* New header and source files. * Still need a few tweaks before switching code to use them.
1508 lines
35 KiB
C
1508 lines
35 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
|
|
* The Original Code is: some of this file.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
* */
|
|
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "BLI_math.h"
|
|
|
|
/******************************** Quaternions ********************************/
|
|
|
|
void unit_qt(float *q)
|
|
{
|
|
q[0]= 1.0f;
|
|
q[1]= q[2]= q[3]= 0.0f;
|
|
}
|
|
|
|
void copy_qt_qt(float *q1, float *q2)
|
|
{
|
|
q1[0]= q2[0];
|
|
q1[1]= q2[1];
|
|
q1[2]= q2[2];
|
|
q1[3]= q2[3];
|
|
}
|
|
|
|
int is_zero_qt(float *q)
|
|
{
|
|
return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
|
|
}
|
|
|
|
void mul_qt_qtqt(float *q, float *q1, float *q2)
|
|
{
|
|
float t0,t1,t2;
|
|
|
|
t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
|
|
t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
|
|
t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
|
|
q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
|
|
q[0]=t0;
|
|
q[1]=t1;
|
|
q[2]=t2;
|
|
}
|
|
|
|
/* Assumes a unit quaternion */
|
|
void mul_qt_v3(float *q, float *v)
|
|
{
|
|
float t0, t1, t2;
|
|
|
|
t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2];
|
|
t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1];
|
|
t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2];
|
|
v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0];
|
|
v[0]=t1;
|
|
v[1]=t2;
|
|
|
|
t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2];
|
|
t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3];
|
|
v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1];
|
|
v[0]=t1;
|
|
v[1]=t2;
|
|
}
|
|
|
|
void conjugate_qt(float *q)
|
|
{
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
|
|
float dot_qtqt(float *q1, float *q2)
|
|
{
|
|
return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3];
|
|
}
|
|
|
|
void invert_qt(float *q)
|
|
{
|
|
float f = dot_qtqt(q, q);
|
|
|
|
if (f == 0.0f)
|
|
return;
|
|
|
|
conjugate_qt(q);
|
|
mul_qt_fl(q, 1.0f/f);
|
|
}
|
|
|
|
/* simple mult */
|
|
void mul_qt_fl(float *q, float f)
|
|
{
|
|
q[0] *= f;
|
|
q[1] *= f;
|
|
q[2] *= f;
|
|
q[3] *= f;
|
|
}
|
|
|
|
void sub_qt_qtqt(float *q, float *q1, float *q2)
|
|
{
|
|
q2[0]= -q2[0];
|
|
mul_qt_qtqt(q, q1, q2);
|
|
q2[0]= -q2[0];
|
|
}
|
|
|
|
/* angular mult factor */
|
|
void mul_fac_qt_fl(float *q, float fac)
|
|
{
|
|
float angle= fac*saacos(q[0]); /* quat[0]= cos(0.5*angle), but now the 0.5 and 2.0 rule out */
|
|
|
|
float co= (float)cos(angle);
|
|
float si= (float)sin(angle);
|
|
q[0]= co;
|
|
normalize_v3(q+1);
|
|
q[1]*= si;
|
|
q[2]*= si;
|
|
q[3]*= si;
|
|
|
|
}
|
|
|
|
void quat_to_mat3(float m[][3], float *q)
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
}
|
|
|
|
void quat_to_mat4(float m[][4], float *q)
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
m[0][3]= 0.0f;
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
m[1][3]= 0.0f;
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
m[2][3]= 0.0f;
|
|
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0f;
|
|
m[3][3]= 1.0f;
|
|
}
|
|
|
|
void mat3_to_quat(float *q,float wmat[][3])
|
|
{
|
|
double tr, s;
|
|
float mat[3][3];
|
|
|
|
/* work on a copy */
|
|
copy_m3_m3(mat, wmat);
|
|
normalize_m3(mat); /* this is needed AND a NormalQuat in the end */
|
|
|
|
tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
|
|
|
|
if(tr>FLT_EPSILON) {
|
|
s= sqrt(tr);
|
|
q[0]= (float)s;
|
|
s= 1.0/(4.0*s);
|
|
q[1]= (float)((mat[1][2]-mat[2][1])*s);
|
|
q[2]= (float)((mat[2][0]-mat[0][2])*s);
|
|
q[3]= (float)((mat[0][1]-mat[1][0])*s);
|
|
}
|
|
else {
|
|
if(mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
|
|
s= 2.0*sqrtf(1.0 + mat[0][0] - mat[1][1] - mat[2][2]);
|
|
q[1]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[2][1] - mat[1][2])*s);
|
|
q[2]= (float)((mat[1][0] + mat[0][1])*s);
|
|
q[3]= (float)((mat[2][0] + mat[0][2])*s);
|
|
}
|
|
else if(mat[1][1] > mat[2][2]) {
|
|
s= 2.0*sqrtf(1.0 + mat[1][1] - mat[0][0] - mat[2][2]);
|
|
q[2]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[2][0] - mat[0][2])*s);
|
|
q[1]= (float)((mat[1][0] + mat[0][1])*s);
|
|
q[3]= (float)((mat[2][1] + mat[1][2])*s);
|
|
}
|
|
else {
|
|
s= 2.0*sqrtf(1.0 + mat[2][2] - mat[0][0] - mat[1][1]);
|
|
q[3]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[1][0] - mat[0][1])*s);
|
|
q[1]= (float)((mat[2][0] + mat[0][2])*s);
|
|
q[2]= (float)((mat[2][1] + mat[1][2])*s);
|
|
}
|
|
}
|
|
normalize_qt(q);
|
|
}
|
|
|
|
#if 0
|
|
void Mat3ToQuat_is_ok(float wmat[][3], float *q)
|
|
{
|
|
float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
|
|
|
|
/* work on a copy */
|
|
copy_m3_m3(mat, wmat);
|
|
normalize_m3(mat);
|
|
|
|
/* rotate z-axis of matrix to z-axis */
