926 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			926 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import bpy
 | 
						|
 | 
						|
from math import atan, pi, degrees
 | 
						|
import subprocess
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import time
 | 
						|
 | 
						|
import platform as pltfrm
 | 
						|
 | 
						|
if pltfrm.architecture()[0] == '64bit':
 | 
						|
	bitness = 64
 | 
						|
else:
 | 
						|
	bitness = 32
 | 
						|
 | 
						|
def write_pov(filename, scene=None, info_callback = None):
 | 
						|
	file = open(filename, 'w')
 | 
						|
	
 | 
						|
	# Only for testing
 | 
						|
	if not scene:
 | 
						|
		scene = bpy.data.scenes[0]
 | 
						|
	
 | 
						|
	render = scene.render_data
 | 
						|
	world = scene.world
 | 
						|
	
 | 
						|
	# --- taken from fbx exporter 
 | 
						|
	## This was used to make V, but faster not to do all that
 | 
						|
	##valid = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_,.()[]{}'
 | 
						|
	##v = range(255)
 | 
						|
	##for c in valid: v.remove(ord(c))
 | 
						|
	v = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,42,43,46,47,58,59,60,61,62,63,64,92,94,96,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254]
 | 
						|
	invalid = ''.join([chr(i) for i in v])
 | 
						|
	def cleanName(name):
 | 
						|
		for ch in invalid:	name = name.replace(ch, '_')
 | 
						|
		return name
 | 
						|
	del v
 | 
						|
	
 | 
						|
	# --- done with clean name.
 | 
						|
	
 | 
						|
	def uniqueName(name, nameSeq):
 | 
						|
		
 | 
						|
		if name not in nameSeq:
 | 
						|
			return name
 | 
						|
		
 | 
						|
		name_orig = name
 | 
						|
		i = 1
 | 
						|
		while name in nameSeq:
 | 
						|
			name = '%s_%.3d' % (name_orig, i)
 | 
						|
			i+=1
 | 
						|
		
 | 
						|
		return name
 | 
						|
		
 | 
						|
	
 | 
						|
	def writeMatrix(matrix):
 | 
						|
		file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
 | 
						|
		(matrix[0][0], matrix[0][1], matrix[0][2],  matrix[1][0], matrix[1][1], matrix[1][2],  matrix[2][0], matrix[2][1], matrix[2][2],  matrix[3][0], matrix[3][1], matrix[3][2]) )
 | 
						|
	
 | 
						|
	def writeObjectMaterial(material):
 | 
						|
		if material and material.transparency_method=='RAYTRACE':
 | 
						|
			file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
 | 
						|
			
 | 
						|
			# Other interior args
 | 
						|
			# fade_distance 2
 | 
						|
			# fade_power [Value]
 | 
						|
			# fade_color
 | 
						|
			
 | 
						|
			# dispersion
 | 
						|
			# dispersion_samples
 | 
						|
	
 | 
						|
	materialNames = {}
 | 
						|
	DEF_MAT_NAME = 'Default'
 | 
						|
	def writeMaterial(material):
 | 
						|
		# Assumes only called once on each material
 | 
						|
		
 | 
						|
		if material:
 | 
						|
			name_orig = material.name
 | 
						|
		else:
 | 
						|
			name_orig = DEF_MAT_NAME
 | 
						|
		
 | 
						|
		name = materialNames[name_orig] = uniqueName(cleanName(name_orig), materialNames)
 | 
						|
		
 | 
						|
		file.write('#declare %s = finish {\n' % name)
 | 
						|
		
 | 
						|
		if material:
 | 
						|
			file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
 | 
						|
			file.write('\tspecular %.3g\n' % material.specular_intensity)
 | 
						|
			
 | 
						|
			file.write('\tambient %.3g\n' % material.ambient)
 | 
						|
			#file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
 | 
						|
			
 | 
						|
			# map hardness between 0.0 and 1.0
 | 
						|
			roughness = ((1.0 - ((material.specular_hardness-1.0)/510.0)))
 | 
						|
			# scale from 0.0 to 0.1
 | 
						|
			roughness *= 0.1
 | 
						|
			# add a small value because 0.0 is invalid
 | 
						|
			roughness += (1/511.0)
 | 
						|
			
 | 
						|
			file.write('\troughness %.3g\n' % roughness)
 | 
						|
			
 | 
						|
			# 'phong 70.0 '
 | 
						|
			
 | 
						|
			if material.raytrace_mirror.enabled:
 | 
						|
				raytrace_mirror= material.raytrace_mirror
 | 
						|
				if raytrace_mirror.reflect_factor:
 | 
						|
					file.write('\treflection {\n')
 | 
						|
					file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
 | 
						|
					file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
 | 
						|
		
