It now uses a quality slider instead of stride. Lower quality takes larger strides between samples and use lower mips when tracing rough rays. Now raytracing is done entierly in homogeneous coordinate space. This run much faster. Should be fairly optimized. We are still Bandwidth bound. Add a line-line intersection refine. Add a ray jitter between the multiple ray per pixel to fill some undersampling in mirror reflections. The tracing now stops if it goes behind an object. This needs some work to allow it to continue even if behind objects.
253 lines
7.5 KiB
GLSL
253 lines
7.5 KiB
GLSL
/* ----------- Uniforms --------- */
|
|
|
|
uniform sampler2DArray probePlanars;
|
|
uniform float lodPlanarMax;
|
|
|
|
uniform sampler2DArray probeCubes;
|
|
uniform float lodCubeMax;
|
|
|
|
/* ----------- Structures --------- */
|
|
|
|
struct CubeData {
|
|
vec4 position_type;
|
|
vec4 attenuation_fac_type;
|
|
mat4 influencemat;
|
|
mat4 parallaxmat;
|
|
};
|
|
|
|
#define PROBE_PARALLAX_BOX 1.0
|
|
#define PROBE_ATTENUATION_BOX 1.0
|
|
|
|
#define p_position position_type.xyz
|
|
#define p_parallax_type position_type.w
|
|
#define p_atten_fac attenuation_fac_type.x
|
|
#define p_atten_type attenuation_fac_type.y
|
|
|
|
struct PlanarData {
|
|
vec4 plane_equation;
|
|
vec4 clip_vec_x_fade_scale;
|
|
vec4 clip_vec_y_fade_bias;
|
|
vec4 clip_edges;
|
|
vec4 facing_scale_bias;
|
|
mat4 reflectionmat; /* transform world space into reflection texture space */
|
|
};
|
|
|
|
#define pl_plane_eq plane_equation
|
|
#define pl_normal plane_equation.xyz
|
|
#define pl_facing_scale facing_scale_bias.x
|
|
#define pl_facing_bias facing_scale_bias.y
|
|
#define pl_fade_scale clip_vec_x_fade_scale.w
|
|
#define pl_fade_bias clip_vec_y_fade_bias.w
|
|
#define pl_clip_pos_x clip_vec_x_fade_scale.xyz
|
|
#define pl_clip_pos_y clip_vec_y_fade_bias.xyz
|
|
#define pl_clip_edges clip_edges
|
|
|
|
struct GridData {
|
|
mat4 localmat;
|
|
ivec4 resolution_offset;
|
|
vec4 ws_corner_atten_scale; /* world space corner position */
|
|
vec4 ws_increment_x_atten_bias; /* world space vector between 2 opposite cells */
|
|
vec4 ws_increment_y;
|
|
vec4 ws_increment_z;
|
|
};
|
|
|
|
#define g_corner ws_corner_atten_scale.xyz
|
|
#define g_atten_scale ws_corner_atten_scale.w
|
|
#define g_atten_bias ws_increment_x_atten_bias.w
|
|
#define g_increment_x ws_increment_x_atten_bias.xyz
|
|
#define g_increment_y ws_increment_y.xyz
|
|
#define g_increment_z ws_increment_z.xyz
|
|
#define g_resolution resolution_offset.xyz
|
|
#define g_offset resolution_offset.w
|
|
|
|
#ifndef MAX_PROBE
|
|
#define MAX_PROBE 1
|
|
#endif
|
|
#ifndef MAX_GRID
|
|
#define MAX_GRID 1
|
|
#endif
|
|
#ifndef MAX_PLANAR
|
|
#define MAX_PLANAR 1
|
|
#endif
|
|
|
|
layout(std140) uniform probe_block {
|
|
CubeData probes_data[MAX_PROBE];
|
|
};
|
|
|
|
layout(std140) uniform grid_block {
|
|
GridData grids_data[MAX_GRID];
|
|
};
|
|
|
|
layout(std140) uniform planar_block {
|
|
PlanarData planars_data[MAX_PLANAR];
|
|
};
|
|
|
|
/* ----------- Functions --------- */
|
|
|
|
float probe_attenuation_cube(CubeData pd, vec3 W)
|
|
{
|
|
vec3 localpos = transform_point(pd.influencemat, W);
|
|
|
|
float fac;
|
|
if (pd.p_atten_type == PROBE_ATTENUATION_BOX) {
|
|
vec3 axes_fac = saturate(pd.p_atten_fac - pd.p_atten_fac * abs(localpos));
|
|
fac = min_v3(axes_fac);
|
|
}
|
|
else {
|
|
fac = saturate(pd.p_atten_fac - pd.p_atten_fac * length(localpos));
|
|
}
|
|
|
|
return fac;
|
|
}
|
|
|
|
float probe_attenuation_planar(PlanarData pd, vec3 W, vec3 N, float roughness)
|
|
{
|
|
/* Normal Facing */
|
|
float fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);
|
|
|
|
/* Distance from plane */
|
|
fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);
|
|
|
|
/* Fancy fast clipping calculation */
|
|
vec2 dist_to_clip;
|
|
dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
|
|
dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
|
|
fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy)); /* compare and add all tests */
|
|
|
|
/* Decrease influence for high roughness */
|
|
fac *= saturate(1.0 - roughness * 10.0);
|
|
|
|
return fac;
|
|
}
|
|
|
|
float probe_attenuation_grid(GridData gd, vec3 W, out vec3 localpos)
|
|
{
|
|
localpos = transform_point(gd.localmat, W);
|
|
|
|
float fade = min(1.0, min_v3(1.0 - abs(localpos)));
|
|
return saturate(fade * gd.g_atten_scale + gd.g_atten_bias);
|
|
}
|
|
|
|