|
|
|
|
nor[0] = mat[2][1]; /* cross product with (0,0,1) */
|
|
nor[1] = -mat[2][0];
|
|
nor[2] = 0.0;
|
|
normalize_v3(nor);
|
|
|
|
co= mat[2][2];
|
|
angle= 0.5f*saacos(co);
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q1[0]= co;
|
|
q1[1]= -nor[0]*si; /* negative here, but why? */
|
|
q1[2]= -nor[1]*si;
|
|
q1[3]= -nor[2]*si;
|
|
|
|
/* rotate back x-axis from mat, using inverse q1 */
|
|
quat_to_mat3(matr,q1);
|
|
invert_m3_m3(matn, matr);
|
|
mul_m3_v3(matn, mat[0]);
|
|
|
|
/* and align x-axes */
|
|
angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
mul_qt_qtqt(q, q1, q2);
|
|
}
|
|
#endif
|
|
|
|
void mat4_to_quat(float *q, float m[][4])
|
|
{
|
|
float mat[3][3];
|
|
|
|
copy_m3_m4(mat, m);
|
|
mat3_to_quat(q,mat);
|
|
|
|
}
|
|
|
|
void normalize_qt(float *q)
|
|
{
|
|
float len;
|
|
|
|
len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
|
|
if(len!=0.0) {
|
|
q[0]/= len;
|
|
q[1]/= len;
|
|
q[2]/= len;
|
|
q[3]/= len;
|
|
} else {
|
|
q[1]= 1.0f;
|
|
q[0]= q[2]= q[3]= 0.0f;
|
|
}
|
|
}
|
|
|
|
void rotation_between_vecs_to_quat(float *q, float v1[3], float v2[3])
|
|
{
|
|
float axis[3];
|
|
float angle;
|
|
|
|
cross_v3_v3v3(axis, v1, v2);
|
|
|
|
angle = angle_normalized_v3v3(v1, v2);
|
|
|
|
axis_angle_to_quat(q, axis, angle);
|
|
}
|
|
|
|
void vec_to_quat(float *q,float *vec, short axis, short upflag)
|
|
{
|
|
float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1;
|
|
|
|
/* first rotate to axis */
|
|
if(axis>2) {
|
|
x2= vec[0] ; y2= vec[1] ; z2= vec[2];
|
|
axis-= 3;
|
|
}
|
|
else {
|
|
x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
|
|
}
|
|
|
|
q[0]=1.0;
|
|
q[1]=q[2]=q[3]= 0.0;
|
|
|
|
len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
|
|
if(len1 == 0.0) return;
|
|
|
|
/* nasty! I need a good routine for this...
|
|
* problem is a rotation of an Y axis to the negative Y-axis for example.
|
|
*/
|
|
|
|
if(axis==0) { /* x-axis */
|
|
nor[0]= 0.0;
|
|
nor[1]= -z2;
|
|
nor[2]= y2;
|
|
|
|
if(fabs(y2)+fabs(z2)<0.0001)
|
|
nor[1]= 1.0;
|
|
|
|
co= x2;
|
|
}
|
|
else if(axis==1) { /* y-axis */
|
|
nor[0]= z2;
|
|
nor[1]= 0.0;
|
|
nor[2]= -x2;
|
|
|
|
if(fabs(x2)+fabs(z2)<0.0001)
|
|
nor[2]= 1.0;
|
|
|
|
co= y2;
|
|
}
|
|
else { /* z-axis */
|
|
nor[0]= -y2;
|
|
nor[1]= x2;
|
|
nor[2]= 0.0;
|
|
|
|
if(fabs(x2)+fabs(y2)<0.0001)
|
|
nor[0]= 1.0;
|
|
|
|
co= z2;
|
|
}
|
|
co/= len1;
|
|
|
|
normalize_v3(nor);
|
|
|
|
angle= 0.5f*saacos(co);
|
|
si= (float)sin(angle);
|
|
q[0]= (float)cos(angle);
|
|
q[1]= nor[0]*si;
|
|
q[2]= nor[1]*si;
|
|
q[3]= nor[2]*si;
|
|
|
|
if(axis!=upflag) {
|
|
quat_to_mat3(mat,q);
|
|
|
|
fp= mat[2];
|
|
if(axis==0) {
|
|
if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1]));
|
|
else angle= (float)(-0.5*atan2(fp[1], fp[2]));
|
|
}
|
|
else if(axis==1) {
|
|
if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0]));
|
|
else angle= (float)(0.5*atan2(fp[0], fp[2]));
|
|
}
|
|
else {
|
|
if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0]));
|
|
else angle= (float)(-0.5*atan2(-fp[0], -fp[1]));
|
|
}
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)(sin(angle)/len1);
|
|
q2[0]= co;
|
|
q2[1]= x2*si;
|
|
q2[2]= y2*si;
|
|
q2[3]= z2*si;
|
|
|
|
mul_qt_qtqt(q,q2,q);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
|
|
void QuatInterpolW(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
float omega, cosom, sinom, sc1, sc2;
|
|
|
|
cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
|
|
|
|
/* rotate around shortest angle */
|
|
if ((1.0f + cosom) > 0.0001f) {
|
|
|
|
if ((1.0f - cosom) > 0.0001f) {
|
|
omega = (float)acos(cosom);
|
|
sinom = (float)sin(omega);
|
|
sc1 = (float)sin((1.0 - t) * omega) / sinom;
|
|
sc2 = (float)sin(t * omega) / sinom;
|
|
}
|
|
else {
|
|
sc1 = 1.0f - t;
|
|
sc2 = t;
|
|
}
|
|
result[0] = sc1*quat1[0] + sc2*quat2[0];
|
|
result[1] = sc1*quat1[1] + sc2*quat2[1];
|
|
result[2] = sc1*quat1[2] + sc2*quat2[2];
|
|
result[3] = sc1*quat1[3] + sc2*quat2[3];
|
|
}
|
|
else {
|
|
result[0] = quat2[3];
|
|
result[1] = -quat2[2];
|
|
result[2] = quat2[1];
|
|
result[3] = -quat2[0];
|
|
|
|
sc1 = (float)sin((1.0 - t)*M_PI_2);
|
|
sc2 = (float)sin(t*M_PI_2);
|
|
|
|
result[0] = sc1*quat1[0] + sc2*result[0];
|
|
result[1] = sc1*quat1[1] + sc2*result[1];
|
|
result[2] = sc1*quat1[2] + sc2*result[2];
|
|
result[3] = sc1*quat1[3] + sc2*result[3];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void interp_qt_qtqt(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
float quat[4], omega, cosom, sinom, sc1, sc2;
|
|
|
|
cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
|
|
|
|
/* rotate around shortest angle */
|
|
if (cosom < 0.0f) {
|
|
cosom = -cosom;
|
|
quat[0]= -quat1[0];
|
|
quat[1]= -quat1[1];
|
|
quat[2]= -quat1[2];
|
|
quat[3]= -quat1[3];
|
|
}
|
|
else {
|
|
quat[0]= quat1[0];
|
|
quat[1]= quat1[1];
|
|