 | 
						|
		else:
 | 
						|
			file.write('\tdiffuse 0.8\n')
 | 
						|
			file.write('\tspecular 0.2\n')
 | 
						|
			
 | 
						|
			
 | 
						|
		
 | 
						|
		# This is written into the object
 | 
						|
		'''
 | 
						|
		if material and material.transparency_method=='RAYTRACE':
 | 
						|
			'interior { ior %.3g} ' % material.raytrace_transparency.ior
 | 
						|
		'''
 | 
						|
		
 | 
						|
		#file.write('\t\t\tcrand 1.0\n') # Sand granyness
 | 
						|
		#file.write('\t\t\tmetallic %.6f\n' % material.spec)
 | 
						|
		#file.write('\t\t\tphong %.6f\n' % material.spec)
 | 
						|
		#file.write('\t\t\tphong_size %.6f\n' % material.spec)
 | 
						|
		#file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
 | 
						|
		
 | 
						|
		file.write('}\n')
 | 
						|
	
 | 
						|
	def exportCamera():
 | 
						|
		camera = scene.camera
 | 
						|
		matrix = camera.matrix
 | 
						|
		
 | 
						|
		# compute resolution
 | 
						|
		Qsize=float(render.resolution_x)/float(render.resolution_y)
 | 
						|
		
 | 
						|
		file.write('camera {\n')
 | 
						|
		file.write('\tlocation  <0, 0, 0>\n')
 | 
						|
		file.write('\tlook_at  <0, 0, -1>\n')
 | 
						|
		file.write('\tright <%s, 0, 0>\n' % -Qsize)
 | 
						|
		file.write('\tup <0, 1, 0>\n')
 | 
						|
		file.write('\tangle  %f \n' % (360.0*atan(16.0/camera.data.lens)/pi))
 | 
						|
		
 | 
						|
		file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()]))
 | 
						|
		file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
 | 
						|
		file.write('}\n')
 | 
						|
	
 | 
						|
	
 | 
						|
	
 | 
						|
	def exportLamps(lamps):
 | 
						|
		# Get all lamps
 | 
						|
		for ob in lamps:
 | 
						|
			lamp = ob.data
 | 
						|
			
 | 
						|
			matrix = ob.matrix
 | 
						|
			
 | 
						|
			color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
 | 
						|
			
 | 
						|
			file.write('light_source {\n')
 | 
						|
			file.write('\t< 0,0,0 >\n')
 | 
						|
			file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
 | 
						|
			
 | 
						|
			if lamp.type == 'POINT': # Point Lamp 
 | 
						|
				pass
 | 
						|
			elif lamp.type == 'SPOT': # Spot
 | 
						|
				file.write('\tspotlight\n')
 | 
						|
				
 | 
						|
				# Falloff is the main radius from the centre line
 | 
						|
				file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH
 | 
						|
				file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) ) 
 | 
						|
				
 | 
						|
				# Blender does not have a tightness equivilent, 0 is most like blender default.
 | 
						|
				file.write('\ttightness 0\n') # 0:10f
 | 
						|
				
 | 
						|
				file.write('\tpoint_at  <0, 0, -1>\n')
 | 
						|
			elif lamp.type == 'SUN':
 | 
						|
				file.write('\tparallel\n')
 | 
						|
				file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'
 | 
						|
				
 | 
						|
			elif lamp.type == 'AREA':
 | 
						|
				
 | 
						|
				size_x = lamp.size
 | 
						|
				samples_x = lamp.shadow_ray_samples_x
 | 
						|
				if lamp.shape == 'SQUARE':
 | 
						|
					size_y = size_x
 | 
						|
					samples_y = samples_x
 | 
						|
				else:
 | 
						|
					size_y = lamp.size_y
 | 
						|
					samples_y = lamp.shadow_ray_samples_y
 | 
						|
				
 | 
						|
				
 | 
						|
				
 | 
						|
				file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
 | 
						|
				if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
 | 
						|
					if lamp.jitter:
 | 
						|
						file.write('\tjitter\n')
 | 
						|
				else:
 | 
						|
					file.write('\tadaptive 1\n')
 | 
						|
					file.write('\tjitter\n')
 | 
						|
			
 | 
						|
			if lamp.shadow_method == 'NOSHADOW':
 | 
						|
				file.write('\tshadowless\n')	
 | 
						|
			
