This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_FastGaussianBlurOperation.cpp
Sergey Sharybin 9016d6d7a0 Fix T40448: Blurring bug in the compositor
This commit pretty much reverts all the changes related on tile-ability
of the fast gaussian blur. It's not tilable by definition and would almost
always give you seams on the tile boundaries.

Atmind already met the issue and tried to solve it by increasing some
magic constant, which is pretty much likely simply made it so compositor
switched to full-frame calculation in that particular .blend file.

Fast gaussian is really not a production thing and need to be avoided.
We're to improve speed of normal gaussian blur instead.
2014-06-02 18:37:18 +06:00

325 lines
11 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include <limits.h>
#include "COM_FastGaussianBlurOperation.h"
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
FastGaussianBlurOperation::FastGaussianBlurOperation() : BlurBaseOperation(COM_DT_COLOR)
{
this->m_iirgaus = NULL;
}
void FastGaussianBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
MemoryBuffer *newData = (MemoryBuffer *)data;
newData->read(output, x, y);
}
bool FastGaussianBlurOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
rcti sizeInput;
sizeInput.xmin = 0;
sizeInput.ymin = 0;
sizeInput.xmax = 5;
sizeInput.ymax = 5;
NodeOperation *operation = this->getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&sizeInput, readOperation, output)) {
return true;
}
else {
if (this->m_iirgaus) {
return false;
}
else {
newInput.xmin = 0;
newInput.ymin = 0;
newInput.xmax = this->getWidth();
newInput.ymax = this->getHeight();
}
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
}
void FastGaussianBlurOperation::initExecution()
{
BlurBaseOperation::initExecution();
BlurBaseOperation::initMutex();
}
void FastGaussianBlurOperation::deinitExecution()
{
if (this->m_iirgaus) {
delete this->m_iirgaus;
this->m_iirgaus = NULL;
}
BlurBaseOperation::deinitMutex();
}
void *FastGaussianBlurOperation::initializeTileData(rcti *rect)
{
lockMutex();
if (!this->m_iirgaus) {
MemoryBuffer *newBuf = (MemoryBuffer *)this->m_inputProgram->initializeTileData(rect);
MemoryBuffer *copy = newBuf->duplicate();
updateSize();
int c;
this->m_sx = this->m_data.sizex * this->m_size / 2.0f;
this->m_sy = this->m_data.sizey * this->m_size / 2.0f;
if ((this->m_sx == this->m_sy) && (this->m_sx > 0.f)) {
for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
IIR_gauss(copy, this->m_sx, c, 3);
}
else {
if (this->m_sx > 0.0f) {
for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
IIR_gauss(copy, this->m_sx, c, 1);
}
if (this->m_sy > 0.0f) {
for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
IIR_gauss(copy, this->m_sy, c, 2);
}
}
this->m_iirgaus = copy;
}
unlockMutex();
return this->m_iirgaus;
}
void FastGaussianBlurOperation::IIR_gauss(MemoryBuffer *src, float sigma, unsigned int chan, unsigned int xy)
{
double q, q2, sc, cf[4], tsM[9], tsu[3], tsv[3];
double *X, *Y, *W;
const unsigned int src_width = src->getWidth();
const unsigned int src_height = src->getHeight();
unsigned int x, y, sz;
unsigned int i;
float *buffer = src->getBuffer();
// <0.5 not valid, though can have a possibly useful sort of sharpening effect
if (sigma < 0.5f) return;
if ((xy < 1) || (xy > 3)) xy = 3;
// XXX The YVV macro defined below explicitly expects sources of at least 3x3 pixels,
// so just skiping blur along faulty direction if src's def is below that limit!
if (src_width < 3) xy &= ~1;
if (src_height < 3) xy &= ~2;
if (xy < 1) return;
// see "Recursive Gabor Filtering" by Young/VanVliet
// all factors here in double.prec. Required, because for single.prec it seems to blow up if sigma > ~200
if (sigma >= 3.556f)
q = 0.9804f * (sigma - 3.556f) + 2.5091f;
else // sigma >= 0.5
q = (0.0561f * sigma + 0.5784f) * sigma - 0.2568f;
q2 = q * q;
sc = (1.1668 + q) * (3.203729649 + (2.21566 + q) * q);
// no gabor filtering here, so no complex multiplies, just the regular coefs.