quat[2]= quat1[2];
|
|
quat[3]= quat1[3];
|
|
}
|
|
|
|
if ((1.0f - cosom) > 0.0001f) {
|
|
omega = (float)acos(cosom);
|
|
sinom = (float)sin(omega);
|
|
sc1 = (float)sin((1 - t) * omega) / sinom;
|
|
sc2 = (float)sin(t * omega) / sinom;
|
|
} else {
|
|
sc1= 1.0f - t;
|
|
sc2= t;
|
|
}
|
|
|
|
result[0] = sc1 * quat[0] + sc2 * quat2[0];
|
|
result[1] = sc1 * quat[1] + sc2 * quat2[1];
|
|
result[2] = sc1 * quat[2] + sc2 * quat2[2];
|
|
result[3] = sc1 * quat[3] + sc2 * quat2[3];
|
|
}
|
|
|
|
void add_qt_qtqt(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
result[0]= quat1[0] + t*quat2[0];
|
|
result[1]= quat1[1] + t*quat2[1];
|
|
result[2]= quat1[2] + t*quat2[2];
|
|
result[3]= quat1[3] + t*quat2[3];
|
|
}
|
|
|
|
void tri_to_quat(float *quat, float *v1, float *v2, float *v3)
|
|
{
|
|
/* imaginary x-axis, y-axis triangle is being rotated */
|
|
float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
|
|
|
|
/* move z-axis to face-normal */
|
|
normal_tri_v3(vec,v1, v2, v3);
|
|
|
|
n[0]= vec[1];
|
|
n[1]= -vec[0];
|
|
n[2]= 0.0f;
|
|
normalize_v3(n);
|
|
|
|
if(n[0]==0.0f && n[1]==0.0f) n[0]= 1.0f;
|
|
|
|
angle= -0.5f*(float)saacos(vec[2]);
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q1[0]= co;
|
|
q1[1]= n[0]*si;
|
|
q1[2]= n[1]*si;
|
|
q1[3]= 0.0f;
|
|
|
|
/* rotate back line v1-v2 */
|
|
quat_to_mat3(mat,q1);
|
|
invert_m3_m3(imat, mat);
|
|
sub_v3_v3v3(vec, v2, v1);
|
|
mul_m3_v3(imat, vec);
|
|
|
|
/* what angle has this line with x-axis? */
|
|
vec[2]= 0.0f;
|
|
normalize_v3(vec);
|
|
|
|
angle= (float)(0.5*atan2(vec[1], vec[0]));
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
mul_qt_qtqt(quat, q1, q2);
|
|
}
|
|
|
|
void print_qt(char *str, float q[4])
|
|
{
|
|
printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
|
|
}
|
|
|
|
/******************************** Axis Angle *********************************/
|
|
|
|
/* Axis angle to Quaternions */
|
|
void axis_angle_to_quat(float q[4], float axis[3], float angle)
|
|
{
|
|
float nor[3];
|
|
float si;
|
|
|
|
copy_v3_v3(nor, axis);
|
|
normalize_v3(nor);
|
|
|
|
angle /= 2;
|
|
si = (float)sin(angle);
|
|
q[0] = (float)cos(angle);
|
|
q[1] = nor[0] * si;
|
|
q[2] = nor[1] * si;
|
|
q[3] = nor[2] * si;
|
|
}
|
|
|
|
/* Quaternions to Axis Angle */
|
|
void quat_to_axis_angle(float axis[3], float *angle,float q[4])
|
|
{
|
|
float ha, si;
|
|
|
|
/* calculate angle/2, and sin(angle/2) */
|
|
ha= (float)acos(q[0]);
|
|
si= (float)sin(ha);
|
|
|
|
/* from half-angle to angle */
|
|
*angle= ha * 2;
|
|
|
|
/* prevent division by zero for axis conversion */
|
|
if (fabs(si) < 0.0005)
|
|
si= 1.0f;
|
|
|
|
axis[0]= q[1] / si;
|
|
axis[1]= q[2] / si;
|
|
axis[2]= q[3] / si;
|
|
}
|
|
|
|
/* Axis Angle to Euler Rotation */
|
|
void axis_angle_to_eulO(float eul[3], short order,float axis[3], float angle)
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation for now... */
|
|
axis_angle_to_quat(q, axis, angle);
|
|
quat_to_eulO(eul, order,q);
|
|
}
|
|
|
|
/* Euler Rotation to Axis Angle */
|
|
void eulO_to_axis_angle(float axis[3], float *angle,float eul[3], short order)
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation for now... */
|
|
eulO_to_quat(q,eul, order);
|
|
quat_to_axis_angle(axis, angle,q);
|
|
}
|
|
|
|
/* axis angle to 3x3 matrix - safer version (normalisation of axis performed) */
|
|
void axis_angle_to_mat3(float mat[3][3],float axis[3], float angle)
|
|
{
|
|
float nor[3], nsi[3], co, si, ico;
|
|
|
|
/* normalise the axis first (to remove unwanted scaling) */
|
|
copy_v3_v3(nor, axis);
|
|
normalize_v3(nor);
|
|
|
|
/* now convert this to a 3x3 matrix */
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
|
|
ico= (1.0f - co);
|
|
nsi[0]= nor[0]*si;
|
|
nsi[1]= nor[1]*si;
|
|
nsi[2]= nor[2]*si;
|
|
|
|
mat[0][0] = ((nor[0] * nor[0]) * ico) + co;
|
|
mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2];
|
|
mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1];
|
|
mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2];
|
|
mat[1][1] = ((nor[1] * nor[1]) * ico) + co;
|
|
mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0];
|
|
mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1];
|
|
mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0];
|
|
mat[2][2] = ((nor[2] * nor[2]) * ico) + co;
|
|
}
|
|
|
|
/* axis angle to 4x4 matrix - safer version (normalisation of axis performed) */
|
|
void axis_angle_to_mat4(float mat[4][4],float axis[3], float angle)
|
|
{
|
|
float tmat[3][3];
|
|
|
|
axis_angle_to_mat3(tmat,axis, angle);
|
|
unit_m4(mat);
|
|
copy_m4_m3(mat, tmat);
|
|
}
|
|
|
|
/* 3x3 matrix to axis angle (see Mat4ToVecRot too) */
|
|
void mat3_to_axis_angle(float axis[3], float *angle,float mat[3][3])
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation */
|
|
// TODO: it would be nicer to go straight there...
