This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/pbvh.cc
Hans Goudey 915ff8d152 Cleanup: Use references for mesh poly variables
Similar to the previous commit, this simplifies future refactoring
to change the way edges are stored, and further differentiates
single poly variables from array pointers.
2023-03-03 11:40:43 -05:00

3895 lines
106 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include <climits>
#include "BLI_bitmap.h"
#include "BLI_ghash.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_attribute.h"
#include "BKE_ccg.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mapping.h"
#include "BKE_paint.h"
#include "BKE_pbvh.h"
#include "BKE_subdiv_ccg.h"
#include "DRW_pbvh.hh"
#include "PIL_time.h"
#include "bmesh.h"
#include "atomic_ops.h"
#include "pbvh_intern.hh"
#define LEAF_LIMIT 10000
/* Uncomment to test if triangles of the same face are
* properly clustered into single nodes.
*/
//#define TEST_PBVH_FACE_SPLIT
/* Uncomment to test that faces are only assigned to one PBVHNode */
//#define VALIDATE_UNIQUE_NODE_FACES
//#define PERFCNTRS
#define STACK_FIXED_DEPTH 100
struct PBVHStack {
PBVHNode *node;
bool revisiting;
};
struct PBVHIter {
PBVH *pbvh;
BKE_pbvh_SearchCallback scb;
void *search_data;
PBVHStack *stack;
int stacksize;
PBVHStack stackfixed[STACK_FIXED_DEPTH];
int stackspace;
};
void BB_reset(BB *bb)
{
bb->bmin[0] = bb->bmin[1] = bb->bmin[2] = FLT_MAX;
bb->bmax[0] = bb->bmax[1] = bb->bmax[2] = -FLT_MAX;
}
void BB_expand(BB *bb, const float co[3])
{
for (int i = 0; i < 3; i++) {
bb->bmin[i] = min_ff(bb->bmin[i], co[i]);
bb->bmax[i] = max_ff(bb->bmax[i], co[i]);
}
}
void BB_expand_with_bb(BB *bb, BB *bb2)
{
for (int i = 0; i < 3; i++) {
bb->bmin[i] = min_ff(bb->bmin[i], bb2->bmin[i]);
bb->bmax[i] = max_ff(bb->bmax[i], bb2->bmax[i]);
}
}
int BB_widest_axis(const BB *bb)
{
float dim[3];
for (int i = 0; i < 3; i++) {
dim[i] = bb->bmax[i] - bb->bmin[i];
}
if (dim[0] > dim[1]) {
if (dim[0] > dim[2]) {
return 0;
}
return 2;
}
if (dim[1] > dim[2]) {
return 1;
}
return 2;
}
void BBC_update_centroid(BBC *bbc)
{
for (int i = 0; i < 3; i++) {
bbc->bcentroid[i] = (bbc->bmin[i] + bbc->bmax[i]) * 0.5f;
}
}
/* Not recursive */
static void update_node_vb(PBVH *pbvh, PBVHNode *node)
{
BB vb;
BB_reset(&vb);
if (node->flag & PBVH_Leaf) {
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (pbvh, node, vd, PBVH_ITER_ALL) {
BB_expand(&vb, vd.co);
}
BKE_pbvh_vertex_iter_end;
}
else {
BB_expand_with_bb(&vb, &pbvh->nodes[node->children_offset].vb);
BB_expand_with_bb(&vb, &pbvh->nodes[node->children_offset + 1].vb);
}
node->vb = vb;
}
// void BKE_pbvh_node_BB_reset(PBVHNode *node)
//{
// BB_reset(&node->vb);
//}
//
// void BKE_pbvh_node_BB_expand(PBVHNode *node, float co[3])
//{
// BB_expand(&node->vb, co);
//}
static bool face_materials_match(const PBVH *pbvh, const int a, const int b)
{
if (pbvh->material_indices) {
if (pbvh->material_indices[a] != pbvh->material_indices[b]) {
return false;
}
}
return (pbvh->polys[a].flag & ME_SMOOTH) == (pbvh->polys[b].flag & ME_SMOOTH);
}
static bool grid_materials_match(const DMFlagMat *f1, const DMFlagMat *f2)
{
return ((f1->flag & ME_SMOOTH) == (f2->flag & ME_SMOOTH) && (f1->mat_nr == f2->mat_nr));
}
/* Adapted from BLI_kdopbvh.c */
/* Returns the index of the first element on the right of the partition */
static int partition_indices_faces(int *prim_indices,
int *prim_scratch,
int lo,
int hi,
int axis,
float mid,
BBC *prim_bbc,
const MLoopTri *looptri)
{
for (int i = lo; i < hi; i++) {
prim_scratch[i - lo] = prim_indices[i];
}
int lo2 = lo, hi2 = hi - 1;
int i1 = lo, i2 = 0;
while (i1 < hi) {
int poly = looptri[prim_scratch[i2]].poly;
bool side = prim_bbc[prim_scratch[i2]].bcentroid[axis] >= mid;
while (i1 < hi && looptri[prim_scratch[i2]].poly == poly) {
prim_indices[side ? hi2-- : lo2++] = prim_scratch[i2];
i1++;
i2++;
}
}
return lo2;
}
static int partition_indices_grids(int *prim_indices,
int *prim_scratch,
int lo,
int hi,
int axis,
float mid,
BBC *prim_bbc,
SubdivCCG *subdiv_ccg)
{
for (int i = lo; i < hi; i++) {
prim_scratch[i - lo] = prim_indices[i];
}
int lo2 = lo, hi2 = hi - 1;
int i1 = lo, i2 = 0;
while (i1 < hi) {
int poly = BKE_subdiv_ccg_grid_to_face_index(subdiv_ccg, prim_scratch[i2]);
bool side = prim_bbc[prim_scratch[i2]].bcentroid[axis] >= mid;
while (i1 < hi && BKE_subdiv_ccg_grid_to_face_index(subdiv_ccg, prim_scratch[i2]) == poly) {
prim_indices[side ? hi2-- : lo2++] = prim_scratch[i2];
i1++;
i2++;
}
}
return lo2;
}
/* Returns the index of the first element on the right of the partition */
static int partition_indices_material(PBVH *pbvh, int lo, int hi)
{
const MLoopTri *looptri = pbvh->looptri;
const DMFlagMat *flagmats = pbvh->grid_flag_mats;
const int *indices = pbvh->prim_indices;
int i = lo, j = hi;
for (;;) {
if (pbvh->looptri) {
const int first = looptri[pbvh->prim_indices[lo]].poly;
for (; face_materials_match(pbvh, first, looptri[indices[i]].poly); i++) {
/* pass */
}
for (; !face_materials_match(pbvh, first, looptri[indices[j]].poly); j--) {
/* pass */
}
}
else {
const DMFlagMat *first = &flagmats[pbvh->prim_indices[lo]];
for (; grid_materials_match(first, &flagmats[indices[i]]); i++) {
/* pass */
}
for (; !grid_materials_match(first, &flagmats[indices[j]]); j--) {
/* pass */
}
}
if (!(i < j)) {
return i;
}
SWAP(int, pbvh->prim_indices[i], pbvh->prim_indices[j]);
i++;
}
}
void pbvh_grow_nodes(PBVH *pbvh, int totnode)
{
if (UNLIKELY(totnode > pbvh->node_mem_count)) {
pbvh->node_mem_count = pbvh->node_mem_count + (pbvh->node_mem_count / 3);
if (pbvh->node_mem_count < totnode) {
pbvh->node_mem_count = totnode;
}
pbvh->nodes = static_cast<PBVHNode *>(
MEM_recallocN(pbvh->nodes, sizeof(PBVHNode) * pbvh->node_mem_count));
}
pbvh->totnode = totnode;
}
/* Add a vertex to the map, with a positive value for unique vertices and
* a negative value for additional vertices */
static int map_insert_vert(PBVH *pbvh, GHash *map, uint *face_verts, uint *uniq_verts, int vertex)
{
void *key, **value_p;
key = POINTER_FROM_INT(vertex);
if (!BLI_ghash_ensure_p(map, key, &value_p)) {
int value_i;
if (!pbvh->vert_bitmap[vertex]) {
pbvh->vert_bitmap[vertex] = true;
value_i = *uniq_verts;
(*uniq_verts)++;
}
else {
value_i = ~(*face_verts);
(*face_verts)++;
}
*value_p = POINTER_FROM_INT(value_i);
return value_i;
}
return POINTER_AS_INT(*value_p);
}
/* Find vertices used by the faces in this node and update the draw buffers */
static void build_mesh_leaf_node(PBVH *pbvh, PBVHNode *node)
{
bool has_visible = false;
node->uniq_verts = node->face_verts = 0;
const int totface = node->totprim;
/* reserve size is rough guess */
GHash *map = BLI_ghash_int_new_ex("build_mesh_leaf_node gh", 2 * totface);
int(*face_vert_indices)[3] = static_cast<int(*)[3]>(
MEM_mallocN(sizeof(int[3]) * totface, __func__));
node->face_vert_indices = (const int(*)[3])face_vert_indices;
if (pbvh->respect_hide == false) {
has_visible = true;
}
for (int i = 0; i < totface; i++) {
const MLoopTri *lt = &pbvh->looptri[node->prim_indices[i]];
for (int j = 0; j < 3; j++) {
face_vert_indices[i][j] = map_insert_vert(
pbvh, map, &node->face_verts, &node->uniq_verts, pbvh->mloop[lt->tri[j]].v);
}
if (has_visible == false) {
if (!paint_is_face_hidden(lt, pbvh->hide_poly)) {
has_visible = true;
}
}
}
int *vert_indices = static_cast<int *>(
MEM_callocN(sizeof(int) * (node->uniq_verts + node->face_verts), __func__));
node->vert_indices = vert_indices;
/* Build the vertex list, unique verts first */
GHashIterator gh_iter;
GHASH_ITER (gh_iter, map) {
void *value = BLI_ghashIterator_getValue(&gh_iter);
int ndx = POINTER_AS_INT(value);
if (ndx < 0) {
ndx = -ndx + node->uniq_verts - 1;
}
vert_indices[ndx] = POINTER_AS_INT(BLI_ghashIterator_getKey(&gh_iter));
}
for (int i = 0; i < totface; i++) {
const int sides = 3;
for (int j = 0; j < sides; j++) {
if (face_vert_indices[i][j] < 0) {
face_vert_indices[i][j] = -face_vert_indices[i][j] + node->uniq_verts - 1;
}
}
}
BKE_pbvh_node_mark_rebuild_draw(node);
BKE_pbvh_node_fully_hidden_set(node, !has_visible);
BLI_ghash_free(map, nullptr, nullptr);
}
static void update_vb(PBVH *pbvh, PBVHNode *node, BBC *prim_bbc, int offset, int count)
{
BB_reset(&node->vb);
for (int i = offset + count - 1; i >= offset; i--) {
BB_expand_with_bb(&node->vb, (BB *)(&prim_bbc[pbvh->prim_indices[i]]));
}
node->orig_vb = node->vb;
}
int BKE_pbvh_count_grid_quads(BLI_bitmap **grid_hidden,
const int *grid_indices,
int totgrid,
int gridsize,
int display_gridsize)
{
const int gridarea = (gridsize - 1) * (gridsize - 1);
int totquad = 0;
/* grid hidden layer is present, so have to check each grid for
* visibility */
int depth1 = int(log2(double(gridsize) - 1.0) + DBL_EPSILON);
int depth2 = int(log2(double(display_gridsize) - 1.0) + DBL_EPSILON);
int skip = depth2 < depth1 ? 1 << (depth1 - depth2 - 1) : 1;
for (int i = 0; i < totgrid; i++) {
const BLI_bitmap *gh = grid_hidden[grid_indices[i]];
if (gh) {
/* grid hidden are present, have to check each element */
for (int y = 0; y < gridsize - skip; y += skip) {
for (int x = 0; x < gridsize - skip; x += skip) {
if (!paint_is_grid_face_hidden(gh, gridsize, x, y)) {
totquad++;
}
}
}
}
else {
totquad += gridarea;
}
}
return totquad;
}
static void build_grid_leaf_node(PBVH *pbvh, PBVHNode *node)
{
int totquads = BKE_pbvh_count_grid_quads(pbvh->grid_hidden,
node->prim_indices,
node->totprim,
pbvh->gridkey.grid_size,
pbvh->gridkey.grid_size);
BKE_pbvh_node_fully_hidden_set(node, (totquads == 0));
BKE_pbvh_node_mark_rebuild_draw(node);
}
static void build_leaf(PBVH *pbvh, int node_index, BBC *prim_bbc, int offset, int count)
{
pbvh->nodes[node_index].flag |= PBVH_Leaf;
pbvh->nodes[node_index].prim_indices = pbvh->prim_indices + offset;
pbvh->nodes[node_index].totprim = count;
/* Still need vb for searches */
update_vb(pbvh, &pbvh->nodes[node_index], prim_bbc, offset, count);
if (pbvh->looptri) {
build_mesh_leaf_node(pbvh, pbvh->nodes + node_index);
}
else {
build_grid_leaf_node(pbvh, pbvh->nodes + node_index);
}
}
/* Return zero if all primitives in the node can be drawn with the
* same material (including flat/smooth shading), non-zero otherwise */
static bool leaf_needs_material_split(PBVH *pbvh, int offset, int count)
{
if (count <= 1) {
return false;
}
if (pbvh->looptri) {
const MLoopTri *first = &pbvh->looptri[pbvh->prim_indices[offset]];
for (int i = offset + count - 1; i > offset; i--) {
int prim = pbvh->prim_indices[i];
if (!face_materials_match(pbvh, first->poly, pbvh->looptri[prim].poly)) {
return true;
}
}
}
else {
const DMFlagMat *first = &pbvh->grid_flag_mats[pbvh->prim_indices[offset]];
for (int i = offset + count - 1; i > offset; i--) {
int prim = pbvh->prim_indices[i];
if (!grid_materials_match(first, &pbvh->grid_flag_mats[prim])) {
return true;
}
}
}
return false;
}
#ifdef TEST_PBVH_FACE_SPLIT
static void test_face_boundaries(PBVH *pbvh)
{
int faces_num = BKE_pbvh_num_faces(pbvh);
int *node_map = MEM_calloc_arrayN(faces_num, sizeof(int), __func__);
for (int i = 0; i < faces_num; i++) {
node_map[i] = -1;
}
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = pbvh->nodes + i;
if (!(node->flag & PBVH_Leaf)) {
continue;
}
switch (BKE_pbvh_type(pbvh)) {
case PBVH_FACES: {
for (int j = 0; j < node->totprim; j++) {
int poly = pbvh->looptri[node->prim_indices[j]].poly;
if (node_map[poly] >= 0 && node_map[poly] != i) {
int old_i = node_map[poly];
int prim_i = node->prim_indices - pbvh->prim_indices + j;
printf("PBVH split error; poly: %d, prim_i: %d, node1: %d, node2: %d, totprim: %d\n",
poly,
prim_i,
old_i,
i,
node->totprim);
}
node_map[poly] = i;
}
break;
}
case PBVH_GRIDS:
break;
case PBVH_BMESH:
break;
}
}
MEM_SAFE_FREE(node_map);
}
#endif
/* Recursively build a node in the tree
*
* vb is the voxel box around all of the primitives contained in
* this node.