// all negated here, so as not to have to recalc Triggs/Sdika matrix
cf[1] = q * (5.788961737 + (6.76492 + 3.0 * q) * q) / sc;
cf[2] = -q2 * (3.38246 + 3.0 * q) / sc;
// 0 & 3 unchanged
cf[3] = q2 * q / sc;
cf[0] = 1.0 - cf[1] - cf[2] - cf[3];
// Triggs/Sdika border corrections,
// it seems to work, not entirely sure if it is actually totally correct,
// Besides J.M.Geusebroek's anigauss.c (see http://www.science.uva.nl/~mark),
// found one other implementation by Cristoph Lampert,
// but neither seem to be quite the same, result seems to be ok so far anyway.
// Extra scale factor here to not have to do it in filter,
// though maybe this had something to with the precision errors
sc = cf[0] / ((1.0 + cf[1] - cf[2] + cf[3]) * (1.0 - cf[1] - cf[2] - cf[3]) * (1.0 + cf[2] + (cf[1] - cf[3]) * cf[3]));
tsM[0] = sc * (-cf[3] * cf[1] + 1.0 - cf[3] * cf[3] - cf[2]);
tsM[1] = sc * ((cf[3] + cf[1]) * (cf[2] + cf[3] * cf[1]));
tsM[2] = sc * (cf[3] * (cf[1] + cf[3] * cf[2]));
tsM[3] = sc * (cf[1] + cf[3] * cf[2]);
tsM[4] = sc * (-(cf[2] - 1.0) * (cf[2] + cf[3] * cf[1]));
tsM[5] = sc * (-(cf[3] * cf[1] + cf[3] * cf[3] + cf[2] - 1.0) * cf[3]);
tsM[6] = sc * (cf[3] * cf[1] + cf[2] + cf[1] * cf[1] - cf[2] * cf[2]);
tsM[7] = sc * (cf[1] * cf[2] + cf[3] * cf[2] * cf[2] - cf[1] * cf[3] * cf[3] - cf[3] * cf[3] * cf[3] - cf[3] * cf[2] + cf[3]);
tsM[8] = sc * (cf[3] * (cf[1] + cf[3] * cf[2]));
#define YVV(L) \
{ \
W[0] = cf[0] * X[0] + cf[1] * X[0] + cf[2] * X[0] + cf[3] * X[0]; \
W[1] = cf[0] * X[1] + cf[1] * W[0] + cf[2] * X[0] + cf[3] * X[0]; \
W[2] = cf[0] * X[2] + cf[1] * W[1] + cf[2] * W[0] + cf[3] * X[0]; \
for (i = 3; i < L; i++) { \
W[i] = cf[0] * X[i] + cf[1] * W[i - 1] + cf[2] * W[i - 2] + cf[3] * W[i - 3]; \
} \
tsu[0] = W[L - 1] - X[L - 1]; \
tsu[1] = W[L - 2] - X[L - 1]; \
tsu[2] = W[L - 3] - X[L - 1]; \
tsv[0] = tsM[0] * tsu[0] + tsM[1] * tsu[1] + tsM[2] * tsu[2] + X[L - 1]; \
tsv[1] = tsM[3] * tsu[0] + tsM[4] * tsu[1] + tsM[5] * tsu[2] + X[L - 1]; \
tsv[2] = tsM[6] * tsu[0] + tsM[7] * tsu[1] + tsM[8] * tsu[2] + X[L - 1]; \
Y[L - 1] = cf[0] * W[L - 1] + cf[1] * tsv[0] + cf[2] * tsv[1] + cf[3] * tsv[2]; \
Y[L - 2] = cf[0] * W[L - 2] + cf[1] * Y[L - 1] + cf[2] * tsv[0] + cf[3] * tsv[1]; \
Y[L - 3] = cf[0] * W[L - 3] + cf[1] * Y[L - 2] + cf[2] * Y[L - 1] + cf[3] * tsv[0]; \
/* 'i != UINT_MAX' is really 'i >= 0', but necessary for unsigned int wrapping */ \
for (i = L - 4; i != UINT_MAX; i--) { \
Y[i] = cf[0] * W[i] + cf[1] * Y[i + 1] + cf[2] * Y[i + 2] + cf[3] * Y[i + 3]; \
} \
} (void)0
// intermediate buffers
sz = max(src_width, src_height);
X = (double *)MEM_callocN(sz * sizeof(double), "IIR_gauss X buf");
Y = (double *)MEM_callocN(sz * sizeof(double), "IIR_gauss Y buf");
W = (double *)MEM_callocN(sz * sizeof(double), "IIR_gauss W buf");
