()) {
// This view edge has been proscenium culled
(*ve)->setQI(255);
(*ve)->setaShape(nullptr);
continue;
}
fe = (*ve)->fedgeA();
// Find a FEdge inside the occluder proscenium to test for visibility
FEdge *festart = fe;
while (fe && !fe->isInImage() && fe != festart) {
fe = fe->nextEdge();
}
// Test edge
if (!fe || !fe->isInImage()) {
// There are no occludable FEdges on this ViewEdge
// This should be impossible.
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "View Edge in viewport without occludable FEdges: " << (*ve)->getId() << endl;
}
// We can recover from this error:
// Treat this edge as fully visible with no occludee
qi = 0;
wFace = nullptr;
}
else {
qi = computeVisibility<G, I>(ioViewMap, fe, grid, epsilon, *ve, &wFace, NULL);
}
// Store test results
if (wFace) {
vector<Vec3r> vertices;
for (int i = 0, numEdges = wFace->numberOfEdges(); i < numEdges; ++i) {
vertices.emplace_back(wFace->GetVertex(i)->GetVertex());
}
Polygon3r poly(vertices, wFace->GetNormal());
poly.userdata = (void *)wFace;
fe->setaFace(poly); // This works because setaFace *copies* the polygon
ViewShape *vshape = ioViewMap->viewShape(wFace->GetVertex(0)->shape()->GetId());
(*ve)->setaShape(vshape);
}
else {
(*ve)->setaShape(nullptr);
}
(*ve)->setQI(qi);
}
}
void ViewMapBuilder::BuildGrid(WingedEdge &we, const BBox<Vec3r> &bbox, unsigned int sceneNumFaces)
{
_Grid->clear();
Vec3r size;
for (unsigned int i = 0; i < 3; i++) {
size[i] = fabs(bbox.getMax()[i] - bbox.getMin()[i]);
// let make the grid 1/10 bigger to avoid numerical errors while computing triangles/cells
// intersections.
size[i] += size[i] / 10.0;
if (size[i] == 0) {
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Warning: the bbox size is 0 in dimension " << i << endl;
}
}
}
_Grid->configure(Vec3r(bbox.getMin() - size / 20.0), size, sceneNumFaces);
// Fill in the grid:
WFillGrid fillGridRenderer(_Grid, &we);
fillGridRenderer.fillGrid();
// DEBUG
_Grid->displayDebug();
}
ViewMap *ViewMapBuilder::BuildViewMap(WingedEdge &we,
visibility_algo iAlgo,
real epsilon,
const BBox<Vec3r> &bbox,
unsigned int sceneNumFaces)
{
_ViewMap = new ViewMap;
_currentId = 1;
_currentFId = 0;
_currentSVertexId = 0;
// Builds initial view edges
computeInitialViewEdges(we);
// Detects cusps
computeCusps(_ViewMap);
// Compute intersections
ComputeIntersections(_ViewMap, sweep_line, epsilon);
// Compute visibility
ComputeEdgesVisibility(_ViewMap, we, bbox, sceneNumFaces, iAlgo, epsilon);
return _ViewMap;
}
static inline real distance2D(const Vec3r &point, const real origin[2])
{
return ::hypot((point[0] - origin[0]), (point[1] - origin[1]));
}
static inline bool crossesProscenium(real proscenium[4], FEdge *fe)
{
Vec2r min(proscenium[0], proscenium[2]);
Vec2r max(proscenium[1], proscenium[3]);
Vec2r A(fe->vertexA()->getProjectedX(), fe->vertexA()->getProjectedY());
Vec2r B(fe->vertexB()->getProjectedX(), fe->vertexB()->getProjectedY());
return GeomUtils::intersect2dSeg2dArea(min, max, A, B);
}
static inline bool insideProscenium(const real proscenium[4], const Vec3r &point)
{
return !(point[0] < proscenium[0] || point[0] > proscenium[1] || point[1] < proscenium[2] ||
point[1] > proscenium[3]);
}
void ViewMapBuilder::CullViewEdges(ViewMap *ioViewMap,
real viewProscenium[4],
real occluderProscenium[4],
bool extensiveFEdgeSearch)
{
// Cull view edges by marking them as non-displayable.
// This avoids the complications of trying to delete edges from the ViewMap.
// Non-displayable view edges will be skipped over during visibility calculation.
// View edges will be culled according to their position w.r.t. the viewport proscenium (viewport
// + 5% border, or some such).
// Get proscenium boundary for culling
GridHelpers::getDefaultViewProscenium(viewProscenium);
real prosceniumOrigin[2];
prosceniumOrigin[0] = (viewProscenium[1] - viewProscenium[0]) / 2.0;
prosceniumOrigin[1] = (viewProscenium[3] - viewProscenium[2]) / 2.0;
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Proscenium culling:" << endl;
cout << "Proscenium: [" << viewProscenium[0] << ", " << viewProscenium[1] << ", "
<< viewProscenium[2] << ", " << viewProscenium[3] << "]" << endl;
cout << "Origin: [" << prosceniumOrigin[0] << ", " << prosceniumOrigin[1] << "]" << endl;
}
// A separate occluder proscenium will also be maintained, starting out the same as the viewport
// proscenium, and expanding as necessary so that it encompasses the center point of at least one
// feature edge in each retained view edge. The occluder proscenium will be used later to cull
// occluding triangles before they are inserted into the Grid. The occluder proscenium starts out
// the same size as the view proscenium
GridHelpers::getDefaultViewProscenium(occluderProscenium);
// N.B. Freestyle is inconsistent in its use of ViewMap::viewedges_container and
// vector<ViewEdge*>::iterator. Probably all occurrences of vector<ViewEdge*>::iterator should be
// replaced ViewMap::viewedges_container throughout the code. For each view edge
ViewMap::viewedges_container::iterator ve, veend;
for (ve = ioViewMap->ViewEdges().begin(), veend = ioViewMap->ViewEdges().end(); ve != veend;
ve++) {
// Overview:
// Search for a visible feature edge
// If none: mark view edge as non-displayable
// Otherwise:
// Find a feature edge with center point inside occluder proscenium.
// If none exists, find the feature edge with center point closest to viewport origin.
// Expand occluder proscenium to enclose center point.