|
|
mat3_to_quat(q,mat);
|
|
quat_to_axis_angle(axis, angle,q);
|
|
}
|
|
|
|
/* 4x4 matrix to axis angle (see Mat4ToVecRot too) */
|
|
void mat4_to_axis_angle(float axis[3], float *angle,float mat[4][4])
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation */
|
|
// TODO: it would be nicer to go straight there...
|
|
mat4_to_quat(q,mat);
|
|
quat_to_axis_angle(axis, angle,q);
|
|
}
|
|
|
|
/****************************** Vector/Rotation ******************************/
|
|
/* TODO: the following calls should probably be depreceated sometime */
|
|
|
|
/* 3x3 matrix to axis angle */
|
|
void mat3_to_vec_rot(float axis[3], float *angle,float mat[3][3])
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation */
|
|
// TODO: it would be nicer to go straight there...
|
|
mat3_to_quat(q,mat);
|
|
quat_to_axis_angle(axis, angle,q);
|
|
}
|
|
|
|
/* 4x4 matrix to axis angle */
|
|
void mat4_to_vec_rot(float axis[3], float *angle,float mat[4][4])
|
|
{
|
|
float q[4];
|
|
|
|
/* use quaternions as intermediate representation */
|
|
// TODO: it would be nicer to go straight there...
|
|
mat4_to_quat(q,mat);
|
|
quat_to_axis_angle(axis, angle,q);
|
|
}
|
|
|
|
/* axis angle to 3x3 matrix */
|
|
void vec_rot_to_mat3(float mat[][3],float *vec, float phi)
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float vx, vx2, vy, vy2, vz, vz2, co, si;
|
|
|
|
vx= vec[0];
|
|
vy= vec[1];
|
|
vz= vec[2];
|
|
vx2= vx*vx;
|
|
vy2= vy*vy;
|
|
vz2= vz*vz;
|
|
co= (float)cos(phi);
|
|
si= (float)sin(phi);
|
|
|
|
mat[0][0]= vx2+co*(1.0f-vx2);
|
|
mat[0][1]= vx*vy*(1.0f-co)+vz*si;
|
|
mat[0][2]= vz*vx*(1.0f-co)-vy*si;
|
|
mat[1][0]= vx*vy*(1.0f-co)-vz*si;
|
|
mat[1][1]= vy2+co*(1.0f-vy2);
|
|
mat[1][2]= vy*vz*(1.0f-co)+vx*si;
|
|
mat[2][0]= vz*vx*(1.0f-co)+vy*si;
|
|
mat[2][1]= vy*vz*(1.0f-co)-vx*si;
|
|
mat[2][2]= vz2+co*(1.0f-vz2);
|
|
}
|
|
|
|
/* axis angle to 4x4 matrix */
|
|
void vec_rot_to_mat4(float mat[][4],float *vec, float phi)
|
|
{
|
|
float tmat[3][3];
|
|
|
|
vec_rot_to_mat3(tmat,vec, phi);
|
|
unit_m4(mat);
|
|
copy_m4_m3(mat, tmat);
|
|
}
|
|
|
|
/* axis angle to quaternion */
|
|
void vec_rot_to_quat(float *quat,float *vec, float phi)
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float si;
|
|
|
|
quat[1]= vec[0];
|
|
quat[2]= vec[1];
|
|
quat[3]= vec[2];
|
|
|
|
if(normalize_v3(quat+1) == 0.0f) {
|
|
unit_qt(quat);
|
|
}
|
|
else {
|
|
quat[0]= (float)cos(phi/2.0);
|
|
si= (float)sin(phi/2.0);
|
|
quat[1] *= si;
|
|
quat[2] *= si;
|
|
quat[3] *= si;
|
|
}
|
|
}
|
|
|
|
/******************************** XYZ Eulers *********************************/
|
|
|
|
/* XYZ order */
|
|
void eul_to_mat3(float mat[][3], float *eul)
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
}
|
|
|
|
/* XYZ order */
|
|
void eul_to_mat4(float mat[][4], float *eul)
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
|
|
mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
|
|
mat[3][3]= 1.0f;
|
|
}
|
|
|
|
/* returns two euler calculation methods, so we can pick the best */
|
|
/* XYZ order */
|
|
static void mat3_to_eul2(float tmat[][3], float *eul1, float *eul2)
|
|
{
|
|
float cy, quat[4], mat[3][3];
|
|
|
|
mat3_to_quat(quat,tmat);
|
|
quat_to_mat3(mat,quat);
|
|
copy_m3_m3(mat, tmat);
|
|
normalize_m3(mat);
|
|
|
|
cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
|
|
|
|
if (cy > 16.0*FLT_EPSILON) {
|
|
|
|
eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
|
|
eul1[1] = (float)atan2(-mat[0][2], cy);
|
|
eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
|
|
|
|
eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
|
|
eul2[1] = (float)atan2(-mat[0][2], -cy);
|
|
eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
|
|
|
|
} else {
|
|
eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
|
|
eul1[1] = (float)atan2(-mat[0][2], cy);
|
|
eul1[2] = 0.0f;
|
|
|
|
copy_v3_v3(eul2, eul1);
|
|
}
|
|
}
|
|
|
|
/* XYZ order */
|
|
void mat3_to_eul(float *eul,float tmat[][3])
|
|
{
|
|
float eul1[3], eul2[3];
|
|
|
|
mat3_to_eul2(tmat, eul1, eul2);
|
|
|
|
/* return best, which is just the one with lowest values it in */
|
|
if(fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) {
|
|
copy_v3_v3(eul, eul2);
|
|
}
|
|
else {
|
|
copy_v3_v3(eul, eul1);
|
|
}
|
|
}
|
|
|
|
/* XYZ order */
|
|
void mat4_to_eul(float *eul,float tmat[][4])
|
|
{
|
|
float tempMat[3][3];
|
|
|
|
copy_m3_m4(tempMat, tmat);
|
|
normalize_m3(tempMat);
|
|
mat3_to_eul(eul,tempMat);
|
|
}
|
|
|
|
/* XYZ order */
|
|
void quat_to_eul(float *eul,float *quat)
|
|
{
|
|
float mat[3][3];
|
|
|
|
quat_to_mat3(mat,quat);
|
|
mat3_to_eul(eul,mat);
|
|
}
|
|
|
|
/* XYZ order */
|
|
void eul_to_quat(float *quat,float *eul)
|
|
{
|
|
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
