This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/render/buffers.cpp
Brecht Van Lommel 073bf8bf52 Cycles: remove WITH_CYCLES_DEBUG, add WITH_CYCLES_DEBUG_NAN
WITH_CYCLES_DEBUG was used for rendering BVH debugging passes. But since we
mainly use Embree an OptiX now, this information is no longer important.

WITH_CYCLES_DEBUG_NAN will enable additional checks for NaNs and invalid values
in the kernel, for Cycles developers. Previously these asserts where enabled in
all debug builds, but this is too likely to crash Blender in scenes that render
fine regardless of the NaNs. So this is behind a CMake option now.

Fixes T90240
2021-07-28 19:27:57 +02:00

565 lines
15 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "device/device.h"
#include "render/buffers.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
denoising_data_pass = false;
denoising_clean_pass = false;
denoising_prefiltered_pass = false;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int &offset, int &stride)
{
offset = -(full_x + full_y * width);
stride = width;
}
bool BufferParams::modified(const BufferParams &params)
{
return !(full_x == params.full_x && full_y == params.full_y && width == params.width &&
height == params.height && full_width == params.full_width &&
full_height == params.full_height && Pass::equals(passes, params.passes) &&
denoising_data_pass == params.denoising_data_pass &&
denoising_clean_pass == params.denoising_clean_pass &&
denoising_prefiltered_pass == params.denoising_prefiltered_pass);
}
int BufferParams::get_passes_size()
{
int size = 0;
for (size_t i = 0; i < passes.size(); i++)
size += passes[i].components;
if (denoising_data_pass) {
size += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass)
size += DENOISING_PASS_SIZE_CLEAN;
if (denoising_prefiltered_pass)
size += DENOISING_PASS_SIZE_PREFILTERED;
}
return align_up(size, 4);
}
int BufferParams::get_denoising_offset()
{
int offset = 0;
for (size_t i = 0; i < passes.size(); i++)
offset += passes[i].components;
return offset;
}
int BufferParams::get_denoising_prefiltered_offset()
{
assert(denoising_prefiltered_pass);
int offset = get_denoising_offset();
offset += DENOISING_PASS_SIZE_BASE;
if (denoising_clean_pass) {
offset += DENOISING_PASS_SIZE_CLEAN;
}
return offset;
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
sample = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
buffers = NULL;
stealing_state = NO_STEALING;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device)
: buffer(device, "RenderBuffers", MEM_READ_WRITE),
map_neighbor_copied(false),
render_time(0.0f)
{
}
RenderBuffers::~RenderBuffers()
{
buffer.free();
}
void RenderBuffers::reset(BufferParams &params_)
{
params = params_;
/* re-allocate buffer */
buffer.alloc(params.width * params.get_passes_size(), params.height);
buffer.zero_to_device();
}
void RenderBuffers::zero()
{
buffer.zero_to_device();
}
bool RenderBuffers::copy_from_device()
{
if (!buffer.device_pointer)
return false;
buffer.copy_from_device(0, params.width * params.get_passes_size(), params.height);
return true;
}
bool RenderBuffers::get_denoising_pass_rect(
int type, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float scale = 1.0f;
float alpha_scale = 1.0f / sample;
if (type == DENOISING_PASS_PREFILTERED_COLOR || type == DENOISING_PASS_CLEAN ||
type == DENOISING_PASS_PREFILTERED_INTENSITY) {
scale *= exposure;
}
else if (type == DENOISING_PASS_PREFILTERED_VARIANCE) {
scale *= exposure * exposure * (sample - 1);
}
int offset;
if (type == DENOISING_PASS_CLEAN) {
/* The clean pass isn't changed by prefiltering, so we use the original one there. */
offset = type + params.get_denoising_offset();
scale /= sample;
}
else if (params.denoising_prefiltered_pass) {
offset = type + params.get_denoising_prefiltered_offset();
}
else {
switch (type) {
case DENOISING_PASS_PREFILTERED_DEPTH:
offset = params.get_denoising_offset() + DENOISING_PASS_DEPTH;
break;
case DENOISING_PASS_PREFILTERED_NORMAL:
offset = params.get_denoising_offset() + DENOISING_PASS_NORMAL;
break;
case DENOISING_PASS_PREFILTERED_ALBEDO:
offset = params.get_denoising_offset() + DENOISING_PASS_ALBEDO;
break;
case DENOISING_PASS_PREFILTERED_COLOR:
/* If we're not saving the prefiltering result, return the original noisy pass. */
offset = params.get_denoising_offset() + DENOISING_PASS_COLOR;
break;
default:
return false;
}
scale /= sample;
}
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
float *in = buffer.data() + offset;
if (components == 1) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
pixels[0] = in[0] * scale;
}
}
else if (components == 3) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
pixels[0] = in[0] * scale;
pixels[1] = in[1] * scale;
pixels[2] = in[2] * scale;
}
}
else if (components == 4) {
/* Since the alpha channel is not involved in denoising, output the Combined alpha channel. */
assert(params.passes[0].type == PASS_COMBINED);
float *in_combined = buffer.data();
for (int i = 0; i < size; i++, in += pass_stride, in_combined += pass_stride, pixels += 4) {
float3 val = make_float3(in[0], in[1], in[2]);
if (type == DENOISING_PASS_PREFILTERED_COLOR && params.denoising_prefiltered_pass) {
/* Remove highlight compression from the image. */
val = color_highlight_uncompress(val);
}
pixels[0] = val.x * scale;
pixels[1] = val.y * scale;
pixels[2] = val.z * scale;
pixels[3] = saturate(in_combined[3] * alpha_scale);
}
}
else {
return false;
}
return true;
}