// For each feature edge, while bestOccluderTarget not found and view edge not visible
bool bestOccluderTargetFound = false;
FEdge *bestOccluderTarget = nullptr;
real bestOccluderDistance = 0.0;
FEdge *festart = (*ve)->fedgeA();
FEdge *fe = festart;
// All ViewEdges start culled
(*ve)->setIsInImage(false);
// For simple visibility calculation: mark a feature edge that is known to have a center point
// inside the occluder proscenium. Cull all other feature edges.
do {
// All FEdges start culled
fe->setIsInImage(false);
// Look for the visible edge that can most easily be included in the occluder proscenium.
if (!bestOccluderTargetFound) {
// If center point is inside occluder proscenium,
if (insideProscenium(occluderProscenium, fe->center2d())) {
// Use this feature edge for visibility deterimination
fe->setIsInImage(true);
// Mark bestOccluderTarget as found
bestOccluderTargetFound = true;
bestOccluderTarget = fe;
}
else {
real d = distance2D(fe->center2d(), prosceniumOrigin);
// If center point is closer to viewport origin than current target
if (bestOccluderTarget == nullptr || d < bestOccluderDistance) {
// Then store as bestOccluderTarget
bestOccluderDistance = d;
bestOccluderTarget = fe;
}
}
}
// If feature edge crosses the view proscenium
if (!(*ve)->isInImage() && crossesProscenium(viewProscenium, fe)) {
// Then the view edge will be included in the image
(*ve)->setIsInImage(true);
}
fe = fe->nextEdge();
} while (fe && fe != festart && !(bestOccluderTargetFound && (*ve)->isInImage()));
// Either we have run out of FEdges, or we already have the one edge we need to determine
// visibility Cull all remaining edges.
while (fe && fe != festart) {
fe->setIsInImage(false);
fe = fe->nextEdge();
}
// If bestOccluderTarget was not found inside the occluder proscenium, we need to expand the
// occluder proscenium to include it.
if ((*ve)->isInImage() && bestOccluderTarget != nullptr && !bestOccluderTargetFound) {
// Expand occluder proscenium to enclose bestOccluderTarget
Vec3r point = bestOccluderTarget->center2d();
if (point[0] < occluderProscenium[0]) {
occluderProscenium[0] = point[0];
}
else if (point[0] > occluderProscenium[1]) {
occluderProscenium[1] = point[0];
}
if (point[1] < occluderProscenium[2]) {
occluderProscenium[2] = point[1];
}
else if (point[1] > occluderProscenium[3]) {
occluderProscenium[3] = point[1];
}
// Use bestOccluderTarget for visibility determination
bestOccluderTarget->setIsInImage(true);
}
}
// We are done calculating the occluder proscenium.
// Expand the occluder proscenium by an epsilon to avoid rounding errors.
const real epsilon = 1.0e-6;
occluderProscenium[0] -= epsilon;
occluderProscenium[1] += epsilon;
occluderProscenium[2] -= epsilon;
occluderProscenium[3] += epsilon;
// For "Normal" or "Fast" style visibility computation only:
// For more detailed visibility calculation, make a second pass through the view map, marking all
// feature edges with center points inside the final occluder proscenium. All of these feature
// edges can be considered during visibility calculation.
// So far we have only found one FEdge per ViewEdge. The "Normal" and "Fast" styles of
// visibility computation want to consider many FEdges for each ViewEdge. Here we re-scan the
// view map to find any usable FEdges that we skipped on the first pass, or that have become
// usable because the occluder proscenium has been expanded since the edge was visited on the
// first pass.
if (extensiveFEdgeSearch) {
// For each view edge,
for (ve = ioViewMap->ViewEdges().begin(), veend = ioViewMap->ViewEdges().end(); ve != veend;
ve++) {
if (!(*ve)->isInImage()) {
continue;
}
// For each feature edge,
FEdge *festart = (*ve)->fedgeA();
FEdge *fe = festart;
do {
// If not (already) visible and center point inside occluder proscenium,
if (!fe->isInImage() && insideProscenium(occluderProscenium, fe->center2d())) {
// Use the feature edge for visibility determination
fe->setIsInImage(true);
}
fe = fe->nextEdge();
} while (fe && fe != festart);
}
}
}
void ViewMapBuilder::computeInitialViewEdges(WingedEdge &we)
{
vector<WShape *> wshapes = we.getWShapes();
SShape *psShape;
for (vector<WShape *>::const_iterator it = wshapes.begin(); it != wshapes.end(); it++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
// create the embedding
psShape = new SShape;
psShape->setId((*it)->GetId());
psShape->setName((*it)->getName());
psShape->setLibraryPath((*it)->getLibraryPath());
psShape->setFrsMaterials((*it)->frs_materials()); // FIXME
// create the view shape
ViewShape *vshape = new ViewShape(psShape);
// add this view shape to the view map:
_ViewMap->AddViewShape(vshape);
// we want to number the view edges in a unique way for the while scene.
_pViewEdgeBuilder->setCurrentViewId(_currentId);
// we want to number the feature edges in a unique way for the while scene.
_pViewEdgeBuilder->setCurrentFId(_currentFId);
// we want to number the SVertex in a unique way for the while scene.