if (xy & 1) { // H
int offset;
for (y = 0; y < src_height; ++y) {
const int yx = y * src_width;
offset = yx * COM_NUMBER_OF_CHANNELS + chan;
for (x = 0; x < src_width; ++x) {
X[x] = buffer[offset];
offset += COM_NUMBER_OF_CHANNELS;
}
YVV(src_width);
offset = yx * COM_NUMBER_OF_CHANNELS + chan;
for (x = 0; x < src_width; ++x) {
buffer[offset] = Y[x];
offset += COM_NUMBER_OF_CHANNELS;
}
}
}
if (xy & 2) { // V
int offset;
const int add = src_width * COM_NUMBER_OF_CHANNELS;
for (x = 0; x < src_width; ++x) {
offset = x * COM_NUMBER_OF_CHANNELS + chan;
for (y = 0; y < src_height; ++y) {
X[y] = buffer[offset];
offset += add;
}
YVV(src_height);
offset = x * COM_NUMBER_OF_CHANNELS + chan;
for (y = 0; y < src_height; ++y) {
buffer[offset] = Y[y];
offset += add;
}
}
}
MEM_freeN(X);
MEM_freeN(W);
MEM_freeN(Y);
#undef YVV
}
///
FastGaussianBlurValueOperation::FastGaussianBlurValueOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_VALUE);
this->addOutputSocket(COM_DT_VALUE);
this->m_iirgaus = NULL;
this->m_inputprogram = NULL;
this->m_sigma = 1.0f;
this->m_overlay = 0;
setComplex(true);
}
void FastGaussianBlurValueOperation::executePixel(float output[4], int x, int y, void *data)
{
MemoryBuffer *newData = (MemoryBuffer *)data;
newData->read(output, x, y);
}
bool FastGaussianBlurValueOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
if (this->m_iirgaus) {
return false;
}
else {
newInput.xmin = 0;
newInput.ymin = 0;
newInput.xmax = this->getWidth();
newInput.ymax = this->getHeight();
}
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void FastGaussianBlurValueOperation::initExecution()
{
this->m_inputprogram = getInputSocketReader(0);
initMutex();
}
void FastGaussianBlurValueOperation::deinitExecution()
{
if (this->m_iirgaus) {
delete this->m_iirgaus;
this->m_iirgaus = NULL;
}
deinitMutex();
}
void *FastGaussianBlurValueOperation::initializeTileData(rcti *rect)
{
lockMutex();
if (!this->m_iirgaus) {
MemoryBuffer *newBuf = (MemoryBuffer *)this->m_inputprogram->initializeTileData(rect);
MemoryBuffer *copy = newBuf->duplicate();
FastGaussianBlurOperation::IIR_gauss(copy, this->m_sigma, 0, 3);
if (this->m_overlay == FAST_GAUSS_OVERLAY_MIN) {
float *src = newBuf->getBuffer();
float *dst = copy->getBuffer();
for (int i = copy->getWidth() * copy->getHeight(); i != 0; i--, src += COM_NUMBER_OF_CHANNELS, dst += COM_NUMBER_OF_CHANNELS) {
if (*src < *dst) {
*dst = *src;
}
}
}
else if (this->m_overlay == FAST_GAUSS_OVERLAY_MAX) {
float *src = newBuf->getBuffer();
float *dst = copy->getBuffer();
for (int i = copy->getWidth() * copy->getHeight(); i != 0; i--, src += COM_NUMBER_OF_CHANNELS, dst += COM_NUMBER_OF_CHANNELS) {
if (*src > *dst) {
*dst = *src;
}
}
}
// newBuf->
this->m_iirgaus = copy;
}
unlockMutex();
return this->m_iirgaus;
}