|
|
ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
|
|
si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
|
|
cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
|
|
|
|
quat[0] = cj*cc + sj*ss;
|
|
quat[1] = cj*sc - sj*cs;
|
|
quat[2] = cj*ss + sj*cc;
|
|
quat[3] = cj*cs - sj*sc;
|
|
}
|
|
|
|
/* XYZ order */
|
|
void rotate_eul(float *beul, char axis, float ang)
|
|
{
|
|
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
|
|
|
|
eul[0]= eul[1]= eul[2]= 0.0f;
|
|
if(axis=='x') eul[0]= ang;
|
|
else if(axis=='y') eul[1]= ang;
|
|
else eul[2]= ang;
|
|
|
|
eul_to_mat3(mat1,eul);
|
|
eul_to_mat3(mat2,beul);
|
|
|
|
mul_m3_m3m3(totmat, mat2, mat1);
|
|
|
|
mat3_to_eul(beul,totmat);
|
|
|
|
}
|
|
|
|
#if 0
|
|
/* exported to transform.c */
|
|
/* order independent! */
|
|
void compatible_eul(float *eul, float *oldrot)
|
|
{
|
|
float dx, dy, dz;
|
|
|
|
/* correct differences of about 360 degrees first */
|
|
dx= eul[0] - oldrot[0];
|
|
dy= eul[1] - oldrot[1];
|
|
dz= eul[2] - oldrot[2];
|
|
|
|
while(fabs(dx) > 5.1) {
|
|
if(dx > 0.0f) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
|
|
dx= eul[0] - oldrot[0];
|
|
}
|
|
while(fabs(dy) > 5.1) {
|
|
if(dy > 0.0f) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
|
|
dy= eul[1] - oldrot[1];
|
|
}
|
|
while(fabs(dz) > 5.1) {
|
|
if(dz > 0.0f) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
|
|
dz= eul[2] - oldrot[2];
|
|
}
|
|
|
|
/* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
|
|
if(fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6) {
|
|
if(dx > 0.0) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI;
|
|
}
|
|
if(fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6) {
|
|
if(dy > 0.0) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI;
|
|
}
|
|
if(fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6) {
|
|
if(dz > 0.0) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI;
|
|
}
|
|
|
|
/* the method below was there from ancient days... but why! probably because the code sucks :)
|
|
*/
|
|
#if 0
|
|
/* calc again */
|
|
dx= eul[0] - oldrot[0];
|
|
dy= eul[1] - oldrot[1];
|
|
dz= eul[2] - oldrot[2];
|
|
|
|
/* special case, tested for x-z */
|
|
|
|
if((fabs(dx) > 3.1 && fabs(dz) > 1.5) || (fabs(dx) > 1.5 && fabs(dz) > 3.1)) {
|
|
if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
|
|
if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1];
|
|
if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
|
|
|
|
}
|
|
else if((fabs(dx) > 3.1 && fabs(dy) > 1.5) || (fabs(dx) > 1.5 && fabs(dy) > 3.1)) {
|
|
if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
|
|
if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
|
|
if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2];
|
|
}
|
|
else if((fabs(dy) > 3.1 && fabs(dz) > 1.5) || (fabs(dy) > 1.5 && fabs(dz) > 3.1)) {
|
|
if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0];
|
|
if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
|
|
if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* uses 2 methods to retrieve eulers, and picks the closest */
|
|
/* XYZ order */
|
|
void mat3_to_compatible_eul(float *eul, float *oldrot,float mat[][3])
|
|
{
|
|
float eul1[3], eul2[3];
|
|
float d1, d2;
|
|
|
|
mat3_to_eul2(mat, eul1, eul2);
|
|
|
|
compatible_eul(eul1, oldrot);
|
|
compatible_eul(eul2, oldrot);
|
|
|
|
d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
|
|
d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
|
|
|
|
/* return best, which is just the one with lowest difference */
|
|
if(d1 > d2) {
|
|
copy_v3_v3(eul, eul2);
|
|
}
|
|
else {
|
|
copy_v3_v3(eul, eul1);
|
|
}
|
|
|
|
}
|
|
|
|
/************************** Arbitrary Order Eulers ***************************/
|
|
|
|
/* Euler Rotation Order Code:
|
|
* was adapted from
|
|
ANSI C code from the article
|
|
"Euler Angle Conversion"
|
|
by Ken Shoemake, shoemake@graphics.cis.upenn.edu
|
|
in "Graphics Gems IV", Academic Press, 1994
|
|
* for use in Blender
|
|
*/
|
|
|
|
/* Type for rotation order info - see wiki for derivation details */
|
|
typedef struct RotOrderInfo {
|
|
short axis[3];
|
|
short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
|
|
} RotOrderInfo;
|
|
|
|
/* Array of info for Rotation Order calculations
|
|
* WARNING: must be kept in same order as eEulerRotationOrders
|
|
*/
|
|
static RotOrderInfo rotOrders[]= {
|
|
/* i, j, k, n */
|
|
{{0, 1, 2}, 0}, // XYZ
|
|
{{0, 2, 1}, 1}, // XZY
|
|
{{1, 0, 2}, 1}, // YXZ
|
|
{{1, 2, 0}, 0}, // YZX
|
|
{{2, 0, 1}, 0}, // ZXY
|
|
{{2, 1, 0}, 1} // ZYZ
|
|
};
|
|
|
|
/* Get relevant pointer to rotation order set from the array
|
|
* NOTE: since we start at 1 for the values, but arrays index from 0,
|
|
* there is -1 factor involved in this process...