vec3 probe_evaluate_cube(float id, CubeData cd, vec3 W, vec3 R, float roughness)
|
|
{
|
|
/* Correct reflection ray using parallax volume intersection. */
|
|
vec3 localpos = transform_point(cd.parallaxmat, W);
|
|
vec3 localray = transform_direction(cd.parallaxmat, R);
|
|
|
|
float dist;
|
|
if (cd.p_parallax_type == PROBE_PARALLAX_BOX) {
|
|
dist = line_unit_box_intersect_dist(localpos, localray);
|
|
}
|
|
else {
|
|
dist = line_unit_sphere_intersect_dist(localpos, localray);
|
|
}
|
|
|
|
/* Use Distance in WS directly to recover intersection */
|
|
vec3 intersection = W + R * dist - cd.p_position;
|
|
|
|
/* From Frostbite PBR Course
|
|
* Distance based roughness
|
|
* http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
|
|
float original_roughness = roughness;
|
|
float linear_roughness = sqrt(roughness);
|
|
float distance_roughness = saturate(dist * linear_roughness / length(intersection));
|
|
linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
|
|
roughness = linear_roughness * linear_roughness;
|
|
|
|
float fac = saturate(original_roughness * 2.0 - 1.0);
|
|
R = mix(intersection, R, fac * fac);
|
|
|
|
return textureLod_octahedron(probeCubes, vec4(R, id), roughness * lodCubeMax, lodCubeMax).rgb;
|
|
}
|
|
|
|
vec3 probe_evaluate_world_spec(vec3 R, float roughness)
|
|
{
|
|
return textureLod_octahedron(probeCubes, vec4(R, 0.0), roughness * lodCubeMax, lodCubeMax).rgb;
|
|
}
|
|
|
|
vec3 probe_evaluate_planar(
|
|
float id, PlanarData pd, vec3 W, vec3 N, vec3 V,
|
|
float rand, float roughness,
|
|
inout float fade)
|
|
{
|
|
/* Find view vector / reflection plane intersection. */
|
|
vec3 point_on_plane = line_plane_intersect(W, V, pd.pl_plane_eq);
|
|
|
|
/* How far the pixel is from the plane. */
|
|
float ref_depth = 1.0; /* TODO parameter */
|
|
|
|
/* Compute distorded reflection vector based on the distance to the reflected object.
|
|
* In other words find intersection between reflection vector and the sphere center
|
|
* around point_on_plane. */
|
|
vec3 proj_ref = reflect(reflect(-V, N) * ref_depth, pd.pl_normal);
|
|
|
|
/* Final point in world space. */
|
|
vec3 ref_pos = point_on_plane + proj_ref;
|
|
|
|
/* Reproject to find texture coords. */
|
|
vec4 refco = ViewProjectionMatrix * vec4(ref_pos, 1.0);
|
|
refco.xy /= refco.w;
|
|
|
|
/* TODO: If we support non-ssr planar reflection, we should blur them with gaussian
|
|
* and chose the right mip depending on the cone footprint after projection */
|
|
vec3 sample = textureLod(probePlanars, vec3(refco.xy * 0.5 + 0.5, id), 0.0).rgb;
|
|
|
|
return sample;
|
|
}
|
|
|
|
#ifdef IRRADIANCE_LIB
|
|
vec3 probe_evaluate_grid(GridData gd, vec3 W, vec3 N, vec3 localpos)
|
|
{
|
|
localpos = localpos * 0.5 + 0.5;
|
|
localpos = localpos * vec3(gd.g_resolution) - 0.5;
|
|
|
|
vec3 localpos_floored = floor(localpos);
|
|
vec3 trilinear_weight = fract(localpos);
|
|
|
|
float weight_accum = 0.0;
|
|
vec3 irradiance_accum = vec3(0.0);
|
|
|
|
/* For each neighboor cells */
|
|
for (int i = 0; i < 8; ++i) {
|
|
ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
|
|
vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);
|
|
|
|
/* Keep in sync with update_irradiance_probe */
|
|
ivec3 icell_cos = ivec3(cell_cos);
|
|
int cell = gd.g_offset + icell_cos.z + icell_cos.y * gd.g_resolution.z + icell_cos.x * gd.g_resolution.z * gd.g_resolution.y;
|
|
|
|
vec3 color = irradiance_from_cell_get(cell, N);
|
|
|
|
/* We need this because we render probes in world space (so we need light vector in WS).
|
|
* And rendering them in local probe space is too much problem. */
|
|
vec3 ws_cell_location = gd.g_corner +
|
|
(gd.g_increment_x * cell_cos.x +
|
|
gd.g_increment_y * cell_cos.y +
|
|
gd.g_increment_z * cell_cos.z);
|
|
|
|
// vec3 ws_point_to_cell = ws_cell_location - W;
|
|
// vec3 ws_light = normalize(ws_point_to_cell);
|
|
|
|
vec3 trilinear = mix(1 - trilinear_weight, trilinear_weight, offset);
|
|
float weight = trilinear.x * trilinear.y * trilinear.z;
|
|
|
|
/* Smooth backface test */
|
|
// weight *= sqrt(max(0.002, dot(ws_light, N)));
|
|
|
|
/* Avoid zero weight */
|
|
weight = max(0.00001, weight);
|
|
|
|
weight_accum += weight;
|
|
irradiance_accum += color * weight;
|
|
}
|
|
|
|
return irradiance_accum / weight_accum;
|
|
}
|
|
|
|
vec3 probe_evaluate_world_diff(vec3 N)
|
|
{
|
|
return irradiance_from_cell_get(0, N);
|
|
}
|
|
|
|
#endif /* IRRADIANCE_LIB */
|