 | 
						|
			file.write('\tfade_distance %.6f\n' % lamp.distance)
 | 
						|
			file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
 | 
						|
			writeMatrix(matrix)
 | 
						|
			
 | 
						|
			file.write('}\n')
 | 
						|
	
 | 
						|
	def exportMeta(metas):
 | 
						|
		
 | 
						|
		# TODO - blenders 'motherball' naming is not supported.
 | 
						|
		
 | 
						|
		for ob in metas:
 | 
						|
			meta = ob.data
 | 
						|
			
 | 
						|
			file.write('blob {\n')
 | 
						|
			file.write('\t\tthreshold %.4g\n' % meta.threshold)
 | 
						|
			
 | 
						|
			try:
 | 
						|
				material= meta.materials[0] # lame! - blender cant do enything else.
 | 
						|
			except:
 | 
						|
				material= None
 | 
						|
			
 | 
						|
			for elem in meta.elements:
 | 
						|
				
 | 
						|
				if elem.type not in ('BALL', 'ELLIPSOID'):
 | 
						|
					continue # Not supported
 | 
						|
				
 | 
						|
				loc = elem.location
 | 
						|
				
 | 
						|
				stiffness= elem.stiffness
 | 
						|
				if elem.negative:
 | 
						|
					stiffness = -stiffness
 | 
						|
				
 | 
						|
				if elem.type == 'BALL':
 | 
						|
					
 | 
						|
					file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
 | 
						|
					
 | 
						|
					# After this wecould do something simple like...
 | 
						|
					# 	"pigment {Blue} }"
 | 
						|
					# except we'll write the color
 | 
						|
				
 | 
						|
				elif elem.type == 'ELLIPSOID':
 | 
						|
					# location is modified by scale
 | 
						|
					file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x/elem.size_x, loc.y/elem.size_y, loc.z/elem.size_z, elem.radius, stiffness))
 | 
						|
					file.write(	'scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
 | 
						|
				
 | 
						|
				if material:
 | 
						|
					diffuse_color = material.diffuse_color
 | 
						|
					
 | 
						|
					if material.transparency and material.transparency_method=='RAYTRACE':	trans = 1-material.raytrace_transparency.filter
 | 
						|
					else:																	trans = 0.0
 | 
						|
					
 | 
						|
					file.write(
 | 
						|
						'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
 | 
						|
						(diffuse_color[0], diffuse_color[1], diffuse_color[2], 1-material.alpha, trans, materialNames[material.name])
 | 
						|
					)
 | 
						|
					
 | 
						|
				else:
 | 
						|
					file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.
 | 
						|
			
 | 
						|
			writeObjectMaterial(material)
 | 
						|
 | 
						|
			writeMatrix(ob.matrix)
 | 
						|
			
 | 
						|
			file.write('}\n')
 | 
						|
		
 | 
						|
		
 | 
						|
	
 | 
						|
	
 | 
						|
	def exportMeshs(sel):
 | 
						|
		
 | 
						|
		ob_num = 0
 | 
						|
		
 | 
						|
		for ob in sel:
 | 
						|
			ob_num+= 1
 | 
						|
			
 | 
						|
			if ob.type in ('LAMP', 'CAMERA', 'EMPTY'):
 | 
						|
				continue
 | 
						|
			
 | 
						|
			me = ob.data
 | 
						|
			me_materials= me.materials
 | 
						|
			
 | 
						|
			me = ob.create_render_mesh(scene)
 | 
						|
			
 | 
						|
			if not me:
 | 
						|
				continue
 | 
						|
			
 | 
						|
			if info_callback:
 | 
						|
				info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
 | 
						|
			
 | 
						|
			#if ob.type!='MESH':
 | 
						|
			#	continue
 | 
						|
			# me = ob.data
 | 
						|
			
 | 
						|
			matrix = ob.matrix
 | 
						|
			try:	uv_layer = me.active_uv_texture.data
 | 
						|
			except:uv_layer = None
 | 
						|
				
 | 
						|
			try:	vcol_layer = me.active_vertex_color.data
 | 
						|
			except:vcol_layer = None
 | 
						|
			
 | 
						|
			faces_verts = [f.verts for f in me.faces]
 | 
						|
			faces_normals = [tuple(f.normal) for f in me.faces]
 | 
						|
			verts_normals = [tuple(v.normal) for v in me.verts]
 | 
						|
			
 | 
						|
			# quads incur an extra face
 | 
						|
			quadCount = len([f for f in faces_verts if len(f)==4])
 | 
						|
			