_pViewEdgeBuilder->setCurrentSVertexId(_currentFId);
_pViewEdgeBuilder->BuildViewEdges(dynamic_cast<WXShape *>(*it),
vshape,
_ViewMap->ViewEdges(),
_ViewMap->ViewVertices(),
_ViewMap->FEdges(),
_ViewMap->SVertices());
_currentId = _pViewEdgeBuilder->currentViewId() + 1;
_currentFId = _pViewEdgeBuilder->currentFId() + 1;
_currentSVertexId = _pViewEdgeBuilder->currentSVertexId() + 1;
psShape->ComputeBBox();
}
}
void ViewMapBuilder::computeCusps(ViewMap *ioViewMap)
{
vector<ViewVertex *> newVVertices;
vector<ViewEdge *> newVEdges;
ViewMap::viewedges_container &vedges = ioViewMap->ViewEdges();
ViewMap::viewedges_container::iterator ve = vedges.begin(), veend = vedges.end();
for (; ve != veend; ++ve) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
if ((!((*ve)->getNature() & Nature::SILHOUETTE)) || (!((*ve)->fedgeA()->isSmooth()))) {
continue;
}
FEdge *fe = (*ve)->fedgeA();
FEdge *fefirst = fe;
bool first = true;
bool positive = true;
do {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
Vec3r A((fes)->vertexA()->point3d());
Vec3r B((fes)->vertexB()->point3d());
Vec3r AB(B - A);
AB.normalize();
Vec3r m((A + B) / 2.0);
Vec3r crossP(AB ^ (fes)->normal());
crossP.normalize();
Vec3r viewvector;
if (_orthographicProjection) {
viewvector = Vec3r(0.0, 0.0, m.z() - _viewpoint.z());
}
else {
viewvector = Vec3r(m - _viewpoint);
}
viewvector.normalize();
if (first) {
if (((crossP) * (viewvector)) > 0) {
positive = true;
}
else {
positive = false;
}
first = false;
}
// If we're in a positive part, we need a stronger negative value to change
NonTVertex *cusp = nullptr;
if (positive) {
if (((crossP) * (viewvector)) < -0.1) {
// state changes
positive = false;
// creates and insert cusp
cusp = dynamic_cast<NonTVertex *>(
ioViewMap->InsertViewVertex(fes->vertexA(), newVEdges));
if (cusp) {
cusp->setNature(cusp->getNature() | Nature::CUSP);
}
}
}
else {
// If we're in a negative part, we need a stronger negative value to change
if (((crossP) * (viewvector)) > 0.1) {
positive = true;
cusp = dynamic_cast<NonTVertex *>(
ioViewMap->InsertViewVertex(fes->vertexA(), newVEdges));
if (cusp) {
cusp->setNature(cusp->getNature() | Nature::CUSP);
}
}
}
fe = fe->nextEdge();
} while (fe && fe != fefirst);
}
for (ve = newVEdges.begin(), veend = newVEdges.end(); ve != veend; ++ve) {
(*ve)->viewShape()->AddEdge(*ve);
vedges.push_back(*ve);
}
}
void ViewMapBuilder::ComputeCumulativeVisibility(ViewMap *ioViewMap,
WingedEdge &we,
const BBox<Vec3r> &bbox,
real epsilon,
bool cull,
GridDensityProviderFactory &factory)
{
AutoPtr<GridHelpers::Transform> transform;
AutoPtr<OccluderSource> source;
if (_orthographicProjection) {
transform = std::make_unique<BoxGrid::Transform>();
}
else {
transform = std::make_unique<SphericalGrid::Transform>();
}
if (cull) {
source = std::make_unique<CulledOccluderSource>(*transform, we, *ioViewMap, true);
}
else {
source = std::make_unique<OccluderSource>(*transform, we);
}
AutoPtr<GridDensityProvider> density(factory.newGridDensityProvider(*source, bbox, *transform));
if (_orthographicProjection) {
BoxGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
computeCumulativeVisibility<BoxGrid, BoxGrid::Iterator>(
ioViewMap, grid, epsilon, _pRenderMonitor);
}
else {
SphericalGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
computeCumulativeVisibility<SphericalGrid, SphericalGrid::Iterator>(
ioViewMap, grid, epsilon, _pRenderMonitor);
}
}
void ViewMapBuilder::ComputeDetailedVisibility(ViewMap *ioViewMap,
WingedEdge &we,
const BBox<Vec3r> &bbox,
real epsilon,
bool cull,
GridDensityProviderFactory &factory)
{
AutoPtr<GridHelpers::Transform> transform;
AutoPtr<OccluderSource> source;
if (_orthographicProjection) {
transform = std::make_unique<BoxGrid::Transform>();
}
else {
transform = std::make_unique<SphericalGrid::Transform>();
}
if (cull) {
source = std::make_unique<CulledOccluderSource>(*transform, we, *ioViewMap, true);
}
else {
source = std::make_unique<OccluderSource>(*transform, we);
}
AutoPtr<GridDensityProvider> density(factory.newGridDensityProvider(*source, bbox, *transform));
if (_orthographicProjection) {
BoxGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
computeDetailedVisibility<BoxGrid, BoxGrid::Iterator>(
ioViewMap, grid, epsilon, _pRenderMonitor);
}
else {
SphericalGrid grid(*source, *density, ioViewMap, _viewpoint, _EnableQI);
computeDetailedVisibility<SphericalGrid, SphericalGrid::Iterator>(
ioViewMap, grid, epsilon, _pRenderMonitor);
}
}
void ViewMapBuilder::ComputeEdgesVisibility(ViewMap *ioViewMap,
WingedEdge &we,
const BBox<Vec3r> &bbox,
unsigned int sceneNumFaces,
visibility_algo iAlgo,
real epsilon)
{
#if 0
iAlgo = ray_casting; // for testing algorithms equivalence
#endif
switch (iAlgo) {
case ray_casting:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using ordinary ray casting" << endl;
}
BuildGrid(we, bbox, sceneNumFaces);
ComputeRayCastingVisibility(ioViewMap, epsilon);
break;
case ray_casting_fast:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using fast ray casting" << endl;
}
BuildGrid(we, bbox, sceneNumFaces);
ComputeFastRayCastingVisibility(ioViewMap, epsilon);
break;
case ray_casting_very_fast:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using very fast ray casting" << endl;
}
BuildGrid(we, bbox, sceneNumFaces);
ComputeVeryFastRayCastingVisibility(ioViewMap, epsilon);
break;
case ray_casting_culled_adaptive_traditional:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using culled adaptive grid with heuristic density and traditional QI calculation"
<< endl;
}
try {
HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
ComputeDetailedVisibility(ioViewMap, we, bbox, epsilon, true, factory);
}
catch (...) {
// Last resort catch to make sure RAII semantics hold for OptimizedGrid. Can be replaced
// with try...catch block around main() if the program as a whole is converted to RAII
// This is the little-mentioned caveat of RAII: RAII does not work unless destructors are
// always called, but destructors are only called if all exceptions are caught (or
// std::terminate() is replaced).