|
|
*/
|
|
#define GET_ROTATIONORDER_INFO(order) (((order)>=1) ? &rotOrders[(order)-1] : &rotOrders[0])
|
|
|
|
/* Construct quaternion from Euler angles (in radians). */
|
|
void eulO_to_quat(float q[4],float e[3], short order)
|
|
{
|
|
RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
|
|
short i=R->axis[0], j=R->axis[1], k=R->axis[2];
|
|
double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
double a[3];
|
|
|
|
ti = e[i]/2; tj = e[j]/2; th = e[k]/2;
|
|
|
|
if (R->parity) e[j] = -e[j];
|
|
|
|
ci = cos(ti); cj = cos(tj); ch = cos(th);
|
|
si = sin(ti); sj = sin(tj); sh = sin(th);
|
|
|
|
cc = ci*ch; cs = ci*sh;
|
|
sc = si*ch; ss = si*sh;
|
|
|
|
a[i] = cj*sc - sj*cs;
|
|
a[j] = cj*ss + sj*cc;
|
|
a[k] = cj*cs - sj*sc;
|
|
|
|
q[0] = cj*cc + sj*ss;
|
|
q[1] = a[0];
|
|
q[2] = a[1];
|
|
q[3] = a[2];
|
|
|
|
if (R->parity) q[j] = -q[j];
|
|
}
|
|
|
|
/* Convert quaternion to Euler angles (in radians). */
|
|
void quat_to_eulO(float e[3], short order,float q[4])
|
|
{
|
|
float M[3][3];
|
|
|
|
quat_to_mat3(M,q);
|
|
mat3_to_eulO(e, order,M);
|
|
}
|
|
|
|
/* Construct 3x3 matrix from Euler angles (in radians). */
|
|
void eulO_to_mat3(float M[3][3],float e[3], short order)
|
|
{
|
|
RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
|
|
short i=R->axis[0], j=R->axis[1], k=R->axis[2];
|
|
double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
if (R->parity) {
|
|
ti = -e[i]; tj = -e[j]; th = -e[k];
|
|
}
|
|
else {
|
|
ti = e[i]; tj = e[j]; th = e[k];
|
|
}
|
|
|
|
ci = cos(ti); cj = cos(tj); ch = cos(th);
|
|
si = sin(ti); sj = sin(tj); sh = sin(th);
|
|
|
|
cc = ci*ch; cs = ci*sh;
|
|
sc = si*ch; ss = si*sh;
|
|
|
|
M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss;
|
|
M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc;
|
|
M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci;
|
|
}
|
|
|
|
/* Construct 4x4 matrix from Euler angles (in radians). */
|
|
void eulO_to_mat4(float M[4][4],float e[3], short order)
|
|
{
|
|
float m[3][3];
|
|
|
|
/* for now, we'll just do this the slow way (i.e. copying matrices) */
|
|
normalize_m3(m);
|
|
eulO_to_mat3(m,e, order);
|
|
copy_m4_m3(M, m);
|
|
}
|
|
|
|
/* Convert 3x3 matrix to Euler angles (in radians). */
|
|
void mat3_to_eulO(float e[3], short order,float M[3][3])
|
|
{
|
|
RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
|
|
short i=R->axis[0], j=R->axis[1], k=R->axis[2];
|
|
double cy = sqrt(M[i][i]*M[i][i] + M[i][j]*M[i][j]);
|
|
|
|
if (cy > 16*FLT_EPSILON) {
|
|
e[i] = atan2(M[j][k], M[k][k]);
|
|
e[j] = atan2(-M[i][k], cy);
|
|
e[k] = atan2(M[i][j], M[i][i]);
|
|
}
|
|
else {
|
|
e[i] = atan2(-M[k][j], M[j][j]);
|
|
e[j] = atan2(-M[i][k], cy);
|
|
e[k] = 0;
|
|
}
|
|
|
|
if (R->parity) {
|
|
e[0] = -e[0];
|
|
e[1] = -e[1];
|
|
e[2] = -e[2];
|
|
}
|
|
}
|
|
|
|
/* Convert 4x4 matrix to Euler angles (in radians). */
|
|
void mat4_to_eulO(float e[3], short order,float M[4][4])
|
|
{
|
|
float m[3][3];
|
|
|
|
/* for now, we'll just do this the slow way (i.e. copying matrices) */
|
|
copy_m3_m4(m, M);
|
|
normalize_m3(m);
|
|
mat3_to_eulO(e, order,m);
|
|
}
|
|
|
|
/* returns two euler calculation methods, so we can pick the best */
|
|
static void mat3_to_eulo2(float M[3][3], float *e1, float *e2, short order)
|
|
{
|
|
RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
|
|
short i=R->axis[0], j=R->axis[1], k=R->axis[2];
|
|
float m[3][3];
|
|
double cy;
|
|
|
|
/* process the matrix first */
|
|
copy_m3_m3(m, M);
|
|
normalize_m3(m);
|
|
|
|
cy= sqrt(m[i][i]*m[i][i] + m[i][j]*m[i][j]);
|
|
|
|
if (cy > 16*FLT_EPSILON) {
|
|
e1[i] = atan2(m[j][k], m[k][k]);
|
|
e1[j] = atan2(-m[i][k], cy);
|
|
e1[k] = atan2(m[i][j], m[i][i]);
|
|
|
|
e2[i] = atan2(-m[j][k], -m[k][k]);
|
|
e2[j] = atan2(-m[i][k], -cy);
|
|
e2[k] = atan2(-m[i][j], -m[i][i]);
|
|
}
|
|
else {
|
|
e1[i] = atan2(-m[k][j], m[j][j]);
|
|
e1[j] = atan2(-m[i][k], cy);
|
|
e1[k] = 0;
