Rough summary of fixes/changes: - Blender Py API: GameLogic -> bge.logic - Blender Py API: Implemented missing KX_PYATTRIBUTE_TODOs and -DUMMYs. - Fix for [#22924] KX_PolygonMaterial.diffuse does not return expected list[r,g,b] - Py API: Renaming _owner attribute of mathutils classes to owner. - Fix some minor errors in mathutils and blf. - Enabling game engine autoplay again based on a patch by Dalai: * The biggest 3D view in the open scene is used, if there is none, blender opens the file normally and raises an error. * The 3D view are is made fullscreen. * Quad view, header, properties and toolbox panel are all hidden to get the maximum view. * If the game engine full screen setting is set, the game starts in fullscreen. - Fix for ipo conversion on file transition in the game engine.
1036 lines
29 KiB
C
1036 lines
29 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Joseph Gilbert
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "mathutils.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#define QUAT_SIZE 4
|
|
|
|
//-----------------------------METHODS------------------------------
|
|
|
|
/* note: BaseMath_ReadCallback must be called beforehand */
|
|
static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits)
|
|
{
|
|
PyObject *ret;
|
|
int i;
|
|
|
|
ret= PyTuple_New(QUAT_SIZE);
|
|
|
|
if(ndigits >= 0) {
|
|
for(i= 0; i < QUAT_SIZE; i++) {
|
|
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
|
|
}
|
|
}
|
|
else {
|
|
for(i= 0; i < QUAT_SIZE; i++) {
|
|
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char Quaternion_ToEuler_doc[] =
|
|
".. method:: to_euler(order, euler_compat)\n"
|
|
"\n"
|
|
" Return Euler representation of the quaternion.\n"
|
|
"\n"
|
|
" :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
|
|
" :type order: string\n"
|
|
" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
|
|
" :type euler_compat: :class:`Euler`\n"
|
|
" :return: Euler representation of the quaternion.\n"
|
|
" :rtype: :class:`Euler`\n";
|
|
|
|
static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
|
|
{
|
|
float eul[3];
|
|
char *order_str= NULL;
|
|
short order= EULER_ORDER_XYZ;
|
|
EulerObject *eul_compat = NULL;
|
|
|
|
if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
|
|
return NULL;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
if(order_str) {
|
|
order= euler_order_from_string(order_str, "Matrix.to_euler()");
|
|
|
|
if(order == -1)
|
|
return NULL;
|
|
}
|
|
|
|
if(eul_compat) {
|
|
float mat[3][3];
|
|
|
|
if(!BaseMath_ReadCallback(eul_compat))
|
|
return NULL;
|
|
|
|
quat_to_mat3(mat, self->quat);
|
|
|
|
if(order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
|
|
else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
|
|
}
|
|
else {
|
|
if(order == EULER_ORDER_XYZ) quat_to_eul(eul, self->quat);
|
|
else quat_to_eulO(eul, order, self->quat);
|
|
}
|
|
|
|
return newEulerObject(eul, order, Py_NEW, NULL);
|
|
}
|
|
//----------------------------Quaternion.toMatrix()------------------
|
|
static char Quaternion_ToMatrix_doc[] =
|
|
".. method:: to_matrix()\n"
|
|
"\n"
|
|
" Return a matrix representation of the quaternion.\n"
|
|
"\n"
|
|
" :return: A 3x3 rotation matrix representation of the quaternion.\n"
|
|
" :rtype: :class:`Matrix`\n";
|
|
|
|
static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
|
|
{
|
|
float mat[9]; /* all values are set */
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
quat_to_mat3( (float (*)[3]) mat,self->quat);
|
|
return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------Quaternion.cross(other)------------------
|
|
static char Quaternion_Cross_doc[] =
|
|
".. method:: cross(other)\n"
|
|
"\n"
|
|
" Return the cross product of this quaternion and another.\n"
|
|
"\n"
|
|
" :arg other: The other quaternion to perform the cross product with.\n"
|
|
" :type other: :class:`Quaternion`\n"
|
|
" :return: The cross product.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
|
|
{
|
|
float quat[QUAT_SIZE];
|
|
|
|
if (!QuaternionObject_Check(value)) {
|
|
PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
mul_qt_qtqt(quat, self->quat, value->quat);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------Quaternion.dot(other)------------------
|
|