// We don't actually handle the exception here, so re-throw it now that our destructors
// have had a chance to run.
throw;
}
break;
case ray_casting_adaptive_traditional:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout
<< "Using unculled adaptive grid with heuristic density and traditional QI calculation"
<< endl;
}
try {
HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
ComputeDetailedVisibility(ioViewMap, we, bbox, epsilon, false, factory);
}
catch (...) {
throw;
}
break;
case ray_casting_culled_adaptive_cumulative:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using culled adaptive grid with heuristic density and cumulative QI calculation"
<< endl;
}
try {
HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
ComputeCumulativeVisibility(ioViewMap, we, bbox, epsilon, true, factory);
}
catch (...) {
throw;
}
break;
case ray_casting_adaptive_cumulative:
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Using unculled adaptive grid with heuristic density and cumulative QI calculation"
<< endl;
}
try {
HeuristicGridDensityProviderFactory factory(0.5f, sceneNumFaces);
ComputeCumulativeVisibility(ioViewMap, we, bbox, epsilon, false, factory);
}
catch (...) {
throw;
}
break;
default:
break;
}
}
static const unsigned gProgressBarMaxSteps = 10;
static const unsigned gProgressBarMinSize = 2000;
void ViewMapBuilder::ComputeRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
bool progressBarDisplay = false;
unsigned progressBarStep = 0;
unsigned vEdgesSize = vedges.size();
unsigned fEdgesSize = ioViewMap->FEdges().size();
if (_pProgressBar != nullptr && fEdgesSize > gProgressBarMinSize) {
unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
progressBarStep = vEdgesSize / progressBarSteps;
_pProgressBar->reset();
_pProgressBar->setLabelText("Computing Ray casting Visibility");
_pProgressBar->setTotalSteps(progressBarSteps);
_pProgressBar->setProgress(0);
progressBarDisplay = true;
}
unsigned counter = progressBarStep;
FEdge *fe, *festart;
int nSamples = 0;
vector<Polygon3r *> aFaces;
Polygon3r *aFace = nullptr;
unsigned tmpQI = 0;
unsigned qiClasses[256];
unsigned maxIndex, maxCard;
unsigned qiMajority;
static unsigned timestamp = 1;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "Processing ViewEdge " << (*ve)->getId() << endl;
}
#endif
festart = (*ve)->fedgeA();
fe = (*ve)->fedgeA();
qiMajority = 1;
do {
qiMajority++;
fe = fe->nextEdge();
} while (fe && fe != festart);
qiMajority >>= 1;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tqiMajority: " << qiMajority << endl;
}
#endif
tmpQI = 0;
maxIndex = 0;
maxCard = 0;
nSamples = 0;
fe = (*ve)->fedgeA();
memset(qiClasses, 0, 256 * sizeof(*qiClasses));
set<ViewShape *> occluders;
do {
if (maxCard < qiMajority) {
tmpQI = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: visibility " << tmpQI << endl;
}
#endif
// ARB: This is an error condition, not an alert condition.
// Some sort of recovery or abort is necessary.
if (tmpQI >= 256) {
cerr << "Warning: too many occluding levels" << endl;
// ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
tmpQI = 255;
}
if (++qiClasses[tmpQI] > maxCard) {
maxCard = qiClasses[tmpQI];
maxIndex = tmpQI;
}
}
else {
// ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
FindOccludee(fe, _Grid, epsilon, &aFace, timestamp++);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFEdge: occludee only (" << (aFace != NULL ? "found" : "not found") << ")"
<< endl;
}
#endif
}
if (aFace) {
fe->setaFace(*aFace);
aFaces.push_back(aFace);
fe->setOccludeeEmpty(false);
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFound occludee" << endl;
}
#endif
}
else {
// ARB: We are arbitrarily using the last observed value for occludee (almost always the
// value observed
// for the edge before festart). Is that meaningful?
// ...in fact, _occludeeEmpty seems to be unused.
fe->setOccludeeEmpty(true);
}
++nSamples;
fe = fe->nextEdge();
} while ((maxCard < qiMajority) && (fe) && (fe != festart));
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tFinished with " << nSamples << " samples, maxCard = " << maxCard << endl;
}
#endif
// ViewEdge
// qi --
(*ve)->setQI(maxIndex);
// occluders --
for (set<ViewShape *>::iterator o = occluders.begin(), oend = occluders.end(); o != oend;
++o) {
(*ve)->AddOccluder((*o));
}
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\tConclusion: QI = " << maxIndex << ", " << (*ve)->occluders_size() << " occluders."
<< endl;
}
#endif
// occludee --
if (!aFaces.empty()) {
if (aFaces.size() <= (float)nSamples / 2.0f) {
(*ve)->setaShape(nullptr);
}
else {
vector<Polygon3r *>::iterator p = aFaces.begin();
WFace *wface = (WFace *)((*p)->userdata);
ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
++p;
(*ve)->setaShape(vshape);
}
}
if (progressBarDisplay) {
counter--;
if (counter <= 0) {
counter = progressBarStep;
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
}
aFaces.clear();
}
}
void ViewMapBuilder::ComputeFastRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
bool progressBarDisplay = false;
unsigned progressBarStep = 0;
unsigned vEdgesSize = vedges.size();
unsigned fEdgesSize = ioViewMap->FEdges().size();
if (_pProgressBar != nullptr && fEdgesSize > gProgressBarMinSize) {
unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
progressBarStep = vEdgesSize / progressBarSteps;
_pProgressBar->reset();
_pProgressBar->setLabelText("Computing Ray casting Visibility");
_pProgressBar->setTotalSteps(progressBarSteps);
_pProgressBar->setProgress(0);
progressBarDisplay = true;
}
unsigned counter = progressBarStep;
FEdge *fe, *festart;
unsigned nSamples = 0;
vector<Polygon3r *> aFaces;
Polygon3r *aFace = nullptr;
unsigned tmpQI = 0;
unsigned qiClasses[256];
unsigned maxIndex, maxCard;
unsigned qiMajority;
static unsigned timestamp = 1;
bool even_test;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
festart = (*ve)->fedgeA();
fe = (*ve)->fedgeA();
qiMajority = 1;
do {
qiMajority++;
fe = fe->nextEdge();
} while (fe && fe != festart);
if (qiMajority >= 4) {
qiMajority >>= 2;
}
else {
qiMajority = 1;
}
set<ViewShape *> occluders;
even_test = true;
maxIndex = 0;
maxCard = 0;
nSamples = 0;
memset(qiClasses, 0, 256 * sizeof(*qiClasses));
fe = (*ve)->fedgeA();
do {
if (even_test) {
if (maxCard < qiMajority) {
tmpQI = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
// ARB: This is an error condition, not an alert condition.
