This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/stroke/Operators.cpp
Tamito Kajiyama 643b73e60e * Fix for a freeze issue in stroke rendering when using round/square caps.
The problem was caused by a stroke with only one vertex.  Such a stroke was
generated when for some unknown reason a chained curve consisted of only
two vertices such that their 3D positions were exactly or almost the same.

* Fix for the Parameter Editor mode that failed when scene render layers
and/or linesets contain a single quote in their names.
2010-12-06 22:17:19 +00:00

1046 lines
28 KiB
C++
Executable File

//
// Copyright (C) : Please refer to the COPYRIGHT file distributed
// with this source distribution.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
///////////////////////////////////////////////////////////////////////////////
#include "Operators.h"
#include <algorithm>
#include <stdexcept>
#include "Canvas.h"
#include "Stroke.h"
LIB_STROKE_EXPORT Operators::I1DContainer Operators::_current_view_edges_set;
LIB_STROKE_EXPORT Operators::I1DContainer Operators::_current_chains_set;
LIB_STROKE_EXPORT Operators::I1DContainer* Operators::_current_set = NULL;
LIB_STROKE_EXPORT Operators::StrokesContainer Operators::_current_strokes_set;
int Operators::select(UnaryPredicate1D& pred) {
if (!_current_set)
return 0;
if(_current_set->empty())
return 0;
I1DContainer new_set;
I1DContainer rejected;
Functions1D::ChainingTimeStampF1D cts;
Functions1D::TimeStampF1D ts;
I1DContainer::iterator it = _current_set->begin();
I1DContainer::iterator itbegin = it;
while (it != _current_set->end()) {
Interface1D * i1d = *it;
cts(*i1d); // mark everyone's chaining time stamp anyway
if(pred(*i1d) < 0){
new_set.clear();
rejected.clear();
return -1;
}
if(pred.result){
new_set.push_back(i1d);
ts(*i1d);
}else{
rejected.push_back(i1d);
}
++it;
}
if((*itbegin)->getExactTypeName() != "ViewEdge"){
for (it = rejected.begin();
it != rejected.end();
++it)
delete *it;
}
rejected.clear();
_current_set->clear();
*_current_set = new_set;
return 0;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it,
UnaryPredicate1D& pred,
UnaryFunction1D_void& modifier) {
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
ViewEdge* edge;
//soc unused - Chain* new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0)
return -1;
if (pred.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain* new_chain = new Chain(id);++id;
for (;;) {
new_chain->push_viewedge_back(*it, it.getOrientation());
if (modifier(**it) < 0) {
delete new_chain;
return -1;
}
++it;
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
return -1;
}
if (pred.result)
break;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it,
UnaryPredicate1D& pred) {
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp()+1);
ViewEdge* edge;
//soc Chain* new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0)
return -1;
if (pred.result)
continue;
if (pred_ts(**it_edge) < 0)
return -1;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain* new_chain = new Chain(id);++id;
for (;;) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
++it;
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
return -1;
}
if (pred.result)
break;
if (pred_ts(**it) < 0) {
delete new_chain;
return -1;
}
if (pred_ts.result)
break;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
//void Operators::bidirectionalChain(ViewEdgeIterator& it,
// UnaryPredicate1D& pred,
// UnaryFunction1D_void& modifier) {
// if (_current_view_edges_set.empty())
// return;
//
// unsigned id = 0;
// ViewEdge* edge;
// Chain* new_chain;
//
// for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
// it_edge != _current_view_edges_set.end();
// ++it_edge) {
// if (pred(**it_edge))
// continue;
//
// edge = dynamic_cast<ViewEdge*>(*it_edge);
// it.setBegin(edge);
// it.setCurrentEdge(edge);
//
// Chain* new_chain = new Chain(id);++id;
// //ViewEdgeIterator it_back(it);--it_back; // FIXME
// do {
// new_chain->push_viewedge_back(*it, it.getOrientation());
// modifier(**it);
// ++it;
// } while (!it.isEnd() && !pred(**it));
// it.setBegin(edge);
// it.setCurrentEdge(edge);
// --it;
// while (!it.isEnd() && !pred(**it)) {
// new_chain->push_viewedge_front(*it, it.getOrientation());
// modifier(**it);
// --it;
// }
//
// _current_chains_set.push_back(new_chain);
// }
//
// if (!_current_chains_set.empty())
// _current_set = &_current_chains_set;
//}
//
//void Operators::bidirectionalChain(ViewEdgeIterator& it,
// UnaryPredicate1D& pred) {
// if (_current_view_edges_set.empty())
// return;
//
// unsigned id = 0;
// Functions1D::IncrementChainingTimeStampF1D ts;
// Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp()+1);
//
// ViewEdge* edge;
// Chain* new_chain;
//
// for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
// it_edge != _current_view_edges_set.end();
// ++it_edge) {