static char Quaternion_Dot_doc[] =
|
|
".. method:: dot(other)\n"
|
|
"\n"
|
|
" Return the dot product of this quaternion and another.\n"
|
|
"\n"
|
|
" :arg other: The other quaternion to perform the dot product with.\n"
|
|
" :type other: :class:`Quaternion`\n"
|
|
" :return: The dot product.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
|
|
{
|
|
if (!QuaternionObject_Check(value)) {
|
|
PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
|
|
}
|
|
|
|
static char Quaternion_Difference_doc[] =
|
|
".. function:: difference(other)\n"
|
|
"\n"
|
|
" Returns a quaternion representing the rotational difference.\n"
|
|
"\n"
|
|
" :arg other: second quaternion.\n"
|
|
" :type other: :class:`Quaternion`\n"
|
|
" :return: the rotational difference between the two quat rotations.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
|
|
{
|
|
float quat[QUAT_SIZE];
|
|
|
|
if (!QuaternionObject_Check(value)) {
|
|
PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
rotation_between_quats_to_quat(quat, self->quat, value->quat);
|
|
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
static char Quaternion_Slerp_doc[] =
|
|
".. function:: slerp(other, factor)\n"
|
|
"\n"
|
|
" Returns the interpolation of two quaternions.\n"
|
|
"\n"
|
|
" :arg other: value to interpolate with.\n"
|
|
" :type other: :class:`Quaternion`\n"
|
|
" :arg factor: The interpolation value in [0.0, 1.0].\n"
|
|
" :type factor: float\n"
|
|
" :return: The interpolated rotation.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
|
|
{
|
|
QuaternionObject *value;
|
|
float quat[QUAT_SIZE], fac;
|
|
|
|
if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) {
|
|
PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
if(fac > 1.0f || fac < 0.0f) {
|
|
PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0");
|
|
return NULL;
|
|
}
|
|
|
|
interp_qt_qtqt(quat, self->quat, value->quat, fac);
|
|
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------Quaternion.normalize()----------------
|
|
//normalize the axis of rotation of [theta,vector]
|
|
static char Quaternion_Normalize_doc[] =
|
|
".. function:: normalize()\n"
|
|
"\n"
|
|
" Normalize the quaternion.\n"
|
|
"\n"
|
|
" :return: an instance of itself.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Normalize(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
normalize_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.inverse()------------------
|
|
static char Quaternion_Inverse_doc[] =
|
|
".. function:: inverse()\n"
|
|
"\n"
|
|
" Set the quaternion to its inverse.\n"
|
|
"\n"
|
|
" :return: an instance of itself.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Inverse(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
invert_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.identity()-----------------
|
|
static char Quaternion_Identity_doc[] =
|
|
".. function:: identity()\n"
|
|
"\n"
|
|
" Set the quaternion to an identity quaternion.\n"
|
|
"\n"
|
|
" :return: an instance of itself.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Identity(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
unit_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.negate()-------------------
|
|
static char Quaternion_Negate_doc[] =
|
|
".. function:: negate()\n"
|
|
"\n"
|
|
" Set the quaternion to its negative.\n"
|
|
"\n"
|
|
" :return: an instance of itself.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Negate(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
mul_qt_fl(self->quat, -1.0f);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.conjugate()----------------
|
|
static char Quaternion_Conjugate_doc[] =
|
|
".. function:: conjugate()\n"
|
|
"\n"
|
|
" Set the quaternion to its conjugate (negate x, y, z).\n"
|
|
"\n"
|
|
" :return: an instance of itself.\n"
|
|
" :rtype: :class:`Quaternion`\n";
|
|
|
|
static PyObject *Quaternion_Conjugate(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
conjugate_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.copy()----------------
|
|
static char Quaternion_copy_doc[] =
|
|
".. function:: copy()\n"
|
|
"\n"
|
|
" Returns a copy of this quaternion.\n"
|
|
"\n"
|
|
" :return: A copy of the quaternion.\n"
|
|
" :rtype: :class:`Quaternion`\n"
|
|
"\n"
|