// Some sort of recovery or abort is necessary.
if (tmpQI >= 256) {
cerr << "Warning: too many occluding levels" << endl;
// ARB: Wild guess: instead of aborting or corrupting memory, treat as tmpQI == 255
tmpQI = 255;
}
if (++qiClasses[tmpQI] > maxCard) {
maxCard = qiClasses[tmpQI];
maxIndex = tmpQI;
}
}
else {
// ARB: FindOccludee is redundant if ComputeRayCastingVisibility has been called
FindOccludee(fe, _Grid, epsilon, &aFace, timestamp++);
}
if (aFace) {
fe->setaFace(*aFace);
aFaces.push_back(aFace);
}
++nSamples;
even_test = false;
}
else {
even_test = true;
}
fe = fe->nextEdge();
} while ((maxCard < qiMajority) && (fe) && (fe != festart));
(*ve)->setQI(maxIndex);
if (!aFaces.empty()) {
if (aFaces.size() < nSamples / 2) {
(*ve)->setaShape(nullptr);
}
else {
vector<Polygon3r *>::iterator p = aFaces.begin();
WFace *wface = (WFace *)((*p)->userdata);
ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
++p;
#if 0
for (; p != pend; ++p) {
WFace *f = (WFace *)((*p)->userdata);
ViewShape *vs = ioViewMap->viewShape(f->GetVertex(0)->shape()->GetId());
if (vs != vshape) {
sameShape = false;
break;
}
}
if (sameShape)
#endif
{
(*ve)->setaShape(vshape);
}
}
}
//(*ve)->setaFace(aFace);
if (progressBarDisplay) {
counter--;
if (counter <= 0) {
counter = progressBarStep;
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
}
aFaces.clear();
}
}
void ViewMapBuilder::ComputeVeryFastRayCastingVisibility(ViewMap *ioViewMap, real epsilon)
{
vector<ViewEdge *> &vedges = ioViewMap->ViewEdges();
bool progressBarDisplay = false;
unsigned progressBarStep = 0;
unsigned vEdgesSize = vedges.size();
unsigned fEdgesSize = ioViewMap->FEdges().size();
if (_pProgressBar != nullptr && fEdgesSize > gProgressBarMinSize) {
unsigned progressBarSteps = min(gProgressBarMaxSteps, vEdgesSize);
progressBarStep = vEdgesSize / progressBarSteps;
_pProgressBar->reset();
_pProgressBar->setLabelText("Computing Ray casting Visibility");
_pProgressBar->setTotalSteps(progressBarSteps);
_pProgressBar->setProgress(0);
progressBarDisplay = true;
}
unsigned counter = progressBarStep;
FEdge *fe;
unsigned qi = 0;
Polygon3r *aFace = nullptr;
static unsigned timestamp = 1;
for (vector<ViewEdge *>::iterator ve = vedges.begin(), veend = vedges.end(); ve != veend; ve++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
set<ViewShape *> occluders;
fe = (*ve)->fedgeA();
qi = ComputeRayCastingVisibility(fe, _Grid, epsilon, occluders, &aFace, timestamp++);
if (aFace) {
fe->setaFace(*aFace);
WFace *wface = (WFace *)(aFace->userdata);
ViewShape *vshape = ioViewMap->viewShape(wface->GetVertex(0)->shape()->GetId());
(*ve)->setaShape(vshape);
}
else {
(*ve)->setaShape(nullptr);
}
(*ve)->setQI(qi);
if (progressBarDisplay) {
counter--;
if (counter <= 0) {
counter = progressBarStep;
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
}
}
}
void ViewMapBuilder::FindOccludee(FEdge *fe,
Grid *iGrid,
real epsilon,
Polygon3r **oaPolygon,
unsigned timestamp,
Vec3r &u,
Vec3r &A,
Vec3r &origin,
Vec3r &edgeDir,
vector<WVertex *> &faceVertices)
{
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
OccludersSet occluders;
WFace *oface;
bool skipFace;
WVertex::incoming_edge_iterator ie;
OccludersSet::iterator p, pend;
*oaPolygon = nullptr;
if (((fe)->getNature() & Nature::SILHOUETTE) || ((fe)->getNature() & Nature::BORDER)) {
occluders.clear();
// we cast a ray from A in the same direction but looking behind
Vec3r v(-u[0], -u[1], -u[2]);
iGrid->castInfiniteRay(A, v, occluders, timestamp);
bool noIntersection = true;
real mint = FLT_MAX;
// we met some occluders, let us fill the aShape field with the first intersected occluder
for (p = occluders.begin(), pend = occluders.end(); p != pend; p++) {
// check whether the edge and the polygon plane are coincident:
//-------------------------------------------------------------
// first let us compute the plane equation.