*
* cb is the bounding box around all the centroids of the primitives
* contained in this node
*
* offset and start indicate a range in the array of primitive indices
*/
static void build_sub(PBVH *pbvh,
int node_index,
BB *cb,
BBC *prim_bbc,
int offset,
int count,
int *prim_scratch,
int depth)
{
int end;
BB cb_backing;
if (!prim_scratch) {
prim_scratch = static_cast<int *>(MEM_malloc_arrayN(pbvh->totprim, sizeof(int), __func__));
}
/* Decide whether this is a leaf or not */
const bool below_leaf_limit = count <= pbvh->leaf_limit || depth >= STACK_FIXED_DEPTH - 1;
if (below_leaf_limit) {
if (!leaf_needs_material_split(pbvh, offset, count)) {
build_leaf(pbvh, node_index, prim_bbc, offset, count);
if (node_index == 0) {
MEM_SAFE_FREE(prim_scratch);
}
return;
}
}
/* Add two child nodes */
pbvh->nodes[node_index].children_offset = pbvh->totnode;
pbvh_grow_nodes(pbvh, pbvh->totnode + 2);
/* Update parent node bounding box */
update_vb(pbvh, &pbvh->nodes[node_index], prim_bbc, offset, count);
if (!below_leaf_limit) {
/* Find axis with widest range of primitive centroids */
if (!cb) {
cb = &cb_backing;
BB_reset(cb);
for (int i = offset + count - 1; i >= offset; i--) {
BB_expand(cb, prim_bbc[pbvh->prim_indices[i]].bcentroid);
}
}
const int axis = BB_widest_axis(cb);
/* Partition primitives along that axis */
if (pbvh->header.type == PBVH_FACES) {
end = partition_indices_faces(pbvh->prim_indices,
prim_scratch,
offset,
offset + count,
axis,
(cb->bmax[axis] + cb->bmin[axis]) * 0.5f,
prim_bbc,
pbvh->looptri);
}
else {
end = partition_indices_grids(pbvh->prim_indices,
prim_scratch,
offset,
offset + count,
axis,
(cb->bmax[axis] + cb->bmin[axis]) * 0.5f,
prim_bbc,
pbvh->subdiv_ccg);
}
}
else {
/* Partition primitives by material */
end = partition_indices_material(pbvh, offset, offset + count - 1);
}
/* Build children */
build_sub(pbvh,
pbvh->nodes[node_index].children_offset,
nullptr,
prim_bbc,
offset,
end - offset,
prim_scratch,
depth + 1);
build_sub(pbvh,
pbvh->nodes[node_index].children_offset + 1,
nullptr,
prim_bbc,
end,
offset + count - end,
prim_scratch,
depth + 1);
if (node_index == 0) {
MEM_SAFE_FREE(prim_scratch);
}
}
static void pbvh_build(PBVH *pbvh, BB *cb, BBC *prim_bbc, int totprim)
{
if (totprim != pbvh->totprim) {
pbvh->totprim = totprim;
if (pbvh->nodes) {
MEM_freeN(pbvh->nodes);
}
if (pbvh->prim_indices) {
MEM_freeN(pbvh->prim_indices);
}
pbvh->prim_indices = static_cast<int *>(MEM_mallocN(sizeof(int) * totprim, __func__));
for (int i = 0; i < totprim; i++) {
pbvh->prim_indices[i] = i;
}
pbvh->totnode = 0;
if (pbvh->node_mem_count < 100) {
pbvh->node_mem_count = 100;
pbvh->nodes = static_cast<PBVHNode *>(
MEM_callocN(sizeof(PBVHNode) * pbvh->node_mem_count, __func__));
}
}
pbvh->totnode = 1;
build_sub(pbvh, 0, cb, prim_bbc, 0, totprim, nullptr, 0);
}
static void pbvh_draw_args_init(PBVH *pbvh, PBVH_GPU_Args *args, PBVHNode *node)
{
memset((void *)args, 0, sizeof(*args));
args->pbvh_type = pbvh->header.type;
args->mesh_verts_num = pbvh->totvert;
args->mesh_grids_num = pbvh->totgrid;
args->node = node;
BKE_pbvh_node_num_verts(pbvh, node, nullptr, &args->node_verts_num);
args->grid_hidden = pbvh->grid_hidden;
args->face_sets_color_default = pbvh->face_sets_color_default;
args->face_sets_color_seed = pbvh->face_sets_color_seed;
args->vert_positions = pbvh->vert_positions;
args->mloop = pbvh->mloop;
args->polys = pbvh->polys;
args->mlooptri = pbvh->looptri;
if (ELEM(pbvh->header.type, PBVH_FACES, PBVH_GRIDS)) {
args->hide_poly = pbvh->pdata ? static_cast<const bool *>(CustomData_get_layer_named(
pbvh->pdata, CD_PROP_BOOL, ".hide_poly")) :
nullptr;
}
switch (pbvh->header.type) {
case PBVH_FACES:
args->mesh_faces_num = pbvh->mesh->totpoly;
args->vdata = pbvh->vdata;
args->ldata = pbvh->ldata;
args->pdata = pbvh->pdata;
args->totprim = node->totprim;
args->me = pbvh->mesh;
args->polys = pbvh->polys;
args->vert_normals = pbvh->vert_normals;
args->active_color = pbvh->mesh->active_color_attribute;
args->render_color = pbvh->mesh->default_color_attribute;
args->prim_indices = node->prim_indices;
args->face_sets = pbvh->face_sets;
break;
case PBVH_GRIDS:
args->vdata = pbvh->vdata;
args->ldata = pbvh->ldata;
args->pdata = pbvh->pdata;
args->ccg_key = pbvh->gridkey;
args->me = pbvh->mesh;
args->totprim = node->totprim;
args->grid_indices = node->prim_indices;
args->subdiv_ccg = pbvh->subdiv_ccg;
args->face_sets = pbvh->face_sets;
args->polys = pbvh->polys;
args->active_color = pbvh->mesh->active_color_attribute;
args->render_color = pbvh->mesh->default_color_attribute;
args->mesh_grids_num = pbvh->totgrid;
args->grids = pbvh->grids;
args->gridfaces = pbvh->gridfaces;
args->grid_flag_mats = pbvh->grid_flag_mats;
args->vert_normals = pbvh->vert_normals;
args->face_sets = pbvh->face_sets;
break;
case PBVH_BMESH:
args->bm = pbvh->header.bm;
args->vdata = &args->bm->vdata;
args->ldata = &args->bm->ldata;
args->pdata = &args->bm->pdata;
args->bm_faces = node->bm_faces;
args->bm_other_verts = node->bm_other_verts;
args->bm_unique_vert = node->bm_unique_verts;
args->totprim = BLI_gset_len(node->bm_faces);
args->cd_mask_layer = CustomData_get_offset(&pbvh->header.bm->vdata, CD_PAINT_MASK);
break;
}
}
#ifdef VALIDATE_UNIQUE_NODE_FACES
static void pbvh_validate_node_prims(PBVH *pbvh)
{
int totface = 0;
if (pbvh->header.type == PBVH_BMESH) {
return;
}
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = pbvh->nodes + i;
if (!(node->flag & PBVH_Leaf)) {
continue;
}
for (int j = 0; j < node->totprim; j++) {
int poly;
if (pbvh->header.type == PBVH_FACES) {
poly = pbvh->looptri[node->prim_indices[j]].poly;
}
else {
poly = BKE_subdiv_ccg_grid_to_face_index(pbvh->subdiv_ccg, node->prim_indices[j]);
}
totface = max_ii(totface, poly + 1);
}
}
int *facemap = (int *)MEM_malloc_arrayN(totface, sizeof(*facemap), __func__);
for (int i = 0; i < totface; i++) {
facemap[i] = -1;
}
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = pbvh->nodes + i;
if (!(node->flag & PBVH_Leaf)) {
continue;
}
for (int j = 0; j < node->totprim; j++) {
int poly;
if (pbvh->header.type == PBVH_FACES) {
poly = pbvh->looptri[node->prim_indices[j]].poly;
}
else {
poly = BKE_subdiv_ccg_grid_to_face_index(pbvh->subdiv_ccg, node->prim_indices[j]);
}
if (facemap[poly] != -1 && facemap[poly] != i) {
printf("%s: error: face spanned multiple nodes (old: %d new: %d)\n",
__func__,
facemap[poly],
i);
}
facemap[poly] = i;
}
}
MEM_SAFE_FREE(facemap);
}
#endif
void BKE_pbvh_build_mesh(PBVH *pbvh,
Mesh *mesh,
const MPoly *polys,
const MLoop *mloop,
float (*vert_positions)[3],
int totvert,
CustomData *vdata,
CustomData *ldata,
CustomData *pdata,
const MLoopTri *looptri,
int looptri_num)
{
BBC *prim_bbc = nullptr;
BB cb;
pbvh->mesh = mesh;
pbvh->header.type = PBVH_FACES;
pbvh->polys = polys;
pbvh->hide_poly = static_cast<bool *>(CustomData_get_layer_named_for_write(
&mesh->pdata, CD_PROP_BOOL, ".hide_poly", mesh->totpoly));
pbvh->material_indices = static_cast<const int *>(
CustomData_get_layer_named(&mesh->pdata, CD_PROP_INT32, "material_index"));
pbvh->mloop = mloop;
pbvh->looptri = looptri;
pbvh->vert_positions = vert_positions;
BKE_mesh_vert_normals_ensure(mesh);
pbvh->vert_normals = BKE_mesh_vert_normals_for_write(mesh);
pbvh->hide_vert = static_cast<bool *>(CustomData_get_layer_named_for_write(
&mesh->vdata, CD_PROP_BOOL, ".hide_vert", mesh->totvert));
pbvh->vert_bitmap = static_cast<bool *>(
MEM_calloc_arrayN(totvert, sizeof(bool), "bvh->vert_bitmap"));
pbvh->totvert = totvert;
#ifdef TEST_PBVH_FACE_SPLIT
/* Use lower limit to increase probability of
* edge cases.
*/
pbvh->leaf_limit = 100;
#else
pbvh->leaf_limit = LEAF_LIMIT;
#endif
pbvh->vdata = vdata;
pbvh->ldata = ldata;
pbvh->pdata = pdata;
pbvh->faces_num = mesh->totpoly;
pbvh->face_sets_color_seed = mesh->face_sets_color_seed;
pbvh->face_sets_color_default = mesh->face_sets_color_default;
BB_reset(&cb);
/* For each face, store the AABB and the AABB centroid */
prim_bbc = static_cast<BBC *>(MEM_mallocN(sizeof(BBC) * looptri_num, __func__));
for (int i = 0; i < looptri_num; i++) {
const MLoopTri *lt = &looptri[i];
const int sides = 3;
BBC *bbc = prim_bbc + i;
BB_reset((BB *)bbc);
for (int j = 0; j < sides; j++) {
BB_expand((BB *)bbc, vert_positions[pbvh->mloop[lt->tri[j]].v]);
}
BBC_update_centroid(bbc);
BB_expand(&cb, bbc->bcentroid);
}
if (looptri_num) {
pbvh_build(pbvh, &cb, prim_bbc, looptri_num);
#ifdef TEST_PBVH_FACE_SPLIT
test_face_boundaries(pbvh);
#endif
}
MEM_freeN(prim_bbc);
/* Clear the bitmap so it can be used as an update tag later on. */
memset(pbvh->vert_bitmap, 0, sizeof(bool) * totvert);
BKE_pbvh_update_active_vcol(pbvh, mesh);
#ifdef VALIDATE_UNIQUE_NODE_FACES
pbvh_validate_node_prims(pbvh);
#endif
}
void BKE_pbvh_build_grids(PBVH *pbvh,
CCGElem **grids,
int totgrid,
CCGKey *key,
void **gridfaces,
DMFlagMat *flagmats,
BLI_bitmap **grid_hidden,
Mesh *me,
SubdivCCG *subdiv_ccg)
{
const int gridsize = key->grid_size;
pbvh->header.type = PBVH_GRIDS;
pbvh->grids = grids;
pbvh->gridfaces = gridfaces;
pbvh->grid_flag_mats = flagmats;
pbvh->totgrid = totgrid;
pbvh->gridkey = *key;
pbvh->grid_hidden = grid_hidden;
pbvh->subdiv_ccg = subdiv_ccg;
pbvh->faces_num = me->totpoly;
/* Find maximum number of grids per face. */
int max_grids = 1;
const blender::Span<MPoly> polys = me->polys();
for (const int i : polys.index_range()) {
max_grids = max_ii(max_grids, polys[i].totloop);
}
/* Ensure leaf limit is at least 4 so there's room
* to split at original face boundaries.
* Fixes #102209.