bool RenderBuffers::get_pass_rect(
const string &name, float exposure, int sample, int components, float *pixels)
{
if (buffer.data() == NULL) {
return false;
}
float *sample_count = NULL;
if (name == "Combined") {
int sample_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != PASS_SAMPLE_COUNT) {
sample_offset += pass.components;
continue;
}
else {
sample_count = buffer.data() + sample_offset;
break;
}
}
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
/* Pass is identified by both type and name, multiple of the same type
* may exist with a different name. */
if (pass.name != name) {
pass_offset += pass.components;
continue;
}
PassType type = pass.type;
float *in = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter) ? 1.0f / (float)sample : 1.0f;
float scale_exposure = (pass.exposure) ? scale * exposure : scale;
int size = params.width * params.height;
if (components == 1 && type == PASS_RENDER_TIME) {
/* Render time is not stored by kernel, but measured per tile. */
float val = (float)(1000.0 * render_time / (params.width * params.height * sample));
for (int i = 0; i < size; i++, pixels++) {
pixels[0] = val;
}
}
else if (components == 1) {
assert(pass.components == components);
/* Scalar */
if (type == PASS_DEPTH) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f) ? 1e10f : f * scale_exposure;
}
}
else if (type == PASS_MIST) {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = saturate(f * scale_exposure);
}
}
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f * scale_exposure;
}
}
}
else if (components == 3) {
assert(pass.components == 4);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
}
}
else if (pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_even_color(f * exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for (int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
}
}
}
else if (components == 4) {
assert(pass.components == components);
/* RGBA */
if (type == PASS_SHADOW) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f) ? 1.0f / f.w : 1.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = 1.0f;
}
}
else if (type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
for (size_t k = 0; k < params.passes.size(); k++) {
Pass &color_pass = params.passes[k];
if (color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = buffer.data() + pass_offset;
for (int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f) ? 1.0f / w : 0.0f;
pixels[0] = f.x * invw;
pixels[1] = f.y * invw;
pixels[2] = f.z * invw;
pixels[3] = f.w * invw;
}
}
else if (type == PASS_CRYPTOMATTE) {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
/* x and z contain integer IDs, don't rescale them.
y and w contain matte weights, they get scaled. */
pixels[0] = f.x;
pixels[1] = f.y * scale;
pixels[2] = f.z;
pixels[3] = f.w * scale;
}
}
else {
for (int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
if (sample_count && sample_count[i * pass_stride] < 0.0f) {
scale = (pass.filter) ? -1.0f / (sample_count[i * pass_stride]) : 1.0f;
scale_exposure = (pass.exposure) ? scale * exposure : scale;
}
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x * scale_exposure;
pixels[1] = f.y * scale_exposure;
pixels[2] = f.z * scale_exposure;
/* Clamp since alpha might be > 1.0 due to Russian roulette. */
pixels[3] = saturate(f.w * scale);
}
}
}
return true;
}
return false;
}
bool RenderBuffers::set_pass_rect(PassType type, int components, float *pixels, int samples)
{
if (buffer.data() == NULL) {
return false;
}
int pass_offset = 0;
for (size_t j = 0; j < params.passes.size(); j++) {
Pass &pass = params.passes[j];
if (pass.type != type) {
pass_offset += pass.components;
continue;
}
float *out = buffer.data() + pass_offset;
int pass_stride = params.get_passes_size();
int size = params.width * params.height;
assert(pass.components == components);
for (int i = 0; i < size; i++, out += pass_stride, pixels += components) {
if (pass.filter) {
/* Scale by the number of samples, inverse of what we do in get_pass_rect.
* A better solution would be to remove the need for set_pass_rect entirely,
* and change baking to bake multiple objects in a tile at once. */
for (int j = 0; j < components; j++) {
out[j] = pixels[j] * samples;
}
}
else {
/* For non-filtered passes just straight copy, these may contain non-float data. */
memcpy(out, pixels, sizeof(float) * components);
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device, bool linear)
: draw_width(0),
draw_height(0),
transparent(true), /* todo: determine from background */
half_float(linear),
rgba_byte(device, "display buffer byte"),
rgba_half(device, "display buffer half")
{
}
DisplayBuffer::~DisplayBuffer()
{
rgba_byte.free();
rgba_half.free();
}
void DisplayBuffer::reset(BufferParams &params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* allocate display pixels */
if (half_float) {
rgba_half.alloc_to_device(params.width, params.height);
}
else {
rgba_byte.alloc_to_device(params.width, params.height);
}
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device, const DeviceDrawParams &draw_params)
{
if (draw_width != 0 && draw_height != 0) {
device_memory &rgba = (half_float) ? (device_memory &)rgba_half : (device_memory &)rgba_byte;
device->draw_pixels(rgba,
0,
draw_width,
draw_height,
params.width,
params.height,
params.full_x,
params.full_y,
params.full_width,
params.full_height,
transparent,
draw_params);
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
CCL_NAMESPACE_END