oface = (WFace *)(*p)->userdata;
Vec3r v1(((*p)->getVertices())[0]);
Vec3r normal((*p)->getNormal());
real d = -(v1 * normal);
real t, t_u, t_v;
if (face) {
skipFace = false;
if (face == oface) {
continue;
}
if (faceVertices.empty()) {
continue;
}
for (vector<WVertex *>::iterator fv = faceVertices.begin(), fvend = faceVertices.end();
fv != fvend;
++fv) {
if ((*fv)->isBoundary()) {
continue;
}
WVertex::incoming_edge_iterator iebegin = (*fv)->incoming_edges_begin();
WVertex::incoming_edge_iterator ieend = (*fv)->incoming_edges_end();
for (ie = iebegin; ie != ieend; ++ie) {
if ((*ie) == nullptr) {
continue;
}
WFace *sface = (*ie)->GetbFace();
if (sface == oface) {
skipFace = true;
break;
}
}
if (skipFace) {
break;
}
}
if (skipFace) {
continue;
}
}
else {
if (GeomUtils::COINCIDENT ==
GeomUtils::intersectRayPlane(origin, edgeDir, normal, d, t, epsilon)) {
continue;
}
}
if ((*p)->rayIntersect(A, v, t, t_u, t_v)) {
if (fabs(v * normal) > 0.0001) {
if (t > 0.0) { // && t < 1.0) {
if (t < mint) {
*oaPolygon = (*p);
mint = t;
noIntersection = false;
fe->setOccludeeIntersection(Vec3r(A + t * v));
}
}
}
}
}
if (noIntersection) {
*oaPolygon = nullptr;
}
}
}
void ViewMapBuilder::FindOccludee(
FEdge *fe, Grid *iGrid, real epsilon, Polygon3r **oaPolygon, unsigned timestamp)
{
OccludersSet occluders;
Vec3r A;
Vec3r edgeDir;
Vec3r origin;
A = Vec3r(((fe)->vertexA()->point3D() + (fe)->vertexB()->point3D()) / 2.0);
edgeDir = Vec3r((fe)->vertexB()->point3D() - (fe)->vertexA()->point3D());
edgeDir.normalize();
origin = Vec3r((fe)->vertexA()->point3D());
Vec3r u;
if (_orthographicProjection) {
u = Vec3r(0.0, 0.0, _viewpoint.z() - A.z());
}
else {
u = Vec3r(_viewpoint - A);
}
u.normalize();
if (A < iGrid->getOrigin()) {
cerr << "Warning: point is out of the grid for fedge " << fe->getId().getFirst() << "-"
<< fe->getId().getSecond() << endl;
}
vector<WVertex *> faceVertices;
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
if (face) {
face->RetrieveVertexList(faceVertices);
}
return FindOccludee(
fe, iGrid, epsilon, oaPolygon, timestamp, u, A, origin, edgeDir, faceVertices);
}
int ViewMapBuilder::ComputeRayCastingVisibility(FEdge *fe,
Grid *iGrid,
real epsilon,
set<ViewShape *> &oOccluders,
Polygon3r **oaPolygon,
unsigned timestamp)
{
OccludersSet occluders;
int qi = 0;
Vec3r center;
Vec3r edgeDir;
Vec3r origin;
center = fe->center3d();
edgeDir = Vec3r(fe->vertexB()->point3D() - fe->vertexA()->point3D());
edgeDir.normalize();
origin = Vec3r(fe->vertexA()->point3D());
// Is the edge outside the view frustum ?
Vec3r gridOrigin(iGrid->getOrigin());
Vec3r gridExtremity(iGrid->getOrigin() + iGrid->gridSize());
if ((center.x() < gridOrigin.x()) || (center.y() < gridOrigin.y()) ||
(center.z() < gridOrigin.z()) || (center.x() > gridExtremity.x()) ||
(center.y() > gridExtremity.y()) || (center.z() > gridExtremity.z())) {
cerr << "Warning: point is out of the grid for fedge " << fe->getId() << endl;
// return 0;
}
#if 0
Vec3r A(fe->vertexA()->point2d());
Vec3r B(fe->vertexB()->point2d());
int viewport[4];
SilhouetteGeomEngine::retrieveViewport(viewport);
if ((A.x() < viewport[0]) || (A.x() > viewport[2]) || (A.y() < viewport[1]) ||
(A.y() > viewport[3]) || (B.x() < viewport[0]) || (B.x() > viewport[2]) ||
(B.y() < viewport[1]) || (B.y() > viewport[3])) {
cerr << "Warning: point is out of the grid for fedge " << fe->getId() << endl;
//return 0;
}
#endif
Vec3r vp;
if (_orthographicProjection) {
vp = Vec3r(center.x(), center.y(), _viewpoint.z());
}
else {
vp = Vec3r(_viewpoint);
}
Vec3r u(vp - center);
real raylength = u.norm();
u.normalize();
#if 0
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "grid origin " << iGrid->getOrigin().x() << "," << iGrid->getOrigin().y() << ","
<< iGrid->getOrigin().z() << endl;
cout << "center " << center.x() << "," << center.y() << "," << center.z() << endl;
}
#endif
iGrid->castRay(center, vp, occluders, timestamp);
WFace *face = nullptr;
if (fe->isSmooth()) {
FEdgeSmooth *fes = dynamic_cast<FEdgeSmooth *>(fe);
face = (WFace *)fes->face();
}
vector<WVertex *> faceVertices;
WVertex::incoming_edge_iterator ie;
WFace *oface;
bool skipFace;
OccludersSet::iterator p, pend;
if (face) {
face->RetrieveVertexList(faceVertices);
}
for (p = occluders.begin(), pend = occluders.end(); p != pend; p++) {
// If we're dealing with an exact silhouette, check whether we must take care of this occluder
// of not. (Indeed, we don't consider the occluders that share at least one vertex with the
// face containing this edge).
//-----------
oface = (WFace *)(*p)->userdata;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tEvaluating intersection for occluder " << ((*p)->getVertices())[0]
<< ((*p)->getVertices())[1] << ((*p)->getVertices())[2] << endl
<< "\t\t\tand ray " << vp << " * " << u << " (center " << center << ")" << endl;
}
#endif
Vec3r v1(((*p)->getVertices())[0]);
Vec3r normal((*p)->getNormal());
real d = -(v1 * normal);
real t, t_u, t_v;
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tp: " << ((*p)->getVertices())[0] << ((*p)->getVertices())[1]
<< ((*p)->getVertices())[2] << ", norm: " << (*p)->getNormal() << endl;
}
#endif
if (face) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tDetermining face adjacency...";
}
#endif
skipFace = false;
if (face == oface) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << " Rejecting occluder for face concurrency." << endl;
}
#endif
continue;
}
for (vector<WVertex *>::iterator fv = faceVertices.begin(), fvend = faceVertices.end();
fv != fvend;
++fv) {
if ((*fv)->isBoundary()) {
continue;
}
WVertex::incoming_edge_iterator iebegin = (*fv)->incoming_edges_begin();
WVertex::incoming_edge_iterator ieend = (*fv)->incoming_edges_end();
for (ie = iebegin; ie != ieend; ++ie) {
if ((*ie) == nullptr) {
continue;
}
WFace *sface = (*ie)->GetbFace();
// WFace *sfacea = (*ie)->GetaFace();
// if ((sface == oface) || (sfacea == oface)) {
if (sface == oface) {
skipFace = true;
break;
}
}
if (skipFace) {
break;
}
}
if (skipFace) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << " Rejecting occluder for face adjacency." << endl;
}
#endif
continue;
}
}
else {
// check whether the edge and the polygon plane are coincident:
//-------------------------------------------------------------
// first let us compute the plane equation.