*/
pbvh->leaf_limit = max_ii(LEAF_LIMIT / (gridsize * gridsize), max_grids);
/* We need the base mesh attribute layout for PBVH draw. */
pbvh->vdata = &me->vdata;
pbvh->ldata = &me->ldata;
pbvh->pdata = &me->pdata;
pbvh->polys = me->polys().data();
pbvh->mloop = me->loops().data();
/* We also need the base mesh for PBVH draw. */
pbvh->mesh = me;
BB cb;
BB_reset(&cb);
/* For each grid, store the AABB and the AABB centroid */
BBC *prim_bbc = static_cast<BBC *>(MEM_mallocN(sizeof(BBC) * totgrid, __func__));
for (int i = 0; i < totgrid; i++) {
CCGElem *grid = grids[i];
BBC *bbc = prim_bbc + i;
BB_reset((BB *)bbc);
for (int j = 0; j < gridsize * gridsize; j++) {
BB_expand((BB *)bbc, CCG_elem_offset_co(key, grid, j));
}
BBC_update_centroid(bbc);
BB_expand(&cb, bbc->bcentroid);
}
if (totgrid) {
pbvh_build(pbvh, &cb, prim_bbc, totgrid);
#ifdef TEST_PBVH_FACE_SPLIT
test_face_boundaries(pbvh);
#endif
}
MEM_freeN(prim_bbc);
#ifdef VALIDATE_UNIQUE_NODE_FACES
pbvh_validate_node_prims(pbvh);
#endif
}
PBVH *BKE_pbvh_new(PBVHType type)
{
PBVH *pbvh = MEM_cnew<PBVH>(__func__);
pbvh->respect_hide = true;
pbvh->draw_cache_invalid = true;
pbvh->header.type = type;
/* Initialize this to true, instead of waiting for a draw engine
* to set it. Prevents a crash in draw manager instancing code.
*/
pbvh->is_drawing = true;
return pbvh;
}
void BKE_pbvh_free(PBVH *pbvh)
{
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = &pbvh->nodes[i];
if (node->flag & PBVH_Leaf) {
if (node->draw_batches) {
DRW_pbvh_node_free(node->draw_batches);
}
if (node->vert_indices) {
MEM_freeN((void *)node->vert_indices);
}
if (node->loop_indices) {
MEM_freeN(node->loop_indices);
}
if (node->face_vert_indices) {
MEM_freeN((void *)node->face_vert_indices);
}
if (node->bm_faces) {
BLI_gset_free(node->bm_faces, nullptr);
}
if (node->bm_unique_verts) {
BLI_gset_free(node->bm_unique_verts, nullptr);
}
if (node->bm_other_verts) {
BLI_gset_free(node->bm_other_verts, nullptr);
}
}
if (node->flag & (PBVH_Leaf | PBVH_TexLeaf)) {
pbvh_node_pixels_free(node);
}
}
if (pbvh->deformed) {
if (pbvh->vert_positions) {
/* if pbvh was deformed, new memory was allocated for verts/faces -- free it */
MEM_freeN((void *)pbvh->vert_positions);
}
}
if (pbvh->looptri) {
MEM_freeN((void *)pbvh->looptri);
}
if (pbvh->nodes) {
MEM_freeN(pbvh->nodes);
}
if (pbvh->prim_indices) {
MEM_freeN(pbvh->prim_indices);
}
MEM_SAFE_FREE(pbvh->vert_bitmap);
pbvh_pixels_free(pbvh);
MEM_freeN(pbvh);
}
static void pbvh_iter_begin(PBVHIter *iter,
PBVH *pbvh,
BKE_pbvh_SearchCallback scb,
void *search_data)
{
iter->pbvh = pbvh;
iter->scb = scb;
iter->search_data = search_data;
iter->stack = iter->stackfixed;
iter->stackspace = STACK_FIXED_DEPTH;
iter->stack[0].node = pbvh->nodes;
iter->stack[0].revisiting = false;
iter->stacksize = 1;
}
static void pbvh_iter_end(PBVHIter *iter)
{
if (iter->stackspace > STACK_FIXED_DEPTH) {
MEM_freeN(iter->stack);
}
}
static void pbvh_stack_push(PBVHIter *iter, PBVHNode *node, bool revisiting)
{
if (UNLIKELY(iter->stacksize == iter->stackspace)) {
iter->stackspace *= 2;
if (iter->stackspace != (STACK_FIXED_DEPTH * 2)) {
iter->stack = static_cast<PBVHStack *>(
MEM_reallocN(iter->stack, sizeof(PBVHStack) * iter->stackspace));
}
else {
iter->stack = static_cast<PBVHStack *>(
MEM_mallocN(sizeof(PBVHStack) * iter->stackspace, "PBVHStack"));
memcpy(iter->stack, iter->stackfixed, sizeof(PBVHStack) * iter->stacksize);
}
}
iter->stack[iter->stacksize].node = node;
iter->stack[iter->stacksize].revisiting = revisiting;
iter->stacksize++;
}
static PBVHNode *pbvh_iter_next(PBVHIter *iter, PBVHNodeFlags leaf_flag)
{
/* purpose here is to traverse tree, visiting child nodes before their
* parents, this order is necessary for e.g. computing bounding boxes */
while (iter->stacksize) {
/* pop node */
iter->stacksize--;
PBVHNode *node = iter->stack[iter->stacksize].node;
/* on a mesh with no faces this can happen
* can remove this check if we know meshes have at least 1 face */
if (node == nullptr) {
return nullptr;
}
bool revisiting = iter->stack[iter->stacksize].revisiting;
/* revisiting node already checked */
if (revisiting) {
return node;
}
if (iter->scb && !iter->scb(node, iter->search_data)) {
continue; /* don't traverse, outside of search zone */
}
if (node->flag & leaf_flag) {
/* immediately hit leaf node */
return node;
}
/* come back later when children are done */
pbvh_stack_push(iter, node, true);
/* push two child nodes on the stack */
pbvh_stack_push(iter, iter->pbvh->nodes + node->children_offset + 1, false);
pbvh_stack_push(iter, iter->pbvh->nodes + node->children_offset, false);
}
return nullptr;
}
static PBVHNode *pbvh_iter_next_occluded(PBVHIter *iter)
{
while (iter->stacksize) {
/* pop node */
iter->stacksize--;
PBVHNode *node = iter->stack[iter->stacksize].node;
/* on a mesh with no faces this can happen
* can remove this check if we know meshes have at least 1 face */
if (node == nullptr) {
return nullptr;
}
if (iter->scb && !iter->scb(node, iter->search_data)) {
continue; /* don't traverse, outside of search zone */
}
if (node->flag & PBVH_Leaf) {
/* immediately hit leaf node */
return node;
}
pbvh_stack_push(iter, iter->pbvh->nodes + node->children_offset + 1, false);
pbvh_stack_push(iter, iter->pbvh->nodes + node->children_offset, false);
}
return nullptr;
}
void BKE_pbvh_search_gather_ex(PBVH *pbvh,
BKE_pbvh_SearchCallback scb,
void *search_data,
PBVHNode ***r_array,
int *r_tot,
PBVHNodeFlags leaf_flag)
{
PBVHIter iter;
PBVHNode **array = nullptr, *node;
int tot = 0, space = 0;
pbvh_iter_begin(&iter, pbvh, scb, search_data);
while ((node = pbvh_iter_next(&iter, leaf_flag))) {
if (node->flag & leaf_flag) {
if (UNLIKELY(tot == space)) {
/* resize array if needed */
space = (tot == 0) ? 32 : space * 2;
array = static_cast<PBVHNode **>(
MEM_recallocN_id(array, sizeof(PBVHNode *) * space, __func__));
}
array[tot] = node;
tot++;
}
}
pbvh_iter_end(&iter);
if (tot == 0 && array) {
MEM_freeN(array);
array = nullptr;
}
*r_array = array;
*r_tot = tot;
}
void BKE_pbvh_search_gather(
PBVH *pbvh, BKE_pbvh_SearchCallback scb, void *search_data, PBVHNode ***r_array, int *r_tot)
{
BKE_pbvh_search_gather_ex(pbvh, scb, search_data, r_array, r_tot, PBVH_Leaf);
}
void BKE_pbvh_search_callback(PBVH *pbvh,
BKE_pbvh_SearchCallback scb,
void *search_data,
BKE_pbvh_HitCallback hcb,
void *hit_data)
{
PBVHIter iter;
PBVHNode *node;
pbvh_iter_begin(&iter, pbvh, scb, search_data);
while ((node = pbvh_iter_next(&iter, PBVH_Leaf))) {
if (node->flag & PBVH_Leaf) {
hcb(node, hit_data);
}
}
pbvh_iter_end(&iter);
}
struct node_tree {
PBVHNode *data;
node_tree *left;
node_tree *right;
};
static void node_tree_insert(node_tree *tree, node_tree *new_node)
{
if (new_node->data->tmin < tree->data->tmin) {
if (tree->left) {
node_tree_insert(tree->left, new_node);
}
else {
tree->left = new_node;
}
}
else {
if (tree->right) {
node_tree_insert(tree->right, new_node);
}
else {
tree->right = new_node;
}
}
}
static void traverse_tree(node_tree *tree,
BKE_pbvh_HitOccludedCallback hcb,
void *hit_data,
float *tmin)
{
if (tree->left) {
traverse_tree(tree->left, hcb, hit_data, tmin);
}
hcb(tree->data, hit_data, tmin);
if (tree->right) {
traverse_tree(tree->right, hcb, hit_data, tmin);
}
}
static void free_tree(node_tree *tree)
{
if (tree->left) {
free_tree(tree->left);
tree->left = nullptr;
}
if (tree->right) {
free_tree(tree->right);
tree->right = nullptr;
}
free(tree);
}
float BKE_pbvh_node_get_tmin(PBVHNode *node)
{
return node->tmin;
}
static void BKE_pbvh_search_callback_occluded(PBVH *pbvh,
BKE_pbvh_SearchCallback scb,
void *search_data,
BKE_pbvh_HitOccludedCallback hcb,
void *hit_data)
{
PBVHIter iter;
PBVHNode *node;
node_tree *tree = nullptr;
pbvh_iter_begin(&iter, pbvh, scb, search_data);
while ((node = pbvh_iter_next_occluded(&iter))) {
if (node->flag & PBVH_Leaf) {
node_tree *new_node = static_cast<node_tree *>(malloc(sizeof(node_tree)));
new_node->data = node;
new_node->left = nullptr;
new_node->right = nullptr;
if (tree) {
node_tree_insert(tree, new_node);
}
else {
tree = new_node;
}
}
}
pbvh_iter_end(&iter);
if (tree) {
float tmin = FLT_MAX;
traverse_tree(tree, hcb, hit_data, &tmin);
free_tree(tree);
}
}
static bool update_search_cb(PBVHNode *node, void *data_v)
{
int flag = POINTER_AS_INT(data_v);
if (node->flag & PBVH_Leaf) {
return (node->flag & flag) != 0;
}
return true;
}
struct PBVHUpdateData {
PBVH *pbvh;
PBVHNode **nodes;
int totnode;
float (*vert_normals)[3];
int flag;
bool show_sculpt_face_sets;
PBVHAttrReq *attrs;
int attrs_num;
};
static void pbvh_update_normals_clear_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
float(*vert_normals)[3] = data->vert_normals;
if (node->flag & PBVH_UpdateNormals) {
const int *verts = node->vert_indices;
const int totvert = node->uniq_verts;
for (int i = 0; i < totvert; i++) {
const int v = verts[i];
if (pbvh->vert_bitmap[v]) {
zero_v3(vert_normals[v]);
}
}
}
}
static void pbvh_update_normals_accum_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
float(*vert_normals)[3] = data->vert_normals;
if (node->flag & PBVH_UpdateNormals) {
uint mpoly_prev = UINT_MAX;
float fn[3];
const int *faces = node->prim_indices;
const int totface = node->totprim;
for (int i = 0; i < totface; i++) {
const MLoopTri *lt = &pbvh->looptri[faces[i]];
const uint vtri[3] = {
pbvh->mloop[lt->tri[0]].v,
pbvh->mloop[lt->tri[1]].v,
pbvh->mloop[lt->tri[2]].v,
};
const int sides = 3;
/* Face normal and mask */
if (lt->poly != mpoly_prev) {
const MPoly &poly = pbvh->polys[lt->poly];
BKE_mesh_calc_poly_normal(&poly, &pbvh->mloop[poly.loopstart], pbvh->vert_positions, fn);
mpoly_prev = lt->poly;
}
for (int j = sides; j--;) {
const int v = vtri[j];
if (pbvh->vert_bitmap[v]) {
/* NOTE: This avoids `lock, add_v3_v3, unlock`
* and is five to ten times quicker than a spin-lock.
* Not exact equivalent though, since atomicity is only ensured for one component
* of the vector at a time, but here it shall not make any sensible difference. */
for (int k = 3; k--;) {
atomic_add_and_fetch_fl(&vert_normals[v][k], fn[k]);
}
}
}
}
}
}
static void pbvh_update_normals_store_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
float(*vert_normals)[3] = data->vert_normals;
if (node->flag & PBVH_UpdateNormals) {
const int *verts = node->vert_indices;
const int totvert = node->uniq_verts;
for (int i = 0; i < totvert; i++) {
const int v = verts[i];
/* No atomics necessary because we are iterating over uniq_verts only,
* so we know only this thread will handle this vertex. */
if (pbvh->vert_bitmap[v]) {
normalize_v3(vert_normals[v]);
pbvh->vert_bitmap[v] = false;
}
}
node->flag &= ~PBVH_UpdateNormals;
}
}
static void pbvh_faces_update_normals(PBVH *pbvh, PBVHNode **nodes, int totnode)
{
/* subtle assumptions:
* - We know that for all edited vertices, the nodes with faces
* adjacent to these vertices have been marked with PBVH_UpdateNormals.
* This is true because if the vertex is inside the brush radius, the
* bounding box of its adjacent faces will be as well.
* - However this is only true for the vertices that have actually been
* edited, not for all vertices in the nodes marked for update, so we
* can only update vertices marked in the `vert_bitmap`.