// if (pred(**it_edge) || pred_ts(**it_edge))
// continue;
//
// edge = dynamic_cast<ViewEdge*>(*it_edge);
// it.setBegin(edge);
// it.setCurrentEdge(edge);
//
// Chain* new_chain = new Chain(id);++id;
// //ViewEdgeIterator it_back(it);--it_back;//FIXME
// do {
// new_chain->push_viewedge_back(*it, it.getOrientation());
// ts(**it);
// ++it;
// } while (!it.isEnd() && !pred(**it) && !pred_ts(**it));
// it.setBegin(edge);
// it.setCurrentEdge(edge);
// --it;
// while (!it.isEnd() && !pred(**it) && !pred_ts(**it)) {
// new_chain->push_viewedge_front(*it, it.getOrientation());
// ts(**it);
// --it;
// }
//
// _current_chains_set.push_back(new_chain);
// }
//
// if (!_current_chains_set.empty())
// _current_set = &_current_chains_set;
//}
int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred) {
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp()+1);
ViewEdge* edge;
//soc unused - Chain* new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred(**it_edge) < 0)
return -1;
if (pred.result)
continue;
if (pred_ts(**it_edge) < 0)
return -1;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0)
return -1;
Chain* new_chain = new Chain(id);++id;
//ViewEdgeIterator it_back(it);--it_back;//FIXME
for (;;) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) { // FIXME
delete new_chain;
return -1;
}
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
return -1;
}
if (pred.result)
break;
}
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) { // FIXME
delete new_chain;
return -1;
}
while (!it.isEnd()) {
if (pred(**it) < 0) {
delete new_chain;
return -1;
}
if (pred.result)
break;
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) { // FIXME
delete new_chain;
return -1;
}
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
int Operators::bidirectionalChain(ChainingIterator& it) {
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp()+1);
ViewEdge* edge;
//soc unused - Chain* new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge) {
if (pred_ts(**it_edge) < 0)
return -1;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0)
return -1;
Chain* new_chain = new Chain(id);++id;
//ViewEdgeIterator it_back(it);--it_back;//FIXME
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) { // FIXME
delete new_chain;
return -1;
}
} while (!it.isEnd());
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) { // FIXME
delete new_chain;
return -1;
}
while (!it.isEnd()) {
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) { // FIXME
delete new_chain;
return -1;
}
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
int Operators::sequentialSplit(UnaryPredicate0D& pred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain * new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator it;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (;
cit != citend;
++cit) {
Id currentId = (*cit)->getId();
new_curve = new Chain(currentId);
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;--last;
it = first;
point = dynamic_cast<CurvePoint*>(&(*it));
new_curve->push_vertex_back(point);++it;
for(; it!= end; ++it)
{
point = dynamic_cast<CurvePoint*>(&(*it));
new_curve->push_vertex_back(point);
if(pred(it) < 0)
{
delete new_curve;
goto error;
}
if(pred.result && (it!=last))
{
splitted_chains.push_back(new_curve);
currentId.setSecond(currentId.getSecond()+1);
new_curve = new Chain(currentId);
new_curve->push_vertex_back(point);
}
}
if(new_curve->nSegments() == 0){
delete new_curve;
return 0;
}
splitted_chains.push_back(new_curve);
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for(;
cit != citend;
++cit){
delete (*cit);
}
_current_chains_set.clear();
_current_chains_set = splitted_chains;
splitted_chains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for(;
cit != citend;
++cit){
delete (*cit);
}
splitted_chains.clear();
return -1;
}
int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain * new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator itStart;
Interface0DIterator itStop;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (;
cit != citend;
++cit) {
Id currentId = (*cit)->getId();
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;--last;
itStart = first;
do{
itStop = itStart;++itStop;
new_curve = new Chain(currentId);
currentId.setSecond(currentId.getSecond()+1);
point = dynamic_cast<CurvePoint*>(&(*itStart));
new_curve->push_vertex_back(point);
do{
point = dynamic_cast<CurvePoint*>(&(*itStop));
new_curve->push_vertex_back(point);
++itStop;
if(itStop == end)
break;
if(stoppingPred(itStop) < 0){
delete new_curve;
goto error;
}
}while(!stoppingPred.result);
if(itStop!=end){
point = dynamic_cast<CurvePoint*>(&(*itStop));
new_curve->push_vertex_back(point);
}
if(new_curve->nSegments() == 0){
delete new_curve;
}else{
splitted_chains.push_back(new_curve);
}
// find next start
do{
++itStart;
if(itStart == end)
break;