if (GeomUtils::COINCIDENT ==
GeomUtils::intersectRayPlane(origin, edgeDir, normal, d, t, epsilon)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRejecting occluder for target coincidence." << endl;
}
#endif
continue;
}
}
if ((*p)->rayIntersect(center, u, t, t_u, t_v)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tRay " << vp << " * " << u << " intersects at time " << t << " (raylength is "
<< raylength << ")" << endl;
cout << "\t\t(u * normal) == " << (u * normal) << " for normal " << normal << endl;
}
#endif
if (fabs(u * normal) > 0.0001) {
if ((t > 0.0) && (t < raylength)) {
#if LOGGING
if (_global.debug & G_DEBUG_FREESTYLE) {
cout << "\t\tIs occluder" << endl;
}
#endif
WFace *f = (WFace *)((*p)->userdata);
ViewShape *vshape = _ViewMap->viewShape(f->GetVertex(0)->shape()->GetId());
oOccluders.insert(vshape);
++qi;
if (!_EnableQI) {
break;
}
}
}
}
}
// Find occludee
FindOccludee(fe, iGrid, epsilon, oaPolygon, timestamp, u, center, origin, edgeDir, faceVertices);
return qi;
}
void ViewMapBuilder::ComputeIntersections(ViewMap *ioViewMap,
intersection_algo iAlgo,
real epsilon)
{
switch (iAlgo) {
case sweep_line:
ComputeSweepLineIntersections(ioViewMap, epsilon);
break;
default:
break;
}
#if 0
if (_global.debug & G_DEBUG_FREESTYLE) {
ViewMap::viewvertices_container &vvertices = ioViewMap->ViewVertices();
for (ViewMap::viewvertices_container::iterator vv = vvertices.begin(), vvend = vvertices.end();
vv != vvend;
++vv) {
if ((*vv)->getNature() == Nature::T_VERTEX) {
TVertex *tvertex = (TVertex *)(*vv);
cout << "TVertex " << tvertex->getId() << " has :" << endl;
cout << "FrontEdgeA: " << tvertex->frontEdgeA().first << endl;
cout << "FrontEdgeB: " << tvertex->frontEdgeB().first << endl;
cout << "BackEdgeA: " << tvertex->backEdgeA().first << endl;
cout << "BackEdgeB: " << tvertex->backEdgeB().first << endl << endl;
}
}
}
#endif
}
struct less_SVertex2D {
real epsilon;
less_SVertex2D(real eps)
{
epsilon = eps;
}
bool operator()(SVertex *x, SVertex *y)
{
Vec3r A = x->point2D();
Vec3r B = y->point2D();
for (unsigned int i = 0; i < 3; i++) {
if (fabs(A[i] - B[i]) < epsilon) {
continue;
}
if (A[i] < B[i]) {
return true;
}
if (A[i] > B[i]) {
return false;
}
}
return false;
}
};
using segment = Segment<FEdge *, Vec3r>;
using intersection = Intersection<segment>;
struct less_Intersection {
segment *edge;
less_Intersection(segment *iEdge)
{
edge = iEdge;
}
bool operator()(intersection *x, intersection *y)
{
real tx = x->getParameter(edge);
real ty = y->getParameter(edge);
if (tx > ty) {
return true;
}
return false;
}
};
struct silhouette_binary_rule : public binary_rule<segment, segment> {
bool operator()(segment &s1, segment &s2) override
{
FEdge *f1 = s1.edge();
FEdge *f2 = s2.edge();
if ((!(((f1)->getNature() & Nature::SILHOUETTE) || ((f1)->getNature() & Nature::BORDER))) &&
(!(((f2)->getNature() & Nature::SILHOUETTE) || ((f2)->getNature() & Nature::BORDER)))) {
return false;
}
return true;
}
};
void ViewMapBuilder::ComputeSweepLineIntersections(ViewMap *ioViewMap, real epsilon)
{
vector<SVertex *> &svertices = ioViewMap->SVertices();
bool progressBarDisplay = false;
unsigned sVerticesSize = svertices.size();
unsigned fEdgesSize = ioViewMap->FEdges().size();
#if 0
if (_global.debug & G_DEBUG_FREESTYLE) {
ViewMap::fedges_container &fedges = ioViewMap->FEdges();
for (ViewMap::fedges_container::const_iterator f = fedges.begin(), end = fedges.end();
f != end;
++f) {
cout << (*f)->aMaterialIndex() << "-" << (*f)->bMaterialIndex() << endl;
}
}
#endif
unsigned progressBarStep = 0;
if (_pProgressBar != nullptr && fEdgesSize > gProgressBarMinSize) {
unsigned progressBarSteps = min(gProgressBarMaxSteps, sVerticesSize);
progressBarStep = sVerticesSize / progressBarSteps;
_pProgressBar->reset();
_pProgressBar->setLabelText("Computing Sweep Line Intersections");
_pProgressBar->setTotalSteps(progressBarSteps);
_pProgressBar->setProgress(0);
progressBarDisplay = true;
}
unsigned counter = progressBarStep;
sort(svertices.begin(), svertices.end(), less_SVertex2D(epsilon));
SweepLine<FEdge *, Vec3r> SL;
vector<FEdge *> &ioEdges = ioViewMap->FEdges();
vector<segment *> segments;
vector<FEdge *>::iterator fe, fend;
for (fe = ioEdges.begin(), fend = ioEdges.end(); fe != fend; fe++) {
segment *s = new segment((*fe), (*fe)->vertexA()->point2D(), (*fe)->vertexB()->point2D());
(*fe)->userdata = s;
segments.push_back(s);
}
vector<segment *> vsegments;
for (vector<SVertex *>::iterator sv = svertices.begin(), svend = svertices.end(); sv != svend;
sv++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
const vector<FEdge *> &vedges = (*sv)->fedges();
for (vector<FEdge *>::const_iterator sve = vedges.begin(), sveend = vedges.end();
sve != sveend;
sve++) {
vsegments.push_back((segment *)((*sve)->userdata));
}
Vec3r evt((*sv)->point2D());
silhouette_binary_rule sbr;
SL.process(evt, vsegments, sbr, epsilon);
if (progressBarDisplay) {
counter--;
if (counter <= 0) {
counter = progressBarStep;
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
}
vsegments.clear();
}
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
// delete segments
if (!segments.empty()) {
vector<segment *>::iterator s, send;
for (s = segments.begin(), send = segments.end(); s != send; s++) {
delete *s;
}
}
return;
}
// reset userdata:
for (fe = ioEdges.begin(), fend = ioEdges.end(); fe != fend; fe++) {
(*fe)->userdata = nullptr;
}
// list containing the new edges resulting from splitting operations.