*/
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
data.vert_normals = pbvh->vert_normals;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
/* Zero normals before accumulation. */
BLI_task_parallel_range(0, totnode, &data, pbvh_update_normals_clear_task_cb, &settings);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_normals_accum_task_cb, &settings);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_normals_store_task_cb, &settings);
}
static void pbvh_update_mask_redraw_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
if (node->flag & PBVH_UpdateMask) {
bool has_unmasked = false;
bool has_masked = true;
if (node->flag & PBVH_Leaf) {
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (pbvh, node, vd, PBVH_ITER_ALL) {
if (vd.mask && *vd.mask < 1.0f) {
has_unmasked = true;
}
if (vd.mask && *vd.mask > 0.0f) {
has_masked = false;
}
}
BKE_pbvh_vertex_iter_end;
}
else {
has_unmasked = true;
has_masked = true;
}
BKE_pbvh_node_fully_masked_set(node, !has_unmasked);
BKE_pbvh_node_fully_unmasked_set(node, has_masked);
node->flag &= ~PBVH_UpdateMask;
}
}
static void pbvh_update_mask_redraw(PBVH *pbvh, PBVHNode **nodes, int totnode, int flag)
{
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
data.flag = flag;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_mask_redraw_task_cb, &settings);
}
static void pbvh_update_visibility_redraw_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
if (node->flag & PBVH_UpdateVisibility) {
node->flag &= ~PBVH_UpdateVisibility;
BKE_pbvh_node_fully_hidden_set(node, true);
if (node->flag & PBVH_Leaf) {
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (pbvh, node, vd, PBVH_ITER_ALL) {
if (vd.visible) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
}
BKE_pbvh_vertex_iter_end;
}
}
}
static void pbvh_update_visibility_redraw(PBVH *pbvh, PBVHNode **nodes, int totnode, int flag)
{
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
data.flag = flag;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_visibility_redraw_task_cb, &settings);
}
static void pbvh_update_BB_redraw_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
const int flag = data->flag;
if ((flag & PBVH_UpdateBB) && (node->flag & PBVH_UpdateBB)) {
/* don't clear flag yet, leave it for flushing later */
/* Note that bvh usage is read-only here, so no need to thread-protect it. */
update_node_vb(pbvh, node);
}
if ((flag & PBVH_UpdateOriginalBB) && (node->flag & PBVH_UpdateOriginalBB)) {
node->orig_vb = node->vb;
}
if ((flag & PBVH_UpdateRedraw) && (node->flag & PBVH_UpdateRedraw)) {
node->flag &= ~PBVH_UpdateRedraw;
}
}
void pbvh_update_BB_redraw(PBVH *pbvh, PBVHNode **nodes, int totnode, int flag)
{
/* update BB, redraw flag */
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
data.flag = flag;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_BB_redraw_task_cb, &settings);
}
bool BKE_pbvh_get_color_layer(const Mesh *me, CustomDataLayer **r_layer, eAttrDomain *r_attr)
{
CustomDataLayer *layer = BKE_id_attributes_color_find(&me->id, me->active_color_attribute);
if (!layer || !ELEM(layer->type, CD_PROP_COLOR, CD_PROP_BYTE_COLOR)) {
*r_layer = nullptr;
*r_attr = ATTR_DOMAIN_POINT;
return false;
}
eAttrDomain domain = BKE_id_attribute_domain(&me->id, layer);
if (!ELEM(domain, ATTR_DOMAIN_POINT, ATTR_DOMAIN_CORNER)) {
*r_layer = nullptr;
*r_attr = ATTR_DOMAIN_POINT;
return false;
}
*r_layer = layer;
*r_attr = domain;
return true;
}
static void pbvh_update_draw_buffer_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
/* Create and update draw buffers. The functions called here must not
* do any OpenGL calls. Flags are not cleared immediately, that happens
* after GPU_pbvh_buffer_flush() which does the final OpenGL calls. */
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
if (node->flag & PBVH_RebuildDrawBuffers) {
PBVH_GPU_Args args;
pbvh_draw_args_init(pbvh, &args, node);
node->draw_batches = DRW_pbvh_node_create(&args);
}
if (node->flag & PBVH_UpdateDrawBuffers) {
node->debug_draw_gen++;
if (node->draw_batches) {
PBVH_GPU_Args args;
pbvh_draw_args_init(pbvh, &args, node);
DRW_pbvh_node_update(node->draw_batches, &args);
}
}
}
void pbvh_free_draw_buffers(PBVH * /*pbvh*/, PBVHNode *node)
{
if (node->draw_batches) {
DRW_pbvh_node_free(node->draw_batches);
node->draw_batches = nullptr;
}
}
static void pbvh_update_draw_buffers(PBVH *pbvh, PBVHNode **nodes, int totnode, int update_flag)
{
const CustomData *vdata;
switch (pbvh->header.type) {
case PBVH_BMESH:
if (!pbvh->header.bm) {
/* BMesh hasn't been created yet */
return;
}
vdata = &pbvh->header.bm->vdata;
break;
case PBVH_FACES:
vdata = pbvh->vdata;
break;
case PBVH_GRIDS:
vdata = nullptr;
break;
}
UNUSED_VARS(vdata);
if ((update_flag & PBVH_RebuildDrawBuffers) || ELEM(pbvh->header.type, PBVH_GRIDS, PBVH_BMESH)) {
/* Free buffers uses OpenGL, so not in parallel. */
for (int n = 0; n < totnode; n++) {
PBVHNode *node = nodes[n];
if (node->flag & PBVH_RebuildDrawBuffers) {
pbvh_free_draw_buffers(pbvh, node);
}
else if ((node->flag & PBVH_UpdateDrawBuffers) && node->draw_batches) {
PBVH_GPU_Args args;
pbvh_draw_args_init(pbvh, &args, node);
DRW_pbvh_update_pre(node->draw_batches, &args);
}
}
}
/* Parallel creation and update of draw buffers. */
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_draw_buffer_cb, &settings);
for (int i = 0; i < totnode; i++) {
PBVHNode *node = nodes[i];
if (node->flag & PBVH_UpdateDrawBuffers) {
/* Flush buffers uses OpenGL, so not in parallel. */
if (node->draw_batches) {
DRW_pbvh_node_gpu_flush(node->draw_batches);
}
}
node->flag &= ~(PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers);
}
}
static int pbvh_flush_bb(PBVH *pbvh, PBVHNode *node, int flag)
{
int update = 0;
/* Difficult to multi-thread well, we just do single threaded recursive. */
if (node->flag & PBVH_Leaf) {
if (flag & PBVH_UpdateBB) {
update |= (node->flag & PBVH_UpdateBB);
node->flag &= ~PBVH_UpdateBB;
}
if (flag & PBVH_UpdateOriginalBB) {
update |= (node->flag & PBVH_UpdateOriginalBB);
node->flag &= ~PBVH_UpdateOriginalBB;
}
return update;
}
update |= pbvh_flush_bb(pbvh, pbvh->nodes + node->children_offset, flag);
update |= pbvh_flush_bb(pbvh, pbvh->nodes + node->children_offset + 1, flag);
if (update & PBVH_UpdateBB) {
update_node_vb(pbvh, node);
}
if (update & PBVH_UpdateOriginalBB) {
node->orig_vb = node->vb;
}
return update;
}
void BKE_pbvh_update_bounds(PBVH *pbvh, int flag)
{
if (!pbvh->nodes) {
return;
}
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(pbvh, update_search_cb, POINTER_FROM_INT(flag), &nodes, &totnode);
if (flag & (PBVH_UpdateBB | PBVH_UpdateOriginalBB | PBVH_UpdateRedraw)) {
pbvh_update_BB_redraw(pbvh, nodes, totnode, flag);
}
if (flag & (PBVH_UpdateBB | PBVH_UpdateOriginalBB)) {
pbvh_flush_bb(pbvh, pbvh->nodes, flag);
}
MEM_SAFE_FREE(nodes);
}
void BKE_pbvh_update_vertex_data(PBVH *pbvh, int flag)
{
if (!pbvh->nodes) {
return;
}
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(pbvh, update_search_cb, POINTER_FROM_INT(flag), &nodes, &totnode);
if (flag & (PBVH_UpdateMask)) {
pbvh_update_mask_redraw(pbvh, nodes, totnode, flag);
}
if (flag & (PBVH_UpdateColor)) {
for (int i = 0; i < totnode; i++) {
nodes[i]->flag |= PBVH_UpdateRedraw | PBVH_UpdateDrawBuffers | PBVH_UpdateColor;
}
}
if (flag & (PBVH_UpdateVisibility)) {
pbvh_update_visibility_redraw(pbvh, nodes, totnode, flag);
}
if (nodes) {
MEM_freeN(nodes);
}
}
static void pbvh_faces_node_visibility_update(PBVH *pbvh, PBVHNode *node)
{
int totvert, i;
BKE_pbvh_node_num_verts(pbvh, node, nullptr, &totvert);
const int *vert_indices = BKE_pbvh_node_get_vert_indices(node);
if (pbvh->hide_vert == nullptr) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
for (i = 0; i < totvert; i++) {
if (!(pbvh->hide_vert[vert_indices[i]])) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
}
BKE_pbvh_node_fully_hidden_set(node, true);
}
static void pbvh_grids_node_visibility_update(PBVH *pbvh, PBVHNode *node)
{
CCGElem **grids;
BLI_bitmap **grid_hidden;
int *grid_indices, totgrid, i;
BKE_pbvh_node_get_grids(pbvh, node, &grid_indices, &totgrid, nullptr, nullptr, &grids);
grid_hidden = BKE_pbvh_grid_hidden(pbvh);
CCGKey key = *BKE_pbvh_get_grid_key(pbvh);
for (i = 0; i < totgrid; i++) {
int g = grid_indices[i], x, y;
BLI_bitmap *gh = grid_hidden[g];
if (!gh) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
for (y = 0; y < key.grid_size; y++) {
for (x = 0; x < key.grid_size; x++) {
if (!BLI_BITMAP_TEST(gh, y * key.grid_size + x)) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
}
}
}
BKE_pbvh_node_fully_hidden_set(node, true);
}
static void pbvh_bmesh_node_visibility_update(PBVHNode *node)
{
GSet *unique, *other;
unique = BKE_pbvh_bmesh_node_unique_verts(node);
other = BKE_pbvh_bmesh_node_other_verts(node);
GSetIterator gs_iter;
GSET_ITER (gs_iter, unique) {
BMVert *v = static_cast<BMVert *>(BLI_gsetIterator_getKey(&gs_iter));
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
}
GSET_ITER (gs_iter, other) {
BMVert *v = static_cast<BMVert *>(BLI_gsetIterator_getKey(&gs_iter));
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
BKE_pbvh_node_fully_hidden_set(node, false);
return;
}
}
BKE_pbvh_node_fully_hidden_set(node, true);
}
static void pbvh_update_visibility_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
PBVHUpdateData *data = static_cast<PBVHUpdateData *>(userdata);
PBVH *pbvh = data->pbvh;
PBVHNode *node = data->nodes[n];
if (node->flag & PBVH_UpdateVisibility) {
switch (BKE_pbvh_type(pbvh)) {
case PBVH_FACES:
pbvh_faces_node_visibility_update(pbvh, node);
break;
case PBVH_GRIDS:
pbvh_grids_node_visibility_update(pbvh, node);
break;
case PBVH_BMESH:
pbvh_bmesh_node_visibility_update(node);
break;
}
node->flag &= ~PBVH_UpdateVisibility;
}
}
static void pbvh_update_visibility(PBVH *pbvh, PBVHNode **nodes, int totnode)
{
PBVHUpdateData data{};
data.pbvh = pbvh;
data.nodes = nodes;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, pbvh_update_visibility_task_cb, &settings);
}
void BKE_pbvh_update_visibility(PBVH *pbvh)
{
if (!pbvh->nodes) {
return;
}
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(
pbvh, update_search_cb, POINTER_FROM_INT(PBVH_UpdateVisibility), &nodes, &totnode);