|
" .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n";
|
|
|
|
static PyObject *Quaternion_copy(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
|
|
}
|
|
|
|
//----------------------------print object (internal)--------------
|
|
//print the object to screen
|
|
static PyObject *Quaternion_repr(QuaternionObject * self)
|
|
{
|
|
PyObject *ret, *tuple;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
tuple= Quaternion_ToTupleExt(self, -1);
|
|
|
|
ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
|
|
|
|
Py_DECREF(tuple);
|
|
return ret;
|
|
}
|
|
|
|
//------------------------tp_richcmpr
|
|
//returns -1 execption, 0 false, 1 true
|
|
static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
QuaternionObject *quatA = NULL, *quatB = NULL;
|
|
int result = 0;
|
|
|
|
if(QuaternionObject_Check(objectA)) {
|
|
quatA = (QuaternionObject*)objectA;
|
|
if(!BaseMath_ReadCallback(quatA))
|
|
return NULL;
|
|
}
|
|
if(QuaternionObject_Check(objectB)) {
|
|
quatB = (QuaternionObject*)objectB;
|
|
if(!BaseMath_ReadCallback(quatB))
|
|
return NULL;
|
|
}
|
|
|
|
if (!quatA || !quatB){
|
|
if (comparison_type == Py_NE){
|
|
Py_RETURN_TRUE;
|
|
}else{
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
switch (comparison_type){
|
|
case Py_EQ:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
Py_RETURN_TRUE;
|
|
}else{
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
//---------------------SEQUENCE PROTOCOLS------------------------
|
|
//----------------------------len(object)------------------------
|
|
//sequence length
|
|
static int Quaternion_len(QuaternionObject * self)
|
|
{
|
|
return QUAT_SIZE;
|
|
}
|
|
//----------------------------object[]---------------------------
|
|
//sequence accessor (get)
|
|
static PyObject *Quaternion_item(QuaternionObject * self, int i)
|
|
{
|
|
if(i<0) i= QUAT_SIZE-i;
|
|
|
|
if(i < 0 || i >= QUAT_SIZE) {
|
|
PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadIndexCallback(self, i))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(self->quat[i]);
|
|
|
|
}
|
|
//----------------------------object[]-------------------------
|
|
//sequence accessor (set)
|
|
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
|
|
{
|
|
float scalar= (float)PyFloat_AsDouble(ob);
|
|
if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
|
|
PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
|
|
return -1;
|
|
}
|
|
|
|
if(i<0) i= QUAT_SIZE-i;
|
|
|
|
if(i < 0 || i >= QUAT_SIZE){
|
|
PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
|
|
return -1;
|
|
}
|
|
self->quat[i] = scalar;
|
|
|
|
if(!BaseMath_WriteIndexCallback(self, i))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (get)
|
|
static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
CLAMP(begin, 0, QUAT_SIZE);
|
|
if (end<0) end= (QUAT_SIZE + 1) + end;
|
|
CLAMP(end, 0, QUAT_SIZE);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->quat[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (set)
|
|
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
|
|
{
|
|
int i, size;
|
|
float quat[QUAT_SIZE];
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return -1;
|
|
|
|
CLAMP(begin, 0, QUAT_SIZE);
|
|
if (end<0) end= (QUAT_SIZE + 1) + end;
|
|
CLAMP(end, 0, QUAT_SIZE);
|
|
begin = MIN2(begin,end);
|
|
|
|
if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
|
|
return -1;
|
|
|
|
if(size != (end - begin)){
|
|
PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment");
|
|
return -1;
|
|
}
|
|
|
|
/* parsed well - now set in vector */
|
|
for(i= 0; i < size; i++)
|
|
self->quat[begin + i] = quat[i];
|
|
|
|
BaseMath_WriteCallback(self);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
|
|
{
|
|
if (PyIndex_Check(item)) {
|
|
Py_ssize_t i;
|
|
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
|
|
if (i == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (i < 0)
|
|
i += QUAT_SIZE;
|
|
return Quaternion_item(self, i);
|
|
} else if (PySlice_Check(item)) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
|
|
if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
|
|
return NULL;
|
|
|
|
if (slicelength <= 0) {
|
|
return PyList_New(0);
|
|
}
|
|
else if (step == 1) {
|
|
return Quaternion_slice(self, start, stop);