|
|
|
|
copy_v3_v3(e2, e1);
|
|
}
|
|
|
|
if (R->parity) {
|
|
e1[0] = -e1[0];
|
|
e1[1] = -e1[1];
|
|
e1[2] = -e1[2];
|
|
|
|
e2[0] = -e2[0];
|
|
e2[1] = -e2[1];
|
|
e2[2] = -e2[2];
|
|
}
|
|
}
|
|
|
|
/* uses 2 methods to retrieve eulers, and picks the closest */
|
|
void mat3_to_compatible_eulO(float eul[3], float oldrot[3], short order,float mat[3][3])
|
|
{
|
|
float eul1[3], eul2[3];
|
|
float d1, d2;
|
|
|
|
mat3_to_eulo2(mat, eul1, eul2, order);
|
|
|
|
compatible_eul(eul1, oldrot);
|
|
compatible_eul(eul2, oldrot);
|
|
|
|
d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]);
|
|
d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]);
|
|
|
|
/* return best, which is just the one with lowest difference */
|
|
if (d1 > d2)
|
|
copy_v3_v3(eul, eul2);
|
|
else
|
|
copy_v3_v3(eul, eul1);
|
|
}
|
|
|
|
/* rotate the given euler by the given angle on the specified axis */
|
|
// NOTE: is this safe to do with different axis orders?
|
|
void rotate_eulO(float beul[3], short order, char axis, float ang)
|
|
{
|
|
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
|
|
|
|
eul[0]= eul[1]= eul[2]= 0.0f;
|
|
if (axis=='x')
|
|
eul[0]= ang;
|
|
else if (axis=='y')
|
|
eul[1]= ang;
|
|
else
|
|
eul[2]= ang;
|
|
|
|
eulO_to_mat3(mat1,eul, order);
|
|
eulO_to_mat3(mat2,beul, order);
|
|
|
|
mul_m3_m3m3(totmat, mat2, mat1);
|
|
|
|
mat3_to_eulO(beul, order,totmat);
|
|
}
|
|
|
|
/* the matrix is written to as 3 axis vectors */
|
|
void eulO_to_gimbal_axis(float gmat[][3], float *eul, short order)
|
|
{
|
|
RotOrderInfo *R= GET_ROTATIONORDER_INFO(order);
|
|
|
|
float mat[3][3];
|
|
float teul[3];
|
|
|
|
/* first axis is local */
|
|
eulO_to_mat3(mat,eul, order);
|
|
copy_v3_v3(gmat[R->axis[0]], mat[R->axis[0]]);
|
|
|
|
/* second axis is local minus first rotation */
|
|
copy_v3_v3(teul, eul);
|
|
teul[R->axis[0]] = 0;
|
|
eulO_to_mat3(mat,teul, order);
|
|
copy_v3_v3(gmat[R->axis[1]], mat[R->axis[1]]);
|
|
|
|
|
|
/* Last axis is global */
|
|
gmat[R->axis[2]][0] = 0;
|
|
gmat[R->axis[2]][1] = 0;
|
|
gmat[R->axis[2]][2] = 0;
|
|
gmat[R->axis[2]][R->axis[2]] = 1;
|
|
}
|
|
|
|
/******************************* Dual Quaternions ****************************/
|
|
|
|
/*
|
|
Conversion routines between (regular quaternion, translation) and
|
|
dual quaternion.
|
|
|
|
Version 1.0.0, February 7th, 2007
|
|
|
|
Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
|
|
Reserved
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the author(s) be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
Author: Ladislav Kavan, kavanl@cs.tcd.ie
|
|
|
|
Changes for Blender:
|
|
- renaming, style changes and optimizations
|
|
- added support for scaling
|
|
*/
|
|
|
|
void mat4_to_dquat(DualQuat *dq,float basemat[][4], float mat[][4])
|
|
{
|
|
float *t, *q, dscale[3], scale[3], basequat[4];
|
|
float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
|
|
float R[4][4], S[4][4];
|
|
|
|
/* split scaling and rotation, there is probably a faster way to do
|
|
this, it's done like this now to correctly get negative scaling */
|
|
mul_m4_m4m4(baseRS, basemat, mat);
|
|
mat4_to_size(scale,baseRS);
|
|
|
|
copy_v3_v3(dscale, scale);
|
|
dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f;
|
|
|
|
if((determinant_m4(mat) < 0.0f) || len_v3(dscale) > 1e-4) {
|
|
/* extract R and S */
|
|
mat4_to_quat(basequat,baseRS);
|
|
quat_to_mat4(baseR,basequat);
|
|
copy_v3_v3(baseR[3], baseRS[3]);
|
|
|
|
invert_m4_m4(baseinv, basemat);
|
|
mul_m4_m4m4(R, baseinv, baseR);
|
|
|
|
invert_m4_m4(baseRinv, baseR);
|
|
mul_m4_m4m4(S, baseRS, baseRinv);
|
|
|
|
/* set scaling part */
|
|
mul_serie_m4(dq->scale, basemat, S, baseinv, 0, 0, 0, 0, 0);
|
|
dq->scale_weight= 1.0f;
|
|
}
|
|
else {
|
|
/* matrix does not contain scaling */
|
|
copy_m4_m4(R, mat);
|
|
dq->scale_weight= 0.0f;
|
|
}
|
|
|
|
/* non-dual part */
|
|
mat4_to_quat(dq->quat,R);
|
|
|
|
/* dual part */