pbvh_update_visibility(pbvh, nodes, totnode);
if (nodes) {
MEM_freeN(nodes);
}
}
void BKE_pbvh_redraw_BB(PBVH *pbvh, float bb_min[3], float bb_max[3])
{
PBVHIter iter;
PBVHNode *node;
BB bb;
BB_reset(&bb);
pbvh_iter_begin(&iter, pbvh, nullptr, nullptr);
while ((node = pbvh_iter_next(&iter, PBVH_Leaf))) {
if (node->flag & PBVH_UpdateRedraw) {
BB_expand_with_bb(&bb, &node->vb);
}
}
pbvh_iter_end(&iter);
copy_v3_v3(bb_min, bb.bmin);
copy_v3_v3(bb_max, bb.bmax);
}
void BKE_pbvh_get_grid_updates(PBVH *pbvh, bool clear, void ***r_gridfaces, int *r_totface)
{
GSet *face_set = BLI_gset_ptr_new(__func__);
PBVHNode *node;
PBVHIter iter;
pbvh_iter_begin(&iter, pbvh, nullptr, nullptr);
while ((node = pbvh_iter_next(&iter, PBVH_Leaf))) {
if (node->flag & PBVH_UpdateNormals) {
for (uint i = 0; i < node->totprim; i++) {
void *face = pbvh->gridfaces[node->prim_indices[i]];
BLI_gset_add(face_set, face);
}
if (clear) {
node->flag &= ~PBVH_UpdateNormals;
}
}
}
pbvh_iter_end(&iter);
const int tot = BLI_gset_len(face_set);
if (tot == 0) {
*r_totface = 0;
*r_gridfaces = nullptr;
BLI_gset_free(face_set, nullptr);
return;
}
void **faces = static_cast<void **>(MEM_mallocN(sizeof(*faces) * tot, __func__));
GSetIterator gs_iter;
int i;
GSET_ITER_INDEX (gs_iter, face_set, i) {
faces[i] = BLI_gsetIterator_getKey(&gs_iter);
}
BLI_gset_free(face_set, nullptr);
*r_totface = tot;
*r_gridfaces = faces;
}
/***************************** PBVH Access ***********************************/
bool BKE_pbvh_has_faces(const PBVH *pbvh)
{
if (pbvh->header.type == PBVH_BMESH) {
return (pbvh->header.bm->totface != 0);
}
return (pbvh->totprim != 0);
}
void BKE_pbvh_bounding_box(const PBVH *pbvh, float min[3], float max[3])
{
if (pbvh->totnode) {
const BB *bb = &pbvh->nodes[0].vb;
copy_v3_v3(min, bb->bmin);
copy_v3_v3(max, bb->bmax);
}
else {
zero_v3(min);
zero_v3(max);
}
}
BLI_bitmap **BKE_pbvh_grid_hidden(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return pbvh->grid_hidden;
}
const CCGKey *BKE_pbvh_get_grid_key(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return &pbvh->gridkey;
}
CCGElem **BKE_pbvh_get_grids(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return pbvh->grids;
}
BLI_bitmap **BKE_pbvh_get_grid_visibility(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return pbvh->grid_hidden;
}
int BKE_pbvh_get_grid_num_verts(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return pbvh->totgrid * pbvh->gridkey.grid_area;
}
int BKE_pbvh_get_grid_num_faces(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_GRIDS);
return pbvh->totgrid * (pbvh->gridkey.grid_size - 1) * (pbvh->gridkey.grid_size - 1);
}
/***************************** Node Access ***********************************/
void BKE_pbvh_node_mark_update(PBVHNode *node)
{
node->flag |= PBVH_UpdateNormals | PBVH_UpdateBB | PBVH_UpdateOriginalBB |
PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw | PBVH_RebuildPixels;
}
void BKE_pbvh_node_mark_update_mask(PBVHNode *node)
{
node->flag |= PBVH_UpdateMask | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw;
}
void BKE_pbvh_node_mark_update_color(PBVHNode *node)
{
node->flag |= PBVH_UpdateColor | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw;
}
void BKE_pbvh_node_mark_update_face_sets(PBVHNode *node)
{
node->flag |= PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw;
}
void BKE_pbvh_mark_rebuild_pixels(PBVH *pbvh)
{
for (int n = 0; n < pbvh->totnode; n++) {
PBVHNode *node = &pbvh->nodes[n];
if (node->flag & PBVH_Leaf) {
node->flag |= PBVH_RebuildPixels;
}
}
}
void BKE_pbvh_node_mark_update_visibility(PBVHNode *node)
{
node->flag |= PBVH_UpdateVisibility | PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers |
PBVH_UpdateRedraw;
}
void BKE_pbvh_node_mark_rebuild_draw(PBVHNode *node)
{
node->flag |= PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw;
}
void BKE_pbvh_node_mark_redraw(PBVHNode *node)
{
node->flag |= PBVH_UpdateDrawBuffers | PBVH_UpdateRedraw;
}
void BKE_pbvh_node_mark_normals_update(PBVHNode *node)
{
node->flag |= PBVH_UpdateNormals;
}
void BKE_pbvh_node_fully_hidden_set(PBVHNode *node, int fully_hidden)
{
BLI_assert(node->flag & PBVH_Leaf);
if (fully_hidden) {
node->flag |= PBVH_FullyHidden;
}
else {
node->flag &= ~PBVH_FullyHidden;
}
}
bool BKE_pbvh_node_fully_hidden_get(PBVHNode *node)
{
return (node->flag & PBVH_Leaf) && (node->flag & PBVH_FullyHidden);
}
void BKE_pbvh_node_fully_masked_set(PBVHNode *node, int fully_masked)
{
BLI_assert(node->flag & PBVH_Leaf);
if (fully_masked) {
node->flag |= PBVH_FullyMasked;
}
else {
node->flag &= ~PBVH_FullyMasked;
}
}
bool BKE_pbvh_node_fully_masked_get(PBVHNode *node)
{
return (node->flag & PBVH_Leaf) && (node->flag & PBVH_FullyMasked);
}
void BKE_pbvh_node_fully_unmasked_set(PBVHNode *node, int fully_masked)
{
BLI_assert(node->flag & PBVH_Leaf);
if (fully_masked) {
node->flag |= PBVH_FullyUnmasked;
}
else {
node->flag &= ~PBVH_FullyUnmasked;
}
}
bool BKE_pbvh_node_fully_unmasked_get(PBVHNode *node)
{
return (node->flag & PBVH_Leaf) && (node->flag & PBVH_FullyUnmasked);
}
void BKE_pbvh_vert_tag_update_normal(PBVH *pbvh, PBVHVertRef vertex)
{
BLI_assert(pbvh->header.type == PBVH_FACES);
pbvh->vert_bitmap[vertex.i] = true;
}
void BKE_pbvh_node_get_loops(PBVH *pbvh,
PBVHNode *node,
const int **r_loop_indices,
const MLoop **r_loops)
{
BLI_assert(BKE_pbvh_type(pbvh) == PBVH_FACES);
if (r_loop_indices) {
*r_loop_indices = node->loop_indices;
}
if (r_loops) {
*r_loops = pbvh->mloop;
}
}
int BKE_pbvh_num_faces(const PBVH *pbvh)
{
switch (pbvh->header.type) {
case PBVH_GRIDS:
case PBVH_FACES:
return pbvh->faces_num;
case PBVH_BMESH:
return pbvh->header.bm->totface;
}
BLI_assert_unreachable();
return 0;
}
const int *BKE_pbvh_node_get_vert_indices(PBVHNode *node)
{
return node->vert_indices;
}
void BKE_pbvh_node_num_verts(PBVH *pbvh, PBVHNode *node, int *r_uniquevert, int *r_totvert)
{
int tot;
switch (pbvh->header.type) {
case PBVH_GRIDS:
tot = node->totprim * pbvh->gridkey.grid_area;
if (r_totvert) {
*r_totvert = tot;
}
if (r_uniquevert) {
*r_uniquevert = tot;
}
break;
case PBVH_FACES:
if (r_totvert) {
*r_totvert = node->uniq_verts + node->face_verts;
}
if (r_uniquevert) {
*r_uniquevert = node->uniq_verts;
}
break;
case PBVH_BMESH:
tot = BLI_gset_len(node->bm_unique_verts);
if (r_totvert) {
*r_totvert = tot + BLI_gset_len(node->bm_other_verts);
}
if (r_uniquevert) {
*r_uniquevert = tot;
}
break;
}
}
void BKE_pbvh_node_get_grids(PBVH *pbvh,
PBVHNode *node,
int **r_grid_indices,
int *r_totgrid,
int *r_maxgrid,
int *r_gridsize,
CCGElem ***r_griddata)
{
switch (pbvh->header.type) {
case PBVH_GRIDS:
if (r_grid_indices) {
*r_grid_indices = node->prim_indices;
}
if (r_totgrid) {
*r_totgrid = node->totprim;
}
if (r_maxgrid) {
*r_maxgrid = pbvh->totgrid;
}
if (r_gridsize) {
*r_gridsize = pbvh->gridkey.grid_size;
}
if (r_griddata) {
*r_griddata = pbvh->grids;
}
break;
case PBVH_FACES:
case PBVH_BMESH:
if (r_grid_indices) {
*r_grid_indices = nullptr;
}
if (r_totgrid) {
*r_totgrid = 0;
}
if (r_maxgrid) {
*r_maxgrid = 0;
}
if (r_gridsize) {
*r_gridsize = 0;
}
if (r_griddata) {
*r_griddata = nullptr;
}
break;
}
}
void BKE_pbvh_node_get_BB(PBVHNode *node, float bb_min[3], float bb_max[3])
{
copy_v3_v3(bb_min, node->vb.bmin);
copy_v3_v3(bb_max, node->vb.bmax);
}
void BKE_pbvh_node_get_original_BB(PBVHNode *node, float bb_min[3], float bb_max[3])
{
copy_v3_v3(bb_min, node->orig_vb.bmin);
copy_v3_v3(bb_max, node->orig_vb.bmax);
}
void BKE_pbvh_node_get_proxies(PBVHNode *node, PBVHProxyNode **proxies, int *proxy_count)
{
if (node->proxy_count > 0) {
if (proxies) {
*proxies = node->proxies;
}
if (proxy_count) {
*proxy_count = node->proxy_count;
}
}
else {
if (proxies) {
*proxies = nullptr;
}
if (proxy_count) {
*proxy_count = 0;
}
}
}
void BKE_pbvh_node_get_bm_orco_data(PBVHNode *node,
int (**r_orco_tris)[3],
int *r_orco_tris_num,
float (**r_orco_coords)[3],
BMVert ***r_orco_verts)
{
*r_orco_tris = node->bm_ortri;
*r_orco_tris_num = node->bm_tot_ortri;
*r_orco_coords = node->bm_orco;
if (r_orco_verts) {
*r_orco_verts = node->bm_orvert;
}
}
bool BKE_pbvh_node_has_vert_with_normal_update_tag(PBVH *pbvh, PBVHNode *node)
{
BLI_assert(pbvh->header.type == PBVH_FACES);
const int *verts = node->vert_indices;
const int totvert = node->uniq_verts + node->face_verts;
for (int i = 0; i < totvert; i++) {
const int v = verts[i];
if (pbvh->vert_bitmap[v]) {
return true;
}
}
return false;
}
/********************************* Ray-cast ***********************************/
struct RaycastData {
IsectRayAABB_Precalc ray;
bool original;
};
static bool ray_aabb_intersect(PBVHNode *node, void *data_v)
{
RaycastData *rcd = static_cast<RaycastData *>(data_v);
const float *bb_min, *bb_max;
if (rcd->original) {
/* BKE_pbvh_node_get_original_BB */
bb_min = node->orig_vb.bmin;
bb_max = node->orig_vb.bmax;
}
else {
/* BKE_pbvh_node_get_BB */
bb_min = node->vb.bmin;
bb_max = node->vb.bmax;
}
return isect_ray_aabb_v3(&rcd->ray, bb_min, bb_max, &node->tmin);
}
void BKE_pbvh_raycast(PBVH *pbvh,
BKE_pbvh_HitOccludedCallback cb,
void *data,
const float ray_start[3],
const float ray_normal[3],
bool original)
{
RaycastData rcd;
isect_ray_aabb_v3_precalc(&rcd.ray, ray_start, ray_normal);
rcd.original = original;
BKE_pbvh_search_callback_occluded(pbvh, ray_aabb_intersect, &rcd, cb, data);
}
bool ray_face_intersection_quad(const float ray_start[3],
IsectRayPrecalc *isect_precalc,
const float t0[3],
const float t1[3],
const float t2[3],
const float t3[3],
float *depth)
{
float depth_test;
if ((isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t1, t2, &depth_test, nullptr) &&
(depth_test < *depth)) ||
(isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t2, t3, &depth_test, nullptr) &&
(depth_test < *depth))) {
*depth = depth_test;
return true;
}
return false;
}
bool ray_face_intersection_tri(const float ray_start[3],
IsectRayPrecalc *isect_precalc,
const float t0[3],
const float t1[3],
const float t2[3],
float *depth)
{
float depth_test;
if (isect_ray_tri_watertight_v3(ray_start, isect_precalc, t0, t1, t2, &depth_test, nullptr) &&
(depth_test < *depth)) {
*depth = depth_test;
return true;
}
return false;
}
/* Take advantage of the fact we know this won't be an intersection.