if(startingPred(itStart) < 0)
goto error;
}while(!startingPred.result);
}while((itStart!=end) && (itStart!=last));
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for(;
cit != citend;
++cit){
delete (*cit);
}
_current_chains_set.clear();
_current_chains_set = splitted_chains;
splitted_chains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for(;
cit != citend;
++cit){
delete (*cit);
}
splitted_chains.clear();
return -1;
}
#include "CurveIterators.h"
// Internal function
int __recursiveSplit(Chain *_curve, UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling,
Operators::I1DContainer& newChains, Operators::I1DContainer& splitted_chains)
{
if(((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)){
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first; ++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
real _min = FLT_MAX;++it;//func(it0d);++it;
CurveInternal::CurvePointIterator next = it;++next;
bool bsplit = false;
for(; ((it != end) && (next != end)); ++it,++next){
it0d = it.castToInterface0DIterator();
if (func(it0d) < 0)
return -1;
if(func.result < _min){
_min = func.result;
split = it;
bsplit = true;
}
}
if(!bsplit){ // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id * newId = _curve->getSplittingId();
if(newId == 0){
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond()+1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond()+1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(), vitend=_curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit; ++vnext;
for(; (vit!=vitend)&&(vnext!=vitend)&&(split._CurvilinearLength-vit._CurvilinearLength> 0.001); ++vit,++vnext){
new_curve_a->push_vertex_back(&(*vit));
}
if((vit==vitend) || (vnext == vitend)){
cout << "The split takes place in bad location" << endl;
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
if(fabs(vit._CurvilinearLength-split._CurvilinearLength) > 0.001){
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
}
else{
new_curve_a->push_vertex_back(&(*vit));
}
for(;vit!=vitend;++vit)
new_curve_b->push_vertex_back(&(*vit));
// let's check whether one or two of the two new curves
// satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if(pred.result){
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (;
cit != citend;
++cit) {
currentChain = dynamic_cast<Chain*>(*cit);
if(!currentChain)
continue;
// let's check the first one:
if (pred(*currentChain) < 0)
return -1;
if(!pred.result){
__recursiveSplit(currentChain, func, pred, sampling, newChains, splitted_chains);
}else{
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if(!splitted_chains.empty()){
for(cit = splitted_chains.begin(), citend = splitted_chains.end();
cit != citend;
++cit){
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
_current_chains_set = newChains;
newChains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
// recursive split with pred 0D
int __recursiveSplit(Chain *_curve, UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling,
Operators::I1DContainer& newChains, Operators::I1DContainer& splitted_chains)
{
if(((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)){
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first; ++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
//real _min = func(it0d);++it;
real _min = FLT_MAX;++it;
real mean = 0.f;
//soc unused - real variance = 0.f;
unsigned count = 0;
CurveInternal::CurvePointIterator next = it;++next;
bool bsplit = false;
for(; ((it != end) && (next != end)); ++it,++next){
++count;
it0d = it.castToInterface0DIterator();
if(pred0d(it0d) < 0)
return -1;
if(!pred0d.result)
continue;
if(func(it0d) < 0)
return -1;
mean += func.result;
if(func.result < _min){
_min = func.result;
split = it;
bsplit = true;
}
}
mean /= (float)count;
//if((!bsplit) || (mean-_min>mean)){ // we didn't find any minimum
if(!bsplit){ // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id * newId = _curve->getSplittingId();
if(newId == 0){
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond()+1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond()+1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(), vitend=_curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit; ++vnext;
for(; (vit!=vitend)&&(vnext!=vitend)&&(split._CurvilinearLength-vit._CurvilinearLength> 0.001); ++vit,++vnext){
new_curve_a->push_vertex_back(&(*vit));
}
if((vit==vitend) || (vnext == vitend)){
cout << "The split takes place in bad location" << endl;
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
if(fabs(vit._CurvilinearLength-split._CurvilinearLength) > 0.001){
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
}
else{
new_curve_a->push_vertex_back(&(*vit));
}
for(;vit!=vitend;++vit)
new_curve_b->push_vertex_back(&(*vit));
// let's check whether one or two of the two new curves
// satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if(pred.result){