|
|
t= R[3];
|
|
q= dq->quat;
|
|
dq->trans[0]= -0.5f*(t[0]*q[1] + t[1]*q[2] + t[2]*q[3]);
|
|
dq->trans[1]= 0.5f*(t[0]*q[0] + t[1]*q[3] - t[2]*q[2]);
|
|
dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]);
|
|
dq->trans[3]= 0.5f*(t[0]*q[2] - t[1]*q[1] + t[2]*q[0]);
|
|
}
|
|
|
|
void dquat_to_mat4(float mat[][4],DualQuat *dq)
|
|
{
|
|
float len, *t, q0[4];
|
|
|
|
/* regular quaternion */
|
|
copy_qt_qt(q0, dq->quat);
|
|
|
|
/* normalize */
|
|
len= (float)sqrt(dot_qtqt(q0, q0));
|
|
if(len != 0.0f)
|
|
mul_qt_fl(q0, 1.0f/len);
|
|
|
|
/* rotation */
|
|
quat_to_mat4(mat,q0);
|
|
|
|
/* translation */
|
|
t= dq->trans;
|
|
mat[3][0]= 2.0f*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]);
|
|
mat[3][1]= 2.0f*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]);
|
|
mat[3][2]= 2.0f*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]);
|
|
|
|
/* note: this does not handle scaling */
|
|
}
|
|
|
|
void add_weighted_dq_dq(DualQuat *dqsum, DualQuat *dq, float weight)
|
|
{
|
|
int flipped= 0;
|
|
|
|
/* make sure we interpolate quats in the right direction */
|
|
if (dot_qtqt(dq->quat, dqsum->quat) < 0) {
|
|
flipped= 1;
|
|
weight= -weight;
|
|
}
|
|
|
|
/* interpolate rotation and translation */
|
|
dqsum->quat[0] += weight*dq->quat[0];
|
|
dqsum->quat[1] += weight*dq->quat[1];
|
|
dqsum->quat[2] += weight*dq->quat[2];
|
|
dqsum->quat[3] += weight*dq->quat[3];
|
|
|
|
dqsum->trans[0] += weight*dq->trans[0];
|
|
dqsum->trans[1] += weight*dq->trans[1];
|
|
dqsum->trans[2] += weight*dq->trans[2];
|
|
dqsum->trans[3] += weight*dq->trans[3];
|
|
|
|
/* interpolate scale - but only if needed */
|
|
if (dq->scale_weight) {
|
|
float wmat[4][4];
|
|
|
|
if(flipped) /* we don't want negative weights for scaling */
|
|
weight= -weight;
|
|
|
|
copy_m4_m4(wmat, dq->scale);
|
|
mul_m4_fl((float*)wmat, weight);
|
|
add_m4_m4m4(dqsum->scale, dqsum->scale, wmat);
|
|
dqsum->scale_weight += weight;
|
|
}
|
|
}
|
|
|
|
void normalize_dq(DualQuat *dq, float totweight)
|
|
{
|
|
float scale= 1.0f/totweight;
|
|
|
|
mul_qt_fl(dq->quat, scale);
|
|
mul_qt_fl(dq->trans, scale);
|
|
|
|
if(dq->scale_weight) {
|
|
float addweight= totweight - dq->scale_weight;
|
|
|
|
if(addweight) {
|
|
dq->scale[0][0] += addweight;
|
|
dq->scale[1][1] += addweight;
|
|
dq->scale[2][2] += addweight;
|
|
dq->scale[3][3] += addweight;
|
|
}
|
|
|
|
mul_m4_fl((float*)dq->scale, scale);
|
|
dq->scale_weight= 1.0f;
|
|
}
|
|
}
|
|
|
|
void mul_v3m3_dq(float *co, float mat[][3],DualQuat *dq)
|
|
{
|
|
float M[3][3], t[3], scalemat[3][3], len2;
|
|
float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3];
|
|
float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3];
|
|
|
|
/* rotation matrix */
|
|
M[0][0]= w*w + x*x - y*y - z*z;
|
|
M[1][0]= 2*(x*y - w*z);
|
|
M[2][0]= 2*(x*z + w*y);
|
|
|
|
M[0][1]= 2*(x*y + w*z);
|
|
M[1][1]= w*w + y*y - x*x - z*z;
|
|
M[2][1]= 2*(y*z - w*x);
|
|
|
|
M[0][2]= 2*(x*z - w*y);
|
|
M[1][2]= 2*(y*z + w*x);
|
|
M[2][2]= w*w + z*z - x*x - y*y;
|
|
|
|
len2= dot_qtqt(dq->quat, dq->quat);
|
|
if(len2 > 0.0f)
|
|
len2= 1.0f/len2;
|
|
|
|
/* translation */
|
|
t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3);
|
|
t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2);
|
|
t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y);
|
|
|
|
/* apply scaling */
|
|
if(dq->scale_weight)
|
|
mul_m4_v3(dq->scale, co);
|
|
|
|
/* apply rotation and translation */
|
|
mul_m3_v3(M, co);
|
|
co[0]= (co[0] + t[0])*len2;
|
|
co[1]= (co[1] + t[1])*len2;
|
|
co[2]= (co[2] + t[2])*len2;
|
|
|
|
/* compute crazyspace correction mat */
|
|
if(mat) {
|
|
if(dq->scale_weight) {
|
|
copy_m3_m4(scalemat, dq->scale);
|
|
mul_m3_m3m3(mat, M, scalemat);
|
|
}
|
|
else
|
|
copy_m3_m3(mat, M);
|
|
mul_m3_fl((float*)mat, len2);
|
|
}
|
|
}
|
|
|
|
void copy_dq_dq(DualQuat *dq1, DualQuat *dq2)
|
|
{
|
|
memcpy(dq1, dq2, sizeof(DualQuat));
|
|
}
|
|
|