* Just handle ray-tri edges. */
static float dist_squared_ray_to_tri_v3_fast(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
const float v2[3],
float r_point[3],
float *r_depth)
{
const float *tri[3] = {v0, v1, v2};
float dist_sq_best = FLT_MAX;
for (int i = 0, j = 2; i < 3; j = i++) {
float point_test[3], depth_test = FLT_MAX;
const float dist_sq_test = dist_squared_ray_to_seg_v3(
ray_origin, ray_direction, tri[i], tri[j], point_test, &depth_test);
if (dist_sq_test < dist_sq_best || i == 0) {
copy_v3_v3(r_point, point_test);
*r_depth = depth_test;
dist_sq_best = dist_sq_test;
}
}
return dist_sq_best;
}
bool ray_face_nearest_quad(const float ray_start[3],
const float ray_normal[3],
const float t0[3],
const float t1[3],
const float t2[3],
const float t3[3],
float *depth,
float *dist_sq)
{
float dist_sq_test;
float co[3], depth_test;
if ((dist_sq_test = dist_squared_ray_to_tri_v3_fast(
ray_start, ray_normal, t0, t1, t2, co, &depth_test)) < *dist_sq) {
*dist_sq = dist_sq_test;
*depth = depth_test;
if ((dist_sq_test = dist_squared_ray_to_tri_v3_fast(
ray_start, ray_normal, t0, t2, t3, co, &depth_test)) < *dist_sq) {
*dist_sq = dist_sq_test;
*depth = depth_test;
}
return true;
}
return false;
}
bool ray_face_nearest_tri(const float ray_start[3],
const float ray_normal[3],
const float t0[3],
const float t1[3],
const float t2[3],
float *depth,
float *dist_sq)
{
float dist_sq_test;
float co[3], depth_test;
if ((dist_sq_test = dist_squared_ray_to_tri_v3_fast(
ray_start, ray_normal, t0, t1, t2, co, &depth_test)) < *dist_sq) {
*dist_sq = dist_sq_test;
*depth = depth_test;
return true;
}
return false;
}
static bool pbvh_faces_node_raycast(PBVH *pbvh,
const PBVHNode *node,
float (*origco)[3],
const float ray_start[3],
const float ray_normal[3],
IsectRayPrecalc *isect_precalc,
float *depth,
PBVHVertRef *r_active_vertex,
int *r_active_face_index,
float *r_face_normal)
{
const float(*positions)[3] = pbvh->vert_positions;
const MLoop *mloop = pbvh->mloop;
const int *faces = node->prim_indices;
int totface = node->totprim;
bool hit = false;
float nearest_vertex_co[3] = {0.0f};
for (int i = 0; i < totface; i++) {
const MLoopTri *lt = &pbvh->looptri[faces[i]];
const int *face_verts = node->face_vert_indices[i];
if (pbvh->respect_hide && paint_is_face_hidden(lt, pbvh->hide_poly)) {
continue;
}
const float *co[3];
if (origco) {
/* Intersect with backed up original coordinates. */
co[0] = origco[face_verts[0]];
co[1] = origco[face_verts[1]];
co[2] = origco[face_verts[2]];
}
else {
/* intersect with current coordinates */
co[0] = positions[mloop[lt->tri[0]].v];
co[1] = positions[mloop[lt->tri[1]].v];
co[2] = positions[mloop[lt->tri[2]].v];
}
if (ray_face_intersection_tri(ray_start, isect_precalc, co[0], co[1], co[2], depth)) {
hit = true;
if (r_face_normal) {
normal_tri_v3(r_face_normal, co[0], co[1], co[2]);
}
if (r_active_vertex) {
float location[3] = {0.0f};
madd_v3_v3v3fl(location, ray_start, ray_normal, *depth);
for (int j = 0; j < 3; j++) {
/* Always assign nearest_vertex_co in the first iteration to avoid comparison against
* uninitialized values. This stores the closest vertex in the current intersecting
* triangle. */
if (j == 0 ||
len_squared_v3v3(location, co[j]) < len_squared_v3v3(location, nearest_vertex_co)) {
copy_v3_v3(nearest_vertex_co, co[j]);
r_active_vertex->i = mloop[lt->tri[j]].v;
*r_active_face_index = lt->poly;
}
}
}
}
}
return hit;
}
static bool pbvh_grids_node_raycast(PBVH *pbvh,
PBVHNode *node,
float (*origco)[3],
const float ray_start[3],
const float ray_normal[3],
IsectRayPrecalc *isect_precalc,
float *depth,
PBVHVertRef *r_active_vertex,
int *r_active_grid_index,
float *r_face_normal)
{
const int totgrid = node->totprim;
const int gridsize = pbvh->gridkey.grid_size;
bool hit = false;
float nearest_vertex_co[3] = {0.0};
const CCGKey *gridkey = &pbvh->gridkey;
for (int i = 0; i < totgrid; i++) {
const int grid_index = node->prim_indices[i];
CCGElem *grid = pbvh->grids[grid_index];
BLI_bitmap *gh;
if (!grid) {
continue;
}
gh = pbvh->grid_hidden[grid_index];
for (int y = 0; y < gridsize - 1; y++) {
for (int x = 0; x < gridsize - 1; x++) {
/* check if grid face is hidden */
if (gh) {
if (paint_is_grid_face_hidden(gh, gridsize, x, y)) {
continue;
}
}
const float *co[4];
if (origco) {
co[0] = origco[(y + 1) * gridsize + x];
co[1] = origco[(y + 1) * gridsize + x + 1];
co[2] = origco[y * gridsize + x + 1];
co[3] = origco[y * gridsize + x];
}
else {
co[0] = CCG_grid_elem_co(gridkey, grid, x, y + 1);
co[1] = CCG_grid_elem_co(gridkey, grid, x + 1, y + 1);
co[2] = CCG_grid_elem_co(gridkey, grid, x + 1, y);
co[3] = CCG_grid_elem_co(gridkey, grid, x, y);
}
if (ray_face_intersection_quad(
ray_start, isect_precalc, co[0], co[1], co[2], co[3], depth)) {
hit = true;
if (r_face_normal) {
normal_quad_v3(r_face_normal, co[0], co[1], co[2], co[3]);
}
if (r_active_vertex) {
float location[3] = {0.0};
madd_v3_v3v3fl(location, ray_start, ray_normal, *depth);
const int x_it[4] = {0, 1, 1, 0};
const int y_it[4] = {1, 1, 0, 0};
for (int j = 0; j < 4; j++) {
/* Always assign nearest_vertex_co in the first iteration to avoid comparison against
* uninitialized values. This stores the closest vertex in the current intersecting
* quad. */
if (j == 0 || len_squared_v3v3(location, co[j]) <
len_squared_v3v3(location, nearest_vertex_co)) {
copy_v3_v3(nearest_vertex_co, co[j]);
r_active_vertex->i = gridkey->grid_area * grid_index +
(y + y_it[j]) * gridkey->grid_size + (x + x_it[j]);
}
}
}
if (r_active_grid_index) {
*r_active_grid_index = grid_index;
}
}
}
}
if (origco) {
origco += gridsize * gridsize;
}
}
return hit;
}
bool BKE_pbvh_node_raycast(PBVH *pbvh,
PBVHNode *node,
float (*origco)[3],
bool use_origco,
const float ray_start[3],
const float ray_normal[3],
IsectRayPrecalc *isect_precalc,
float *depth,
PBVHVertRef *active_vertex,
int *active_face_grid_index,
float *face_normal)
{
bool hit = false;
if (node->flag & PBVH_FullyHidden) {
return false;
}
switch (pbvh->header.type) {
case PBVH_FACES:
hit |= pbvh_faces_node_raycast(pbvh,
node,
origco,
ray_start,
ray_normal,
isect_precalc,
depth,
active_vertex,
active_face_grid_index,
face_normal);
break;
case PBVH_GRIDS:
hit |= pbvh_grids_node_raycast(pbvh,
node,
origco,
ray_start,
ray_normal,
isect_precalc,
depth,
active_vertex,
active_face_grid_index,
face_normal);
break;
case PBVH_BMESH:
BM_mesh_elem_index_ensure(pbvh->header.bm, BM_VERT);
hit = pbvh_bmesh_node_raycast(node,
ray_start,
ray_normal,
isect_precalc,
depth,
use_origco,
active_vertex,
face_normal);
break;
}
return hit;
}
void BKE_pbvh_raycast_project_ray_root(
PBVH *pbvh, bool original, float ray_start[3], float ray_end[3], float ray_normal[3])
{
if (pbvh->nodes) {
float rootmin_start, rootmin_end;
float bb_min_root[3], bb_max_root[3], bb_center[3], bb_diff[3];
IsectRayAABB_Precalc ray;
float ray_normal_inv[3];
float offset = 1.0f + 1e-3f;
const float offset_vec[3] = {1e-3f, 1e-3f, 1e-3f};
if (original) {
BKE_pbvh_node_get_original_BB(pbvh->nodes, bb_min_root, bb_max_root);
}
else {
BKE_pbvh_node_get_BB(pbvh->nodes, bb_min_root, bb_max_root);
}
/* Slightly offset min and max in case we have a zero width node
* (due to a plane mesh for instance), or faces very close to the bounding box boundary. */
mid_v3_v3v3(bb_center, bb_max_root, bb_min_root);
/* diff should be same for both min/max since it's calculated from center */
sub_v3_v3v3(bb_diff, bb_max_root, bb_center);
/* handles case of zero width bb */
add_v3_v3(bb_diff, offset_vec);
madd_v3_v3v3fl(bb_max_root, bb_center, bb_diff, offset);
madd_v3_v3v3fl(bb_min_root, bb_center, bb_diff, -offset);
/* first project start ray */
isect_ray_aabb_v3_precalc(&ray, ray_start, ray_normal);
if (!isect_ray_aabb_v3(&ray, bb_min_root, bb_max_root, &rootmin_start)) {
return;
}
/* then the end ray */
mul_v3_v3fl(ray_normal_inv, ray_normal, -1.0);
isect_ray_aabb_v3_precalc(&ray, ray_end, ray_normal_inv);
/* unlikely to fail exiting if entering succeeded, still keep this here */
if (!isect_ray_aabb_v3(&ray, bb_min_root, bb_max_root, &rootmin_end)) {
return;
}
madd_v3_v3v3fl(ray_start, ray_start, ray_normal, rootmin_start);
madd_v3_v3v3fl(ray_end, ray_end, ray_normal_inv, rootmin_end);
}
}
/* -------------------------------------------------------------------- */
struct FindNearestRayData {
DistRayAABB_Precalc dist_ray_to_aabb_precalc;
bool original;
};
static bool nearest_to_ray_aabb_dist_sq(PBVHNode *node, void *data_v)
{
FindNearestRayData *rcd = static_cast<FindNearestRayData *>(data_v);
const float *bb_min, *bb_max;
if (rcd->original) {
/* BKE_pbvh_node_get_original_BB */
bb_min = node->orig_vb.bmin;
bb_max = node->orig_vb.bmax;
}
else {
/* BKE_pbvh_node_get_BB */
bb_min = node->vb.bmin;
bb_max = node->vb.bmax;
}
float co_dummy[3], depth;
node->tmin = dist_squared_ray_to_aabb_v3(
&rcd->dist_ray_to_aabb_precalc, bb_min, bb_max, co_dummy, &depth);
/* Ideally we would skip distances outside the range. */
return depth > 0.0f;
}
void BKE_pbvh_find_nearest_to_ray(PBVH *pbvh,
BKE_pbvh_SearchNearestCallback cb,
void *data,
const float ray_start[3],
const float ray_normal[3],
bool original)
{
FindNearestRayData ncd;
dist_squared_ray_to_aabb_v3_precalc(&ncd.dist_ray_to_aabb_precalc, ray_start, ray_normal);
ncd.original = original;
BKE_pbvh_search_callback_occluded(pbvh, nearest_to_ray_aabb_dist_sq, &ncd, cb, data);
}
static bool pbvh_faces_node_nearest_to_ray(PBVH *pbvh,
const PBVHNode *node,
float (*origco)[3],
const float ray_start[3],
const float ray_normal[3],
float *depth,
float *dist_sq)
{
const float(*positions)[3] = pbvh->vert_positions;
const MLoop *mloop = pbvh->mloop;
const int *faces = node->prim_indices;
int i, totface = node->totprim;
bool hit = false;
for (i = 0; i < totface; i++) {
const MLoopTri *lt = &pbvh->looptri[faces[i]];
const int *face_verts = node->face_vert_indices[i];
if (pbvh->respect_hide && paint_is_face_hidden(lt, pbvh->hide_poly)) {
continue;
}
if (origco) {
/* Intersect with backed-up original coordinates. */
hit |= ray_face_nearest_tri(ray_start,
ray_normal,
origco[face_verts[0]],
origco[face_verts[1]],
origco[face_verts[2]],
depth,
dist_sq);
}
else {
/* intersect with current coordinates */
hit |= ray_face_nearest_tri(ray_start,
ray_normal,
positions[mloop[lt->tri[0]].v],
positions[mloop[lt->tri[1]].v],
positions[mloop[lt->tri[2]].v],
depth,
dist_sq);
}
}
return hit;
}
static bool pbvh_grids_node_nearest_to_ray(PBVH *pbvh,
PBVHNode *node,
float (*origco)[3],
const float ray_start[3],
const float ray_normal[3],
float *depth,
float *dist_sq)
{
const int totgrid = node->totprim;
const int gridsize = pbvh->gridkey.grid_size;
bool hit = false;
for (int i = 0; i < totgrid; i++) {
CCGElem *grid = pbvh->grids[node->prim_indices[i]];
BLI_bitmap *gh;
if (!grid) {
continue;
}
gh = pbvh->grid_hidden[node->prim_indices[i]];
for (int y = 0; y < gridsize - 1; y++) {
for (int x = 0; x < gridsize - 1; x++) {
/* check if grid face is hidden */
if (gh) {
if (paint_is_grid_face_hidden(gh, gridsize, x, y)) {
continue;
}
}
if (origco) {
hit |= ray_face_nearest_quad(ray_start,
ray_normal,
origco[y * gridsize + x],
origco[y * gridsize + x + 1],
origco[(y + 1) * gridsize + x + 1],
origco[(y + 1) * gridsize + x],
depth,
dist_sq);
}
else {
hit |= ray_face_nearest_quad(ray_start,
ray_normal,
CCG_grid_elem_co(&pbvh->gridkey, grid, x, y),
CCG_grid_elem_co(&pbvh->gridkey, grid, x + 1, y),
CCG_grid_elem_co(&pbvh->gridkey, grid, x + 1, y + 1),
CCG_grid_elem_co(&pbvh->gridkey, grid, x, y + 1),
depth,
dist_sq);
}
}
}
if (origco) {
origco += gridsize * gridsize;
}
}
return hit;
}
bool BKE_pbvh_node_find_nearest_to_ray(PBVH *pbvh,
PBVHNode *node,
float (*origco)[3],
bool use_origco,
const float ray_start[3],
const float ray_normal[3],
float *depth,
float *dist_sq)
{
bool hit = false;
if (node->flag & PBVH_FullyHidden) {
return false;
}
switch (pbvh->header.type) {
case PBVH_FACES:
hit |= pbvh_faces_node_nearest_to_ray(
pbvh, node, origco, ray_start, ray_normal, depth, dist_sq);
break;
case PBVH_GRIDS:
hit |= pbvh_grids_node_nearest_to_ray(
pbvh, node, origco, ray_start, ray_normal, depth, dist_sq);
break;
case PBVH_BMESH:
hit = pbvh_bmesh_node_nearest_to_ray(
node, ray_start, ray_normal, depth, dist_sq, use_origco);
break;
}
return hit;
}
enum PlaneAABBIsect {
ISECT_INSIDE,
ISECT_OUTSIDE,
ISECT_INTERSECT,
};
/* Adapted from:
* http://www.gamedev.net/community/forums/topic.asp?topic_id=512123
* Returns true if the AABB is at least partially within the frustum
* (ok, not a real frustum), false otherwise.
