209 lines
5.0 KiB
C++
209 lines
5.0 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifndef __FN_GENERIC_VECTOR_ARRAY_HH__
|
|
#define __FN_GENERIC_VECTOR_ARRAY_HH__
|
|
|
|
/** \file
|
|
* \ingroup fn
|
|
*
|
|
* A `GVectorArray` is a container for a fixed amount of dynamically growing arrays with a generic
|
|
* type. Its main use case is to store many small vectors with few separate allocations. Using this
|
|
* structure is generally more efficient than allocating each small vector separately.
|
|
*
|
|
* `GVectorArrayRef<T>` is a typed reference to a GVectorArray and makes it easier and safer to
|
|
* work with the class when the type is known at compile time.
|
|
*/
|
|
|
|
#include "FN_array_spans.hh"
|
|
#include "FN_cpp_type.hh"
|
|
|
|
#include "BLI_array.hh"
|
|
#include "BLI_linear_allocator.hh"
|
|
#include "BLI_utility_mixins.hh"
|
|
|
|
namespace blender {
|
|
namespace fn {
|
|
|
|
template<typename T> class GVectorArrayRef;
|
|
|
|
class GVectorArray : NonCopyable, NonMovable {
|
|
private:
|
|
const CPPType &m_type;
|
|
uint m_element_size;
|
|
Array<void *, 1> m_starts;
|
|
Array<uint, 1> m_lengths;
|
|
Array<uint, 1> m_capacities;
|
|
LinearAllocator<> m_allocator;
|
|
|
|
template<typename T> friend class GVectorArrayRef;
|
|
|
|
public:
|
|
GVectorArray() = delete;
|
|
|
|
GVectorArray(const CPPType &type, uint array_size)
|
|
: m_type(type),
|
|
m_element_size(type.size()),
|
|
m_starts(array_size),
|
|
m_lengths(array_size),
|
|
m_capacities(array_size)
|
|
{
|
|
m_starts.fill(nullptr);
|
|
m_lengths.fill(0);
|
|
m_capacities.fill(0);
|
|
}
|
|
|
|
~GVectorArray()
|
|
{
|
|
if (m_type.is_trivially_destructible()) {
|
|
return;
|
|
}
|
|
|
|
for (uint i : m_starts.index_range()) {
|
|
m_type.destruct_n(m_starts[i], m_lengths[i]);
|
|
}
|
|
}
|
|
|
|
operator GVArraySpan() const
|
|
{
|
|
return GVArraySpan(m_type, m_starts.as_span(), m_lengths);
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return m_starts.size() == 0;
|
|
}
|
|
|
|
uint size() const
|
|
{
|
|
return m_starts.size();
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
return m_type;
|
|
}
|
|
|
|
Span<const void *> starts() const
|
|
{
|
|
return m_starts.as_span();
|
|
}
|
|
|
|
Span<uint> lengths() const
|
|
{
|
|
return m_lengths;
|
|
}
|
|
|
|
void append(uint index, const void *src)
|
|
{
|
|
uint old_length = m_lengths[index];
|
|
if (old_length == m_capacities[index]) {
|
|
this->grow_at_least_one(index);
|
|
}
|
|
|
|
void *dst = POINTER_OFFSET(m_starts[index], m_element_size * old_length);
|
|
m_type.copy_to_uninitialized(src, dst);
|
|
m_lengths[index]++;
|
|
}
|
|
|
|
void extend(uint index, GVSpan span)
|
|
{
|
|
BLI_assert(m_type == span.type());
|
|
for (uint i = 0; i < span.size(); i++) {
|
|
this->append(index, span[i]);
|
|
}
|
|
}
|
|
|
|
void extend(IndexMask mask, GVArraySpan array_span)
|
|
{
|
|
BLI_assert(m_type == array_span.type());
|
|
BLI_assert(mask.min_array_size() <= array_span.size());
|
|
for (uint i : mask) {
|
|
this->extend(i, array_span[i]);
|
|
}
|
|
}
|
|
|
|
GMutableSpan operator[](uint index)
|
|
{
|
|
BLI_assert(index < m_starts.size());
|
|
return GMutableSpan(m_type, m_starts[index], m_lengths[index]);
|
|
}
|
|
template<typename T> GVectorArrayRef<T> typed()
|
|
{
|
|
return GVectorArrayRef<T>(*this);
|
|
}
|
|
|
|
private:
|
|
void grow_at_least_one(uint index)
|
|
{
|
|
BLI_assert(m_lengths[index] == m_capacities[index]);
|
|
uint new_capacity = m_lengths[index] * 2 + 1;
|
|
|
|
void *new_buffer = m_allocator.allocate(m_element_size * new_capacity, m_type.alignment());
|
|
m_type.relocate_to_uninitialized_n(m_starts[index], new_buffer, m_lengths[index]);
|
|
|
|
m_starts[index] = new_buffer;
|
|
m_capacities[index] = new_capacity;
|
|
}
|
|
};
|
|
|
|
template<typename T> class GVectorArrayRef {
|
|
private:
|
|
GVectorArray *m_vector_array;
|
|
|
|
public:
|
|
GVectorArrayRef(GVectorArray &vector_array) : m_vector_array(&vector_array)
|
|
{
|
|
BLI_assert(vector_array.m_type == CPPType::get<T>());
|
|
}
|
|
|
|
void append(uint index, const T &value)
|
|
{
|
|
m_vector_array->append(index, &value);
|
|
}
|
|
|
|
void extend(uint index, Span<T> values)
|
|
{
|
|
m_vector_array->extend(index, values);
|
|
}
|
|
|
|
void extend(uint index, VSpan<T> values)
|
|
{
|
|
m_vector_array->extend(index, GVSpan(values));
|
|
}
|
|
|
|
MutableSpan<T> operator[](uint index)
|
|
{
|
|
BLI_assert(index < m_vector_array->m_starts.size());
|
|
return MutableSpan<T>((T *)m_vector_array->m_starts[index], m_vector_array->m_lengths[index]);
|
|
}
|
|
|
|
uint size() const
|
|
{
|
|
return m_vector_array->size();
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return m_vector_array->is_empty();
|
|
}
|
|
};
|
|
|
|
} // namespace fn
|
|
} // namespace blender
|
|
|
|
#endif /* __FN_GENERIC_VECTOR_ARRAY_HH__ */
|