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternions");
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"quaternion indices must be integers, not %.200s",
|
|
item->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
|
|
{
|
|
if (PyIndex_Check(item)) {
|
|
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
|
|
if (i == -1 && PyErr_Occurred())
|
|
return -1;
|
|
if (i < 0)
|
|
i += QUAT_SIZE;
|
|
return Quaternion_ass_item(self, i, value);
|
|
}
|
|
else if (PySlice_Check(item)) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
|
|
if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
|
|
return -1;
|
|
|
|
if (step == 1)
|
|
return Quaternion_ass_slice(self, start, stop, value);
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternion");
|
|
return -1;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"quaternion indices must be integers, not %.200s",
|
|
item->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
//------------------------NUMERIC PROTOCOLS----------------------
|
|
//------------------------obj + obj------------------------------
|
|
//addition
|
|
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
|
|
{
|
|
float quat[QUAT_SIZE];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
|
|
return NULL;
|
|
}
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
|
|
add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
//------------------------obj - obj------------------------------
|
|
//subtraction
|
|
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
|
|
{
|
|
int x;
|
|
float quat[QUAT_SIZE];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
|
|
return NULL;
|
|
}
|
|
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
|
|
for(x = 0; x < QUAT_SIZE; x++) {
|
|
quat[x] = quat1->quat[x] - quat2->quat[x];
|
|
}
|
|
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
//------------------------obj * obj------------------------------
|
|
//mulplication
|
|
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
|
|
{
|
|
float quat[QUAT_SIZE], scalar;
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
VectorObject *vec = NULL;
|
|
|
|
if(QuaternionObject_Check(q1)) {
|
|
quat1 = (QuaternionObject*)q1;
|
|
if(!BaseMath_ReadCallback(quat1))
|
|
return NULL;
|
|
}
|
|
if(QuaternionObject_Check(q2)) {
|
|
quat2 = (QuaternionObject*)q2;
|
|
if(!BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
}
|
|
|
|
if(quat1 && quat2) { /* QUAT*QUAT (cross product) */
|
|
mul_qt_qtqt(quat, quat1->quat, quat2->quat);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
|
|
if(!QuaternionObject_Check(q1)) {
|
|
scalar= PyFloat_AsDouble(q1);
|
|
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
|
|
QUATCOPY(quat, quat2->quat);
|
|
mul_qt_fl(quat, scalar);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
|
|
return NULL;
|
|
}
|
|
else { /* QUAT*SOMETHING */
|
|
if(VectorObject_Check(q2)){ /* QUAT*VEC */
|
|
float tvec[3];
|
|
vec = (VectorObject*)q2;
|
|
if(vec->size != 3){
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
|
|
return NULL;
|
|
}
|
|
if(!BaseMath_ReadCallback(vec)) {
|
|
return NULL;
|
|
}
|
|
|
|
copy_v3_v3(tvec, vec->vec);
|
|
mul_qt_v3(quat1->quat, tvec);
|
|
return newVectorObject(tvec, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
scalar= PyFloat_AsDouble(q2);
|
|
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
|
|
QUATCOPY(quat, quat1->quat);
|
|
mul_qt_fl(quat, scalar);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
}
|
|
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n");
|
|
return NULL;
|
|
}
|
|
|
|
//-----------------PROTOCOL DECLARATIONS--------------------------
|
|
static PySequenceMethods Quaternion_SeqMethods = {
|
|
(lenfunc) Quaternion_len, /* sq_length */
|
|
(binaryfunc) NULL, /* sq_concat */
|
|
(ssizeargfunc) NULL, /* sq_repeat */
|
|
(ssizeargfunc) Quaternion_item, /* sq_item */
|
|
(ssizessizeargfunc) NULL, /* sq_slice, deprecated */
|
|
(ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
|
|
(ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
|
|
(objobjproc) NULL, /* sq_contains */
|
|
(binaryfunc) NULL, /* sq_inplace_concat */
|
|
(ssizeargfunc) NULL, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyMappingMethods Quaternion_AsMapping = {
|
|