*/
static PlaneAABBIsect test_frustum_aabb(const float bb_min[3],
const float bb_max[3],
PBVHFrustumPlanes *frustum)
{
PlaneAABBIsect ret = ISECT_INSIDE;
float(*planes)[4] = frustum->planes;
for (int i = 0; i < frustum->num_planes; i++) {
float vmin[3], vmax[3];
for (int axis = 0; axis < 3; axis++) {
if (planes[i][axis] < 0) {
vmin[axis] = bb_min[axis];
vmax[axis] = bb_max[axis];
}
else {
vmin[axis] = bb_max[axis];
vmax[axis] = bb_min[axis];
}
}
if (dot_v3v3(planes[i], vmin) + planes[i][3] < 0) {
return ISECT_OUTSIDE;
}
if (dot_v3v3(planes[i], vmax) + planes[i][3] <= 0) {
ret = ISECT_INTERSECT;
}
}
return ret;
}
bool BKE_pbvh_node_frustum_contain_AABB(PBVHNode *node, void *data)
{
const float *bb_min, *bb_max;
/* BKE_pbvh_node_get_BB */
bb_min = node->vb.bmin;
bb_max = node->vb.bmax;
return test_frustum_aabb(bb_min, bb_max, static_cast<PBVHFrustumPlanes *>(data)) !=
ISECT_OUTSIDE;
}
bool BKE_pbvh_node_frustum_exclude_AABB(PBVHNode *node, void *data)
{
const float *bb_min, *bb_max;
/* BKE_pbvh_node_get_BB */
bb_min = node->vb.bmin;
bb_max = node->vb.bmax;
return test_frustum_aabb(bb_min, bb_max, static_cast<PBVHFrustumPlanes *>(data)) != ISECT_INSIDE;
}
void BKE_pbvh_update_normals(PBVH *pbvh, SubdivCCG *subdiv_ccg)
{
/* Update normals */
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(
pbvh, update_search_cb, POINTER_FROM_INT(PBVH_UpdateNormals), &nodes, &totnode);
if (totnode > 0) {
if (pbvh->header.type == PBVH_BMESH) {
pbvh_bmesh_normals_update(nodes, totnode);
}
else if (pbvh->header.type == PBVH_FACES) {
pbvh_faces_update_normals(pbvh, nodes, totnode);
}
else if (pbvh->header.type == PBVH_GRIDS) {
CCGFace **faces;
int num_faces;
BKE_pbvh_get_grid_updates(pbvh, true, (void ***)&faces, &num_faces);
if (num_faces > 0) {
BKE_subdiv_ccg_update_normals(subdiv_ccg, faces, num_faces);
MEM_freeN(faces);
}
}
}
MEM_SAFE_FREE(nodes);
}
void BKE_pbvh_face_sets_color_set(PBVH *pbvh, int seed, int color_default)
{
pbvh->face_sets_color_seed = seed;
pbvh->face_sets_color_default = color_default;
}
/**
* PBVH drawing, updating draw buffers as needed and culling any nodes outside
* the specified frustum.
*/
struct PBVHDrawSearchData {
PBVHFrustumPlanes *frustum;
int accum_update_flag;
PBVHAttrReq *attrs;
int attrs_num;
};
static bool pbvh_draw_search_cb(PBVHNode *node, void *data_v)
{
PBVHDrawSearchData *data = static_cast<PBVHDrawSearchData *>(data_v);
if (data->frustum && !BKE_pbvh_node_frustum_contain_AABB(node, data->frustum)) {
return false;
}
data->accum_update_flag |= node->flag;
return true;
}
void BKE_pbvh_draw_cb(PBVH *pbvh,
bool update_only_visible,
PBVHFrustumPlanes *update_frustum,
PBVHFrustumPlanes *draw_frustum,
void (*draw_fn)(void *user_data, PBVHBatches *batches, PBVH_GPU_Args *args),
void *user_data,
bool /*full_render*/,
PBVHAttrReq *attrs,
int attrs_num)
{
PBVHNode **nodes;
int totnode;
int update_flag = 0;
pbvh->draw_cache_invalid = false;
/* Search for nodes that need updates. */
if (update_only_visible) {
/* Get visible nodes with draw updates. */
PBVHDrawSearchData data{};
data.frustum = update_frustum;
data.accum_update_flag = 0;
data.attrs = attrs;
data.attrs_num = attrs_num;
BKE_pbvh_search_gather(pbvh, pbvh_draw_search_cb, &data, &nodes, &totnode);
update_flag = data.accum_update_flag;
}
else {
/* Get all nodes with draw updates, also those outside the view. */
const int search_flag = PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers;
BKE_pbvh_search_gather(
pbvh, update_search_cb, POINTER_FROM_INT(search_flag), &nodes, &totnode);
update_flag = PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers;
}
/* Update draw buffers. */
if (totnode != 0 && (update_flag & (PBVH_RebuildDrawBuffers | PBVH_UpdateDrawBuffers))) {
pbvh_update_draw_buffers(pbvh, nodes, totnode, update_flag);
}
MEM_SAFE_FREE(nodes);
/* Draw visible nodes. */
PBVHDrawSearchData draw_data{};
draw_data.frustum = draw_frustum;
draw_data.accum_update_flag = 0;
BKE_pbvh_search_gather(pbvh, pbvh_draw_search_cb, &draw_data, &nodes, &totnode);
PBVH_GPU_Args args;
for (int i = 0; i < totnode; i++) {
PBVHNode *node = nodes[i];
if (!(node->flag & PBVH_FullyHidden)) {
pbvh_draw_args_init(pbvh, &args, node);
draw_fn(user_data, node->draw_batches, &args);
}
}
MEM_SAFE_FREE(nodes);
}
void BKE_pbvh_draw_debug_cb(PBVH *pbvh,
void (*draw_fn)(PBVHNode *node,
void *user_data,
const float bmin[3],
const float bmax[3],
PBVHNodeFlags flag),
void *user_data)
{
PBVHNodeFlags flag = PBVH_Leaf;
for (int a = 0; a < pbvh->totnode; a++) {
PBVHNode *node = &pbvh->nodes[a];
if (node->flag & PBVH_TexLeaf) {
flag = PBVH_TexLeaf;
break;
}
}
for (int a = 0; a < pbvh->totnode; a++) {
PBVHNode *node = &pbvh->nodes[a];
if (!(node->flag & flag)) {
continue;
}
draw_fn(node, user_data, node->vb.bmin, node->vb.bmax, node->flag);
}
}
void BKE_pbvh_grids_update(PBVH *pbvh,
CCGElem **grids,
void **gridfaces,
DMFlagMat *flagmats,
BLI_bitmap **grid_hidden,
CCGKey *key)
{
pbvh->gridkey = *key;
pbvh->grids = grids;
pbvh->gridfaces = gridfaces;
if (flagmats != pbvh->grid_flag_mats || pbvh->grid_hidden != grid_hidden) {
pbvh->grid_flag_mats = flagmats;
pbvh->grid_hidden = grid_hidden;
for (int a = 0; a < pbvh->totnode; a++) {
BKE_pbvh_node_mark_rebuild_draw(&pbvh->nodes[a]);
}
}
}
float (*BKE_pbvh_vert_coords_alloc(PBVH *pbvh))[3]
{
float(*vertCos)[3] = nullptr;
if (pbvh->vert_positions) {
vertCos = static_cast<float(*)[3]>(
MEM_malloc_arrayN(pbvh->totvert, sizeof(float[3]), __func__));
memcpy(vertCos, pbvh->vert_positions, sizeof(float[3]) * pbvh->totvert);
}
return vertCos;
}
void BKE_pbvh_vert_coords_apply(PBVH *pbvh, const float (*vertCos)[3], const int totvert)
{
if (totvert != pbvh->totvert) {
BLI_assert_msg(0, "PBVH: Given deforming vcos number does not match PBVH vertex number!");
return;
}
if (!pbvh->deformed) {
if (pbvh->vert_positions) {
/* if pbvh is not already deformed, verts/faces points to the */
/* original data and applying new coords to this arrays would lead to */
/* unneeded deformation -- duplicate verts/faces to avoid this */
pbvh->vert_positions = static_cast<float(*)[3]>(MEM_dupallocN(pbvh->vert_positions));
/* No need to dupalloc pbvh->looptri, this one is 'totally owned' by pbvh,
* it's never some mesh data. */
pbvh->deformed = true;
}
}
if (pbvh->vert_positions) {
float(*positions)[3] = pbvh->vert_positions;
/* copy new verts coords */
for (int a = 0; a < pbvh->totvert; a++) {
/* no need for float comparison here (memory is exactly equal or not) */
if (memcmp(positions[a], vertCos[a], sizeof(float[3])) != 0) {
copy_v3_v3(positions[a], vertCos[a]);
BKE_pbvh_vert_tag_update_normal(pbvh, BKE_pbvh_make_vref(a));
}
}
for (int a = 0; a < pbvh->totnode; a++) {
BKE_pbvh_node_mark_update(&pbvh->nodes[a]);
}
BKE_pbvh_update_bounds(pbvh, PBVH_UpdateBB | PBVH_UpdateOriginalBB);
}
}
bool BKE_pbvh_is_deformed(PBVH *pbvh)
{
return pbvh->deformed;
}
/* Proxies */
PBVHProxyNode *BKE_pbvh_node_add_proxy(PBVH *pbvh, PBVHNode *node)
{
int index, totverts;
index = node->proxy_count;
node->proxy_count++;
if (node->proxies) {
node->proxies = static_cast<PBVHProxyNode *>(
MEM_reallocN(node->proxies, node->proxy_count * sizeof(PBVHProxyNode)));
}
else {
node->proxies = static_cast<PBVHProxyNode *>(MEM_mallocN(sizeof(PBVHProxyNode), __func__));
}
BKE_pbvh_node_num_verts(pbvh, node, &totverts, nullptr);
node->proxies[index].co = static_cast<float(*)[3]>(
MEM_callocN(sizeof(float[3]) * totverts, __func__));
return node->proxies + index;
}
void BKE_pbvh_node_free_proxies(PBVHNode *node)
{
for (int p = 0; p < node->proxy_count; p++) {
MEM_freeN(node->proxies[p].co);
node->proxies[p].co = nullptr;
}
MEM_freeN(node->proxies);
node->proxies = nullptr;
node->proxy_count = 0;
}
void BKE_pbvh_gather_proxies(PBVH *pbvh, PBVHNode ***r_array, int *r_tot)
{
PBVHNode **array = nullptr;
int tot = 0, space = 0;
for (int n = 0; n < pbvh->totnode; n++) {
PBVHNode *node = pbvh->nodes + n;
if (node->proxy_count > 0) {
if (tot == space) {
/* resize array if needed */
space = (tot == 0) ? 32 : space * 2;
array = static_cast<PBVHNode **>(
MEM_recallocN_id(array, sizeof(PBVHNode *) * space, __func__));
}
array[tot] = node;
tot++;
}
}
if (tot == 0 && array) {
MEM_freeN(array);
array = nullptr;
}
*r_array = array;
*r_tot = tot;
}
PBVHColorBufferNode *BKE_pbvh_node_color_buffer_get(PBVHNode *node)
{
if (!node->color_buffer.color) {
node->color_buffer.color = static_cast<float(*)[4]>(
MEM_callocN(sizeof(float[4]) * node->uniq_verts, "Color buffer"));
}
return &node->color_buffer;
}
void BKE_pbvh_node_color_buffer_free(PBVH *pbvh)
{
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(pbvh, nullptr, nullptr, &nodes, &totnode);
for (int i = 0; i < totnode; i++) {
MEM_SAFE_FREE(nodes[i]->color_buffer.color);
}
MEM_SAFE_FREE(nodes);
}
void pbvh_vertex_iter_init(PBVH *pbvh, PBVHNode *node, PBVHVertexIter *vi, int mode)
{
CCGElem **grids;
int *grid_indices;
int totgrid, gridsize, uniq_verts, totvert;
vi->grid = nullptr;
vi->no = nullptr;
vi->fno = nullptr;
vi->vert_positions = nullptr;
vi->vertex.i = 0LL;
vi->respect_hide = pbvh->respect_hide;
if (pbvh->respect_hide == false) {
/* The same value for all vertices. */
vi->visible = true;
}
BKE_pbvh_node_get_grids(pbvh, node, &grid_indices, &totgrid, nullptr, &gridsize, &grids);
BKE_pbvh_node_num_verts(pbvh, node, &uniq_verts, &totvert);
const int *vert_indices = BKE_pbvh_node_get_vert_indices(node);
vi->key = pbvh->gridkey;
vi->grids = grids;
vi->grid_indices = grid_indices;
vi->totgrid = (grids) ? totgrid : 1;
vi->gridsize = gridsize;
if (mode == PBVH_ITER_ALL) {
vi->totvert = totvert;
}
else {
vi->totvert = uniq_verts;
}
vi->vert_indices = vert_indices;
vi->vert_positions = pbvh->vert_positions;
vi->is_mesh = pbvh->vert_positions != nullptr;
if (pbvh->header.type == PBVH_BMESH) {
BLI_gsetIterator_init(&vi->bm_unique_verts, node->bm_unique_verts);
BLI_gsetIterator_init(&vi->bm_other_verts, node->bm_other_verts);
vi->bm_vdata = &pbvh->header.bm->vdata;
vi->cd_vert_mask_offset = CustomData_get_offset(vi->bm_vdata, CD_PAINT_MASK);
}
vi->gh = nullptr;
if (vi->grids && mode == PBVH_ITER_UNIQUE) {
vi->grid_hidden = pbvh->grid_hidden;
}
vi->mask = nullptr;
if (pbvh->header.type == PBVH_FACES) {
vi->vert_normals = pbvh->vert_normals;
vi->hide_vert = pbvh->hide_vert;
vi->vmask = static_cast<float *>(
CustomData_get_layer_for_write(pbvh->vdata, CD_PAINT_MASK, pbvh->mesh->totvert));
}
}
bool pbvh_has_mask(const PBVH *pbvh)
{
switch (pbvh->header.type) {
case PBVH_GRIDS:
return (pbvh->gridkey.has_mask != 0);
case PBVH_FACES:
