This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_params.hh
Jacques Lucke 658fd8df0b Geometry Nodes: refactor multi-threading in field evaluation
Previously, there was a fixed grain size for all multi-functions. That was
not sufficient because some functions could benefit a lot from smaller
grain sizes.

This refactors adds a new `MultiFunction::call_auto` method which has the
same effect as just calling `MultiFunction::call` but additionally figures
out how to execute the specific multi-function efficiently. It determines
a good grain size and decides whether the mask indices should be shifted
or not.

Most multi-function evaluations benefit from this, but medium sized work
loads (1000 - 50000 elements) benefit from it the most. Especially when
expensive multi-functions (e.g. noise) is involved. This is because for
smaller work loads, threading is rarely used and for larger work loads
threading worked fine before already.

With this patch, multi-functions can specify execution hints, that allow
the caller to execute it most efficiently. These execution hints still
have to be added to more functions.

Some performance measurements of a field evaluation involving noise and
math nodes, ordered by the number of elements being evaluated:
```
1,000,000: 133 ms   -> 120 ms
  100,000:  30 ms   ->  18 ms
   10,000:  20 ms   ->   2.7 ms
    1,000:   4 ms   ->   0.5 ms
      100:   0.5 ms ->   0.4 ms
```
2021-11-26 11:06:16 +01:00