(lenfunc)Quaternion_len,
|
|
(binaryfunc)Quaternion_subscript,
|
|
(objobjargproc)Quaternion_ass_subscript
|
|
};
|
|
|
|
static PyNumberMethods Quaternion_NumMethods = {
|
|
(binaryfunc) Quaternion_add, /*nb_add*/
|
|
(binaryfunc) Quaternion_sub, /*nb_subtract*/
|
|
(binaryfunc) Quaternion_mul, /*nb_multiply*/
|
|
0, /*nb_remainder*/
|
|
0, /*nb_divmod*/
|
|
0, /*nb_power*/
|
|
(unaryfunc) 0, /*nb_negative*/
|
|
(unaryfunc) 0, /*tp_positive*/
|
|
(unaryfunc) 0, /*tp_absolute*/
|
|
(inquiry) 0, /*tp_bool*/
|
|
(unaryfunc) 0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
(binaryfunc)0, /*nb_rshift*/
|
|
0, /*nb_and*/
|
|
0, /*nb_xor*/
|
|
0, /*nb_or*/
|
|
0, /*nb_int*/
|
|
0, /*nb_reserved*/
|
|
0, /*nb_float*/
|
|
0, /* nb_inplace_add */
|
|
0, /* nb_inplace_subtract */
|
|
0, /* nb_inplace_multiply */
|
|
0, /* nb_inplace_remainder */
|
|
0, /* nb_inplace_power */
|
|
0, /* nb_inplace_lshift */
|
|
0, /* nb_inplace_rshift */
|
|
0, /* nb_inplace_and */
|
|
0, /* nb_inplace_xor */
|
|
0, /* nb_inplace_or */
|
|
0, /* nb_floor_divide */
|
|
0, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
0, /* nb_index */
|
|
};
|
|
|
|
static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
|
|
{
|
|
return Quaternion_item(self, GET_INT_FROM_POINTER(type));
|
|
}
|
|
|
|
static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
|
|
{
|
|
return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
|
|
}
|
|
|
|
static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
|
|
}
|
|
|
|
static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(2.0 * (saacos(self->quat[0])));
|
|
}
|
|
|
|
static int Quaternion_setAngle(QuaternionObject * self, PyObject * value, void * type)
|
|
{
|
|
float axis[3];
|
|
float angle;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return -1;
|
|
|
|
quat_to_axis_angle(axis, &angle, self->quat);
|
|
|
|
angle = PyFloat_AsDouble(value);
|
|
|
|
if(angle==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
|
|
PyErr_SetString(PyExc_TypeError, "quaternion.angle = value: float expected");
|
|
return -1;
|
|
}
|
|
|
|
/* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
|
|
if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
|
|
) {
|
|
axis[0] = 1.0f;
|
|
}
|
|
|
|
axis_angle_to_quat(self->quat, axis, angle);
|
|
|
|
if(!BaseMath_WriteCallback(self))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *type)
|
|
{
|
|
float axis[3];
|
|
float angle;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
quat_to_axis_angle(axis, &angle, self->quat);
|
|
|
|
/* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
|
|
if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
|
|
) {
|
|
axis[0] = 1.0f;
|
|
}
|
|
|
|
return (PyObject *) newVectorObject(axis, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *type)
|
|
{
|
|
float axis[3];
|
|
float angle;
|
|
|
|
VectorObject *vec;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return -1;
|
|
|
|
quat_to_axis_angle(axis, &angle, self->quat);
|
|
|
|
if(!VectorObject_Check(value)) {
|
|
PyErr_SetString(PyExc_TypeError, "quaternion.axis = value: expected a 3D Vector");
|
|
return -1;
|
|
}
|
|
|
|
vec= (VectorObject *)value;
|
|
if(!BaseMath_ReadCallback(vec))
|
|
return -1;
|
|
|
|
axis_angle_to_quat(self->quat, vec->vec, angle);
|
|
|
|
if(!BaseMath_WriteCallback(self))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//----------------------------------mathutils.Quaternion() --------------
|
|
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *seq= NULL;
|
|
float angle = 0.0f;
|
|
float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
|
|
|
|
if(!PyArg_ParseTuple(args, "|Of:mathutils.Quaternion", &seq, &angle))
|
|
return NULL;
|
|
|
|
switch(PyTuple_GET_SIZE(args)) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
|
|
return NULL;
|
|
break;
|
|
case 2:
|
|
if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
|
|
return NULL;
|
|
|
|
axis_angle_to_quat(quat, quat, angle);
|
|
break;
|
|
/* PyArg_ParseTuple assures no more then 2 */
|
|
}
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
|
|
//-----------------------METHOD DEFINITIONS ----------------------
|
|
static struct PyMethodDef Quaternion_methods[] = {
|
|
{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