return (pbvh->vdata && CustomData_get_layer(pbvh->vdata, CD_PAINT_MASK));
case PBVH_BMESH:
return (pbvh->header.bm &&
(CustomData_get_offset(&pbvh->header.bm->vdata, CD_PAINT_MASK) != -1));
}
return false;
}
bool pbvh_has_face_sets(PBVH *pbvh)
{
switch (pbvh->header.type) {
case PBVH_GRIDS:
case PBVH_FACES:
return pbvh->pdata &&
CustomData_get_layer_named(pbvh->pdata, CD_PROP_INT32, ".sculpt_face_set") != nullptr;
case PBVH_BMESH:
return false;
}
return false;
}
void BKE_pbvh_set_frustum_planes(PBVH *pbvh, PBVHFrustumPlanes *planes)
{
pbvh->num_planes = planes->num_planes;
for (int i = 0; i < pbvh->num_planes; i++) {
copy_v4_v4(pbvh->planes[i], planes->planes[i]);
}
}
void BKE_pbvh_get_frustum_planes(PBVH *pbvh, PBVHFrustumPlanes *planes)
{
planes->num_planes = pbvh->num_planes;
for (int i = 0; i < planes->num_planes; i++) {
copy_v4_v4(planes->planes[i], pbvh->planes[i]);
}
}
void BKE_pbvh_parallel_range_settings(TaskParallelSettings *settings,
bool use_threading,
int totnode)
{
memset(settings, 0, sizeof(*settings));
settings->use_threading = use_threading && totnode > 1;
}
float (*BKE_pbvh_get_vert_positions(const PBVH *pbvh))[3]
{
BLI_assert(pbvh->header.type == PBVH_FACES);
return pbvh->vert_positions;
}
const float (*BKE_pbvh_get_vert_normals(const PBVH *pbvh))[3]
{
BLI_assert(pbvh->header.type == PBVH_FACES);
return pbvh->vert_normals;
}
const bool *BKE_pbvh_get_vert_hide(const PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_FACES);
return pbvh->hide_vert;
}
const bool *BKE_pbvh_get_poly_hide(const PBVH *pbvh)
{
BLI_assert(ELEM(pbvh->header.type, PBVH_FACES, PBVH_GRIDS));
return pbvh->hide_poly;
}
bool *BKE_pbvh_get_vert_hide_for_write(PBVH *pbvh)
{
BLI_assert(pbvh->header.type == PBVH_FACES);
if (pbvh->hide_vert) {
return pbvh->hide_vert;
}
pbvh->hide_vert = static_cast<bool *>(CustomData_get_layer_named_for_write(
&pbvh->mesh->vdata, CD_PROP_BOOL, ".hide_vert", pbvh->mesh->totvert));
if (pbvh->hide_vert) {
return pbvh->hide_vert;
}
pbvh->hide_vert = static_cast<bool *>(CustomData_add_layer_named(&pbvh->mesh->vdata,
CD_PROP_BOOL,
CD_SET_DEFAULT,
nullptr,
pbvh->mesh->totvert,
".hide_vert"));
return pbvh->hide_vert;
}
void BKE_pbvh_subdiv_cgg_set(PBVH *pbvh, SubdivCCG *subdiv_ccg)
{
pbvh->subdiv_ccg = subdiv_ccg;
}
void BKE_pbvh_face_sets_set(PBVH *pbvh, int *face_sets)
{
pbvh->face_sets = face_sets;
}
void BKE_pbvh_update_hide_attributes_from_mesh(PBVH *pbvh)
{
if (pbvh->header.type == PBVH_FACES) {
pbvh->hide_vert = static_cast<bool *>(CustomData_get_layer_named_for_write(
&pbvh->mesh->vdata, CD_PROP_BOOL, ".hide_vert", pbvh->mesh->totvert));
pbvh->hide_poly = static_cast<bool *>(CustomData_get_layer_named_for_write(
&pbvh->mesh->pdata, CD_PROP_BOOL, ".hide_poly", pbvh->mesh->totpoly));
}
}
void BKE_pbvh_respect_hide_set(PBVH *pbvh, bool respect_hide)
{
pbvh->respect_hide = respect_hide;
}
bool BKE_pbvh_is_drawing(const PBVH *pbvh)
{
return pbvh->is_drawing;
}
bool BKE_pbvh_draw_cache_invalid(const PBVH *pbvh)
{
return pbvh->draw_cache_invalid;
}
void BKE_pbvh_is_drawing_set(PBVH *pbvh, bool val)
{
pbvh->is_drawing = val;
}
void BKE_pbvh_node_num_loops(PBVH *pbvh, PBVHNode *node, int *r_totloop)
{
UNUSED_VARS(pbvh);
BLI_assert(BKE_pbvh_type(pbvh) == PBVH_FACES);
if (r_totloop) {
*r_totloop = node->loop_indices_num;
}
}
void BKE_pbvh_update_active_vcol(PBVH *pbvh, const Mesh *mesh)
{
BKE_pbvh_get_color_layer(mesh, &pbvh->color_layer, &pbvh->color_domain);
}
void BKE_pbvh_pmap_set(PBVH *pbvh, const MeshElemMap *pmap)
{
pbvh->pmap = pmap;
}
void BKE_pbvh_ensure_node_loops(PBVH *pbvh)
{
BLI_assert(BKE_pbvh_type(pbvh) == PBVH_FACES);
int totloop = 0;
/* Check if nodes already have loop indices. */
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = pbvh->nodes + i;
if (!(node->flag & PBVH_Leaf)) {
continue;
}
if (node->loop_indices) {
return;
}
totloop += node->totprim * 3;
}
BLI_bitmap *visit = BLI_BITMAP_NEW(totloop, __func__);
/* Create loop indices from node loop triangles. */
for (int i = 0; i < pbvh->totnode; i++) {
PBVHNode *node = pbvh->nodes + i;
if (!(node->flag & PBVH_Leaf)) {
continue;
}
node->loop_indices = static_cast<int *>(
MEM_malloc_arrayN(node->totprim * 3, sizeof(int), __func__));
node->loop_indices_num = 0;
for (int j = 0; j < node->totprim; j++) {
const MLoopTri *mlt = pbvh->looptri + node->prim_indices[j];
for (int k = 0; k < 3; k++) {
if (!BLI_BITMAP_TEST(visit, mlt->tri[k])) {
node->loop_indices[node->loop_indices_num++] = mlt->tri[k];
BLI_BITMAP_ENABLE(visit, mlt->tri[k]);
}
}
}
}
MEM_SAFE_FREE(visit);
}
int BKE_pbvh_debug_draw_gen_get(PBVHNode *node)
{
return node->debug_draw_gen;
}
static void pbvh_face_iter_verts_reserve(PBVHFaceIter *fd, int verts_num)
{
if (verts_num >= fd->verts_size_) {
fd->verts_size_ = (verts_num + 1) << 2;
if (fd->verts != fd->verts_reserved_) {
MEM_SAFE_FREE(fd->verts);
}
fd->verts = static_cast<PBVHVertRef *>(
MEM_malloc_arrayN(fd->verts_size_, sizeof(void *), __func__));
}
fd->verts_num = verts_num;
}
BLI_INLINE int face_iter_prim_to_face(PBVHFaceIter *fd, int prim_index)
{
if (fd->subdiv_ccg_) {
return BKE_subdiv_ccg_grid_to_face_index(fd->subdiv_ccg_, prim_index);
}
return fd->looptri_[prim_index].poly;
}
static void pbvh_face_iter_step(PBVHFaceIter *fd, bool do_step)
{
if (do_step) {
fd->i++;
}
switch (fd->pbvh_type_) {
case PBVH_BMESH: {
if (do_step) {
BLI_gsetIterator_step(&fd->bm_faces_iter_);
if (BLI_gsetIterator_done(&fd->bm_faces_iter_)) {
return;
}
}
BMFace *f = (BMFace *)BLI_gsetIterator_getKey(&fd->bm_faces_iter_);
fd->face.i = intptr_t(f);
fd->index = f->head.index;
if (fd->cd_face_set_ != -1) {
fd->face_set = (int *)BM_ELEM_CD_GET_VOID_P(f, fd->cd_face_set_);
}
if (fd->cd_hide_poly_ != -1) {
fd->hide = (bool *)BM_ELEM_CD_GET_VOID_P(f, fd->cd_hide_poly_);
}
pbvh_face_iter_verts_reserve(fd, f->len);
int vertex_i = 0;
BMLoop *l = f->l_first;
do {
fd->verts[vertex_i++].i = intptr_t(l->v);
} while ((l = l->next) != f->l_first);
break;
}
case PBVH_GRIDS:
case PBVH_FACES: {
int face_index = 0;
if (do_step) {
fd->prim_index_++;
while (fd->prim_index_ < fd->node_->totprim) {
face_index = face_iter_prim_to_face(fd, fd->node_->prim_indices[fd->prim_index_]);
if (face_index != fd->last_face_index_) {
break;
}
fd->prim_index_++;
}
}
else if (fd->prim_index_ < fd->node_->totprim) {
face_index = face_iter_prim_to_face(fd, fd->node_->prim_indices[fd->prim_index_]);
}
if (fd->prim_index_ >= fd->node_->totprim) {
return;
}
fd->last_face_index_ = face_index;
const MPoly &poly = fd->polys_[face_index];
fd->face.i = fd->index = face_index;
if (fd->face_sets_) {
fd->face_set = fd->face_sets_ + face_index;
}
if (fd->hide_poly_) {
fd->hide = fd->hide_poly_ + face_index;
}
pbvh_face_iter_verts_reserve(fd, poly.totloop);
const MLoop *ml = fd->mloop_ + poly.loopstart;
const int grid_area = fd->subdiv_key_.grid_area;
for (int i = 0; i < poly.totloop; i++, ml++) {
if (fd->pbvh_type_ == PBVH_GRIDS) {
/* Grid corners. */
fd->verts[i].i = (poly.loopstart + i) * grid_area + grid_area - 1;
}
else {
fd->verts[i].i = ml->v;
}
}
break;
}
}
}
void BKE_pbvh_face_iter_step(PBVHFaceIter *fd)
{
pbvh_face_iter_step(fd, true);
}
void BKE_pbvh_face_iter_init(PBVH *pbvh, PBVHNode *node, PBVHFaceIter *fd)
{
memset(fd, 0, sizeof(*fd));
fd->node_ = node;
fd->pbvh_type_ = BKE_pbvh_type(pbvh);
fd->verts = fd->verts_reserved_;
fd->verts_size_ = PBVH_FACE_ITER_VERTS_RESERVED;
switch (BKE_pbvh_type(pbvh)) {
case PBVH_GRIDS:
fd->subdiv_ccg_ = pbvh->subdiv_ccg;
fd->subdiv_key_ = pbvh->gridkey;
ATTR_FALLTHROUGH;
case PBVH_FACES:
fd->polys_ = pbvh->polys;
fd->mloop_ = pbvh->mloop;
fd->looptri_ = pbvh->looptri;
fd->hide_poly_ = pbvh->hide_poly;
fd->face_sets_ = pbvh->face_sets;
fd->last_face_index_ = -1;
break;
case PBVH_BMESH:
fd->bm = pbvh->header.bm;
fd->cd_face_set_ = CustomData_get_offset_named(
&pbvh->header.bm->pdata, CD_PROP_INT32, ".sculpt_face_set");
fd->cd_hide_poly_ = CustomData_get_offset_named(
&pbvh->header.bm->pdata, CD_PROP_INT32, ".hide_poly");
BLI_gsetIterator_init(&fd->bm_faces_iter_, node->bm_faces);
break;
}
if (!BKE_pbvh_face_iter_done(fd)) {
pbvh_face_iter_step(fd, false);
}
}
void BKE_pbvh_face_iter_finish(PBVHFaceIter *fd)
{
if (fd->verts != fd->verts_reserved_) {
MEM_SAFE_FREE(fd->verts);
}
}
bool BKE_pbvh_face_iter_done(PBVHFaceIter *fd)
{
switch (fd->pbvh_type_) {
case PBVH_FACES:
case PBVH_GRIDS:
return fd->prim_index_ >= fd->node_->totprim;
case PBVH_BMESH:
return BLI_gsetIterator_done(&fd->bm_faces_iter_);
default:
BLI_assert_unreachable();
return true;
}
}
void BKE_pbvh_sync_visibility_from_verts(PBVH *pbvh, Mesh *mesh)
{
switch (pbvh->header.type) {
case PBVH_FACES: {
BKE_mesh_flush_hidden_from_verts(mesh);
BKE_pbvh_update_hide_attributes_from_mesh(pbvh);
break;
}
case PBVH_BMESH: {
BMIter iter;
BMVert *v;
BMEdge *e;
BMFace *f;
BM_ITER_MESH (f, &iter, pbvh->header.bm, BM_FACES_OF_MESH) {
BM_elem_flag_disable(f, BM_ELEM_HIDDEN);
}
BM_ITER_MESH (e, &iter, pbvh->header.bm, BM_EDGES_OF_MESH) {
BM_elem_flag_disable(e, BM_ELEM_HIDDEN);
}
BM_ITER_MESH (v, &iter, pbvh->header.bm, BM_VERTS_OF_MESH) {
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
continue;
}
BMIter iter_l;
BMLoop *l;
BM_ITER_ELEM (l, &iter_l, v, BM_LOOPS_OF_VERT) {
BM_elem_flag_enable(l->e, BM_ELEM_HIDDEN);
BM_elem_flag_enable(l->f, BM_ELEM_HIDDEN);
}
}
break;
}
case PBVH_GRIDS: {
const blender::Span<MPoly> polys = mesh->polys();
CCGKey key = pbvh->gridkey;
bool *hide_poly = static_cast<bool *>(CustomData_get_layer_named_for_write(
&mesh->pdata, CD_PROP_BOOL, ".hide_poly", mesh->totpoly));
bool delete_hide_poly = true;
for (const int face_index : polys.index_range()) {
bool hidden = false;
for (int loop_index = 0; !hidden && loop_index < polys[face_index].totloop; loop_index++) {
int grid_index = polys[face_index].loopstart + loop_index;
if (pbvh->grid_hidden[grid_index] &&
BLI_BITMAP_TEST(pbvh->grid_hidden[grid_index], key.grid_area - 1)) {
hidden = true;
break;
}
}
if (hidden && !hide_poly) {
hide_poly = static_cast<bool *>(CustomData_get_layer_named_for_write(
&mesh->pdata, CD_PROP_BOOL, ".hide_poly", mesh->totpoly));
if (!hide_poly) {
hide_poly = static_cast<bool *>(CustomData_add_layer_named(
&mesh->pdata, CD_PROP_BOOL, CD_CONSTRUCT, nullptr, mesh->totpoly, ".hide_poly"));
}
}
if (hide_poly) {
delete_hide_poly = delete_hide_poly && !hidden;
hide_poly[face_index] = hidden;
}
}
if (delete_hide_poly) {
CustomData_free_layer_named(&mesh->pdata, ".hide_poly", mesh->totpoly);
}
BKE_mesh_flush_hidden_from_polys(mesh);
BKE_pbvh_update_hide_attributes_from_mesh(pbvh);
break;
}
}
}