361 lines
13 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup fn
*
* This file provides an MFParams and MFParamsBuilder structure.
*
* `MFParamsBuilder` is used by a function caller to be prepare all parameters that are passed into
* the function. `MFParams` is then used inside the called function to access the parameters.
*/
#include <mutex>
#include "BLI_resource_scope.hh"
#include "FN_generic_pointer.hh"
#include "FN_generic_vector_array.hh"
#include "FN_generic_virtual_vector_array.hh"
#include "FN_multi_function_signature.hh"
namespace blender::fn {
class MFParamsBuilder {
private:
ResourceScope scope_;
const MFSignature *signature_;
IndexMask mask_;
int64_t min_array_size_;
Vector<GVArray> virtual_arrays_;
Vector<GMutableSpan> mutable_spans_;
Vector<const GVVectorArray *> virtual_vector_arrays_;
Vector<GVectorArray *> vector_arrays_;
std::mutex mutex_;
Vector<std::pair<int, GMutableSpan>> dummy_output_spans_;
friend class MFParams;
MFParamsBuilder(const MFSignature &signature, const IndexMask mask)
: signature_(&signature), mask_(mask), min_array_size_(mask.min_array_size())
{
}
public:
MFParamsBuilder(const class MultiFunction &fn, int64_t size);
/**
* The indices referenced by the #mask has to live longer than the params builder. This is
* because the it might have to destruct elements for all masked indices in the end.
*/
MFParamsBuilder(const class MultiFunction &fn, const IndexMask *mask);
template<typename T> void add_readonly_single_input_value(T value, StringRef expected_name = "")
{
this->add_readonly_single_input(VArray<T>::ForSingle(std::move(value), min_array_size_),
expected_name);
}
template<typename T> void add_readonly_single_input(const T *value, StringRef expected_name = "")
{
this->add_readonly_single_input(
GVArray::ForSingleRef(CPPType::get<T>(), min_array_size_, value), expected_name);
}
void add_readonly_single_input(const GSpan span, StringRef expected_name = "")
{
this->add_readonly_single_input(GVArray::ForSpan(span), expected_name);
}
void add_readonly_single_input(GPointer value, StringRef expected_name = "")
{
this->add_readonly_single_input(
GVArray::ForSingleRef(*value.type(), min_array_size_, value.get()), expected_name);
}
void add_readonly_single_input(GVArray varray, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleInput(varray.type()), expected_name);
BLI_assert(varray.size() >= min_array_size_);
virtual_arrays_.append(varray);
}
void add_readonly_vector_input(const GVectorArray &vector_array, StringRef expected_name = "")
{
this->add_readonly_vector_input(scope_.construct<GVVectorArray_For_GVectorArray>(vector_array),
expected_name);
}
void add_readonly_vector_input(const GSpan single_vector, StringRef expected_name = "")
{
this->add_readonly_vector_input(
scope_.construct<GVVectorArray_For_SingleGSpan>(single_vector, min_array_size_),
expected_name);
}
void add_readonly_vector_input(const GVVectorArray &ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorInput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
virtual_vector_arrays_.append(&ref);
}
template<typename T> void add_uninitialized_single_output(T *value, StringRef expected_name = "")
{
this->add_uninitialized_single_output(GMutableSpan(CPPType::get<T>(), value, 1),
expected_name);
}
void add_uninitialized_single_output(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleOutput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_ignored_single_output(StringRef expected_name = "")
{
this->assert_current_param_name(expected_name);
const int param_index = this->current_param_index();
const MFParamType &param_type = signature_->param_types[param_index];
BLI_assert(param_type.category() == MFParamType::SingleOutput);
const CPPType &type = param_type.data_type().single_type();
/* An empty span indicates that this is ignored. */
const GMutableSpan dummy_span{type};
mutable_spans_.append(dummy_span);
}
void add_vector_output(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorOutput(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
void add_single_mutable(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableSingle(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_vector_mutable(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableVector(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
GMutableSpan computed_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::SingleOutput,
MFParamType::SingleMutable));
int data_index = signature_->data_index(param_index);
return mutable_spans_[data_index];
}
GVectorArray &computed_vector_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::VectorOutput,
MFParamType::VectorMutable));
int data_index = signature_->data_index(param_index);
return *vector_arrays_[data_index];
}
ResourceScope &resource_scope()
{
return scope_;
}
private:
void assert_current_param_type(MFParamType param_type, StringRef expected_name = "")
{
UNUSED_VARS_NDEBUG(param_type, expected_name);
#ifdef DEBUG
int param_index = this->current_param_index();
if (expected_name != "") {
StringRef actual_name = signature_->param_names[param_index];
BLI_assert(actual_name == expected_name);
}
MFParamType expected_type = signature_->param_types[param_index];
BLI_assert(expected_type == param_type);
#endif
}
void assert_current_param_name(StringRef expected_name)
{
UNUSED_VARS_NDEBUG(expected_name);
#ifdef DEBUG
if (expected_name.is_empty()) {
return;
}
const int param_index = this->current_param_index();
StringRef actual_name = signature_->param_names[param_index];
BLI_assert(actual_name == expected_name);
#endif
}
int current_param_index() const
{
return virtual_arrays_.size() + mutable_spans_.size() + virtual_vector_arrays_.size() +
vector_arrays_.size();
}
};
class MFParams {
private:
MFParamsBuilder *builder_;
public:
MFParams(MFParamsBuilder &builder) : builder_(&builder)
{
}
template<typename T> VArray<T> readonly_single_input(int param_index, StringRef name = "")
{
const GVArray &varray = this->readonly_single_input(param_index, name);
return varray.typed<T>();
}
const GVArray &readonly_single_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleInput);
int data_index = builder_->signature_->data_index(param_index);
return builder_->virtual_arrays_[data_index];
}
/**
* \return True when the caller provided a buffer for this output parameter. This allows the
* called multi-function to skip some computation. It is still valid to call
* #uninitialized_single_output when this returns false. In this case a new temporary buffer is
* allocated.
*/
bool single_output_is_required(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
return !builder_->mutable_spans_[data_index].is_empty();
}
template<typename T>
MutableSpan<T> uninitialized_single_output(int param_index, StringRef name = "")
{
return this->uninitialized_single_output(param_index, name).typed<T>();
}
GMutableSpan uninitialized_single_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
GMutableSpan span = builder_->mutable_spans_[data_index];
if (!span.is_empty()) {
return span;
}
/* The output is ignored by the caller, but the multi-function does not handle this case. So
* create a temporary buffer that the multi-function can write to. */
return this->ensure_dummy_single_output(data_index);
}
/**
* Same as #uninitialized_single_output, but returns an empty span when the output is not
* required.
*/
template<typename T>
MutableSpan<T> uninitialized_single_output_if_required(int param_index, StringRef name = "")
{
return this->uninitialized_single_output_if_required(param_index, name).typed<T>();
}
GMutableSpan uninitialized_single_output_if_required(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
const VVectorArray<T> &readonly_vector_input(int param_index, StringRef name = "")
{
const GVVectorArray &vector_array = this->readonly_vector_input(param_index, name);
return builder_->scope_.construct<VVectorArray_For_GVVectorArray<T>>(vector_array);
}
const GVVectorArray &readonly_vector_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorInput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->virtual_vector_arrays_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_output(int param_index, StringRef name = "")
{
return {this->vector_output(param_index, name)};
}
GVectorArray &vector_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorOutput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
template<typename T> MutableSpan<T> single_mutable(int param_index, StringRef name = "")
{
return this->single_mutable(param_index, name).typed<T>();
}
GMutableSpan single_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleMutable);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_mutable(int param_index, StringRef name = "")
{
return {this->vector_mutable(param_index, name)};
}
GVectorArray &vector_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorMutable);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
private:
void assert_correct_param(int param_index, StringRef name, MFParamType param_type)
{
UNUSED_VARS_NDEBUG(param_index, name, param_type);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index] == param_type);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
void assert_correct_param(int param_index, StringRef name, MFParamType::Category category)
{
UNUSED_VARS_NDEBUG(param_index, name, category);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index].category() == category);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
GMutableSpan ensure_dummy_single_output(int data_index);
};
} // namespace blender::fn