vector<FEdge *> newEdges;
// retrieve the intersected edges:
vector<segment *> &iedges = SL.intersectedEdges();
// retrieve the intersections:
vector<intersection *> &intersections = SL.intersections();
int id = 0;
// create a view vertex for each intersection and linked this one with the intersection object
vector<intersection *>::iterator i, iend;
for (i = intersections.begin(), iend = intersections.end(); i != iend; i++) {
FEdge *fA = (*i)->EdgeA->edge();
FEdge *fB = (*i)->EdgeB->edge();
Vec3r A1 = fA->vertexA()->point3D();
Vec3r A2 = fA->vertexB()->point3D();
Vec3r B1 = fB->vertexA()->point3D();
Vec3r B2 = fB->vertexB()->point3D();
Vec3r a1 = fA->vertexA()->point2D();
Vec3r a2 = fA->vertexB()->point2D();
Vec3r b1 = fB->vertexA()->point2D();
Vec3r b2 = fB->vertexB()->point2D();
real ta = (*i)->tA;
real tb = (*i)->tB;
if ((ta < -epsilon) || (ta > 1 + epsilon)) {
cerr << "Warning: 2D intersection out of range for edge " << fA->vertexA()->getId() << " - "
<< fA->vertexB()->getId() << endl;
}
if ((tb < -epsilon) || (tb > 1 + epsilon)) {
cerr << "Warning: 2D intersection out of range for edge " << fB->vertexA()->getId() << " - "
<< fB->vertexB()->getId() << endl;
}
real Ta = SilhouetteGeomEngine::ImageToWorldParameter(fA, ta);
real Tb = SilhouetteGeomEngine::ImageToWorldParameter(fB, tb);
if ((Ta < -epsilon) || (Ta > 1 + epsilon)) {
cerr << "Warning: 3D intersection out of range for edge " << fA->vertexA()->getId() << " - "
<< fA->vertexB()->getId() << endl;
}
if ((Tb < -epsilon) || (Tb > 1 + epsilon)) {
cerr << "Warning: 3D intersection out of range for edge " << fB->vertexA()->getId() << " - "
<< fB->vertexB()->getId() << endl;
}
#if 0
if (_global.debug & G_DEBUG_FREESTYLE) {
if ((Ta < -epsilon) || (Ta > 1 + epsilon) || (Tb < -epsilon) || (Tb > 1 + epsilon)) {
printf("ta %.12e\n", ta);
printf("tb %.12e\n", tb);
printf("a1 %e, %e -- a2 %e, %e\n", a1[0], a1[1], a2[0], a2[1]);
printf("b1 %e, %e -- b2 %e, %e\n", b1[0], b1[1], b2[0], b2[1]);
//printf("line([%e, %e], [%e, %e]);\n", a1[0], a2[0], a1[1], a2[1]);
//printf("line([%e, %e], [%e, %e]);\n", b1[0], b2[0], b1[1], b2[1]);
if ((Ta < -epsilon) || (Ta > 1 + epsilon)) {
printf("Ta %.12e\n", Ta);
}
if ((Tb < -epsilon) || (Tb > 1 + epsilon)) {
printf("Tb %.12e\n", Tb);
}
printf("A1 %e, %e, %e -- A2 %e, %e, %e\n", A1[0], A1[1], A1[2], A2[0], A2[1], A2[2]);
printf("B1 %e, %e, %e -- B2 %e, %e, %e\n", B1[0], B1[1], B1[2], B2[0], B2[1], B2[2]);
}
}
#endif
TVertex *tvertex = ioViewMap->CreateTVertex(Vec3r(A1 + Ta * (A2 - A1)),
Vec3r(a1 + ta * (a2 - a1)),
fA,
Vec3r(B1 + Tb * (B2 - B1)),
Vec3r(b1 + tb * (b2 - b1)),
fB,
id);
(*i)->userdata = tvertex;
++id;
}
progressBarStep = 0;
if (progressBarDisplay) {
unsigned iEdgesSize = iedges.size();
unsigned progressBarSteps = min(gProgressBarMaxSteps, iEdgesSize);
progressBarStep = iEdgesSize / progressBarSteps;
_pProgressBar->reset();
_pProgressBar->setLabelText("Splitting intersected edges");
_pProgressBar->setTotalSteps(progressBarSteps);
_pProgressBar->setProgress(0);
}
counter = progressBarStep;
vector<TVertex *> edgeVVertices;
vector<ViewEdge *> newVEdges;
vector<segment *>::iterator s, send;
for (s = iedges.begin(), send = iedges.end(); s != send; s++) {
edgeVVertices.clear();
newEdges.clear();
newVEdges.clear();
FEdge *fedge = (*s)->edge();
ViewEdge *vEdge = fedge->viewedge();
ViewShape *shape = vEdge->viewShape();
vector<intersection *> &eIntersections = (*s)->intersections();
// we first need to sort these intersections from farther to closer to A
sort(eIntersections.begin(), eIntersections.end(), less_Intersection(*s));
for (i = eIntersections.begin(), iend = eIntersections.end(); i != iend; i++) {
edgeVVertices.push_back((TVertex *)(*i)->userdata);
}
shape->SplitEdge(fedge, edgeVVertices, ioViewMap->FEdges(), ioViewMap->ViewEdges());
if (progressBarDisplay) {
counter--;
if (counter <= 0) {
counter = progressBarStep;
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
}
}
// reset userdata:
for (fe = ioEdges.begin(), fend = ioEdges.end(); fe != fend; fe++) {
(*fe)->userdata = nullptr;
}
// delete segments
if (!segments.empty()) {
for (s = segments.begin(), send = segments.end(); s != send; s++) {
delete *s;
}
}
}
} /* namespace Freestyle */