|
|
{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
|
|
{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
|
|
{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
|
|
{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
|
|
{"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc},
|
|
{"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
|
|
{"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc},
|
|
{"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc},
|
|
{"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc},
|
|
{"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc},
|
|
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
|
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
/* Python attributes get/set structure: */
|
|
/*****************************************************************************/
|
|
static PyGetSetDef Quaternion_getseters[] = {
|
|
{"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value.\n\n:type: float", (void *)0},
|
|
{"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis.\n\n:type: float", (void *)1},
|
|
{"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis.\n\n:type: float", (void *)2},
|
|
{"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis.\n\n:type: float", (void *)3},
|
|
{"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly).\n\n:type: float", NULL},
|
|
{"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, "angle of the quaternion.\n\n:type: float", NULL},
|
|
{"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, "quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL},
|
|
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
|
|
{"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
|
|
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
|
|
};
|
|
|
|
//------------------PY_OBECT DEFINITION--------------------------
|
|
static char quaternion_doc[] =
|
|
"This object gives access to Quaternions in Blender.";
|
|
|
|
PyTypeObject quaternion_Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"quaternion", //tp_name
|
|
sizeof(QuaternionObject), //tp_basicsize
|
|
0, //tp_itemsize
|
|
(destructor)BaseMathObject_dealloc, //tp_dealloc
|
|
0, //tp_print
|
|
0, //tp_getattr
|
|
0, //tp_setattr
|
|
0, //tp_compare
|
|
(reprfunc) Quaternion_repr, //tp_repr
|
|
&Quaternion_NumMethods, //tp_as_number
|
|
&Quaternion_SeqMethods, //tp_as_sequence
|
|
&Quaternion_AsMapping, //tp_as_mapping
|
|
0, //tp_hash
|
|
0, //tp_call
|
|
0, //tp_str
|
|
0, //tp_getattro
|
|
0, //tp_setattro
|
|
0, //tp_as_buffer
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
|
|
quaternion_doc, //tp_doc
|
|
0, //tp_traverse
|
|
0, //tp_clear
|
|
(richcmpfunc)Quaternion_richcmpr, //tp_richcompare
|
|
0, //tp_weaklistoffset
|
|
0, //tp_iter
|
|
0, //tp_iternext
|
|
Quaternion_methods, //tp_methods
|
|
0, //tp_members
|
|
Quaternion_getseters, //tp_getset
|
|
0, //tp_base
|
|
0, //tp_dict
|
|
0, //tp_descr_get
|
|
0, //tp_descr_set
|
|
0, //tp_dictoffset
|
|
0, //tp_init
|
|
0, //tp_alloc
|
|
Quaternion_new, //tp_new
|
|
0, //tp_free
|
|
0, //tp_is_gc
|
|
0, //tp_bases
|
|
0, //tp_mro
|
|
0, //tp_cache
|
|
0, //tp_subclasses
|
|
0, //tp_weaklist
|
|
0 //tp_del
|
|
};
|
|
//------------------------newQuaternionObject (internal)-------------
|
|
//creates a new quaternion object
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
|
|
{
|
|
QuaternionObject *self;
|
|
|
|
if(base_type) self = (QuaternionObject *)base_type->tp_alloc(base_type, 0);
|
|
else self = PyObject_NEW(QuaternionObject, &quaternion_Type);
|
|
|
|
/* init callbacks as NULL */
|
|
self->cb_user= NULL;
|
|
self->cb_type= self->cb_subtype= 0;
|
|
|
|
if(type == Py_WRAP){
|
|
self->quat = quat;
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
|
|
if(!quat) { //new empty
|
|
unit_qt(self->quat);
|
|
}else{
|
|
QUATCOPY(self->quat, quat);
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ //bad type
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
|
|
{
|
|
QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
|
|
if(self) {
|
|
Py_INCREF(cb_user);
|
|
self->cb_user= cb_user;
|
|
self->cb_type= (unsigned char)cb_type;
|
|
self->cb_subtype= (unsigned char)cb_subtype;
|
|
}
|
|
|
|
return (PyObject *)self;
|
|
}
|
|
|