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred0d, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred0d, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (;
cit != citend;
++cit) {
currentChain = dynamic_cast<Chain*>(*cit);
if(!currentChain)
continue;
// let's check the first one:
if(pred(*currentChain) < 0)
return -1;
if(!pred.result){
__recursiveSplit(currentChain, func, pred0d, pred, sampling, newChains, splitted_chains);
}else{
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if(!splitted_chains.empty()){
for(cit = splitted_chains.begin(), citend = splitted_chains.end();
cit != citend;
++cit){
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
_current_chains_set = newChains;
newChains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
// Internal class
class PredicateWrapper
{
public:
inline PredicateWrapper(BinaryPredicate1D& pred) {
_pred = &pred;
}
inline bool operator()(Interface1D* i1, Interface1D* i2) {
if ((*_pred)(*i1, *i2) < 0)
throw std::runtime_error("comparison failed");
return _pred->result;
}
private:
BinaryPredicate1D* _pred;
};
int Operators::sort(BinaryPredicate1D& pred) {
if (!_current_set)
return 0;
PredicateWrapper wrapper(pred);
try {
std::sort(_current_set->begin(), _current_set->end(), wrapper);
}
catch (std::runtime_error &e) {
cerr << "Warning: Operator.sort(): " << e.what() << endl;
return -1;
}
return 0;
}
Stroke* createStroke(Interface1D& inter) {
Stroke* stroke = new Stroke;
stroke->setId(inter.getId());
float currentCurvilignAbscissa = 0.f;
Interface0DIterator it = inter.verticesBegin(), itend = inter.verticesEnd();
Interface0DIterator itfirst = it;
Vec3r current(it->getProjectedX(), it->getProjectedY(), it->getProjectedZ());
Vec3r previous = current;
SVertex* sv;
CurvePoint* cp;
StrokeVertex* stroke_vertex = NULL;
do {
cp = dynamic_cast<CurvePoint*>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex*>(&(*it));
if (!sv) {
cerr << "Warning: unexpected Vertex type" << endl;
continue;
}
stroke_vertex = new StrokeVertex(sv);
}
else
stroke_vertex = new StrokeVertex(cp);
current = stroke_vertex->point2d();
Vec3r vec_tmp(current - previous);
real vec_tmp_norm = vec_tmp.norm();
if((stroke->strokeVerticesSize() > 0) && (vec_tmp_norm < 1.e-06)){
// The point we just created is superimposed with the
// previous one. We remove it to avoid having to deal
// with this kind of singularities in the strip creation
delete stroke_vertex;
}else{
currentCurvilignAbscissa += vec_tmp.norm();
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
previous = current;
}
++it;
} while((it != itend) && (it != itfirst));
if (it == itfirst) {
// Add last vertex:
cp = dynamic_cast<CurvePoint*>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex*>(&(*it));
if (!sv)
cerr << "Warning: unexpected Vertex type" << endl;
else
stroke_vertex = new StrokeVertex(sv);
}
else
stroke_vertex = new StrokeVertex(cp);
current = stroke_vertex->point2d();
Vec3r vec_tmp(current - previous);
real vec_tmp_norm = vec_tmp.norm();
if((stroke->strokeVerticesSize() > 0) && (vec_tmp_norm < 1.e-06)){
// The point we just created is superimposed with the
// previous one. We remove it to avoid having to deal
// with this kind of singularities in the strip creation
delete stroke_vertex;
}else{
currentCurvilignAbscissa += vec_tmp.norm();
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
}
}
// Discard the stroke if the number of stroke vertices is less than two
if (stroke->strokeVerticesSize() < 2) {
delete stroke;
return NULL;
}
stroke->setLength(currentCurvilignAbscissa);
return stroke;
}
inline int applyShading(Stroke& stroke, vector<StrokeShader*>& shaders) {
for (vector<StrokeShader*>::iterator it = shaders.begin(); it != shaders.end(); ++it) {
if ((*it)->shade(stroke) < 0) {
return -1;
}
}
return 0;
}
int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders) {
//Canvas* canvas = Canvas::getInstance();
if (!_current_set) {
cerr << "Warning: current set empty" << endl;
return 0;
}
for (Operators::I1DContainer::iterator it = _current_set->begin();
it != _current_set->end();
++it) {
if (pred(**it) < 0)
return -1;
if (!pred.result)
continue;
Stroke* stroke = createStroke(**it);
if (stroke) {
if (applyShading(*stroke, shaders) < 0)
return -1;
//canvas->RenderStroke(stroke);
_current_strokes_set.push_back(stroke);
}
}
return 0;
}
void Operators::reset() {
ViewMap* vm = ViewMap::getInstance();
if (!vm) {
cerr << "Error: no ViewMap computed yet" << endl;
return;
}
_current_view_edges_set.clear();
for (I1DContainer::iterator it = _current_chains_set.begin();
it != _current_chains_set.end();
++it)
delete *it;
_current_chains_set.clear();
_current_view_edges_set.insert(_current_view_edges_set.begin(),
vm->ViewEdges().begin(),
vm->ViewEdges().end());
_current_set = &_current_view_edges_set;
_current_strokes_set.clear();
}