 | 
						|
			file.write('mesh2 {\n')
 | 
						|
			file.write('\tvertex_vectors {\n')
 | 
						|
			file.write('\t\t%s' % (len(me.verts))) # vert count
 | 
						|
			for v in me.verts:
 | 
						|
				file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
 | 
						|
			file.write('\n  }\n')
 | 
						|
			
 | 
						|
			
 | 
						|
			# Build unique Normal list
 | 
						|
			uniqueNormals = {}
 | 
						|
			for fi, f in enumerate(me.faces):
 | 
						|
				fv = faces_verts[fi]
 | 
						|
				# [-1] is a dummy index, use a list so we can modify in place
 | 
						|
				if f.smooth: # Use vertex normals
 | 
						|
					for v in fv:
 | 
						|
						key = verts_normals[v]
 | 
						|
						uniqueNormals[key] = [-1]
 | 
						|
				else: # Use face normal
 | 
						|
					key = faces_normals[fi]
 | 
						|
					uniqueNormals[key] = [-1]
 | 
						|
			
 | 
						|
			file.write('\tnormal_vectors {\n')
 | 
						|
			file.write('\t\t%d' % len(uniqueNormals)) # vert count
 | 
						|
			idx = 0
 | 
						|
			for no, index in uniqueNormals.items():
 | 
						|
				file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
 | 
						|
				index[0] = idx
 | 
						|
				idx +=1
 | 
						|
			file.write('\n  }\n')
 | 
						|
			
 | 
						|
			
 | 
						|
			# Vertex colours
 | 
						|
			vertCols = {} # Use for material colours also.
 | 
						|
			
 | 
						|
			if uv_layer:
 | 
						|
				# Generate unique UV's
 | 
						|
				uniqueUVs = {}
 | 
						|
				
 | 
						|
				for fi, uv in enumerate(uv_layer):
 | 
						|
					
 | 
						|
					if len(faces_verts[fi])==4:
 | 
						|
						uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
 | 
						|
					else:
 | 
						|
						uvs = uv.uv1, uv.uv2, uv.uv3
 | 
						|
					
 | 
						|
					for uv in uvs:
 | 
						|
						uniqueUVs[tuple(uv)] = [-1]
 | 
						|
				
 | 
						|
				file.write('\tuv_vectors {\n')
 | 
						|
				#print unique_uvs
 | 
						|
				file.write('\t\t%s' % (len(uniqueUVs))) # vert count
 | 
						|
				idx = 0
 | 
						|
				for uv, index in uniqueUVs.items():
 | 
						|
					file.write(',\n\t\t<%.6f, %.6f>' % uv)
 | 
						|
					index[0] = idx
 | 
						|
					idx +=1
 | 
						|
				'''
 | 
						|
				else:
 | 
						|
					# Just add 1 dummy vector, no real UV's
 | 
						|
					file.write('\t\t1') # vert count
 | 
						|
					file.write(',\n\t\t<0.0, 0.0>')
 | 
						|
				'''
 | 
						|
				file.write('\n  }\n')
 | 
						|
			
 | 
						|
			
 | 
						|
			if me.vertex_colors:
 | 
						|
				
 | 
						|
				for fi, f in enumerate(me.faces):
 | 
						|
					material_index = f.material_index
 | 
						|
					material = me_materials[material_index]
 | 
						|
					
 | 
						|
					if material and material.vertex_color_paint:
 | 
						|
						
 | 
						|
						col = vcol_layer[fi]
 | 
						|
						
 | 
						|
						if len(faces_verts[fi])==4:
 | 
						|
							cols = col.color1, col.color2, col.color3, col.color4
 | 
						|
						else:
 | 
						|
							cols = col.color1, col.color2, col.color3
 | 
						|
						
 | 
						|
						for col in cols:					
 | 
						|
							key = col[0], col[1], col[2], material_index # Material index!
 | 
						|
							vertCols[key] = [-1]
 | 
						|
						
 | 
						|
					else:
 | 
						|
						if material:
 | 
						|
							diffuse_color = tuple(material.diffuse_color)
 | 
						|
							key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
 | 
						|
							vertCols[key] = [-1]
 | 
						|
						
 | 
						|
			
 | 
						|
			else:
 | 
						|
				# No vertex colours, so write material colours as vertex colours
 | 
						|
				for i, material in enumerate(me_materials):
 | 
						|
					
 | 
						|
					if material:
 | 
						|
						diffuse_color = tuple(material.diffuse_color)
 | 
						|
						key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
 | 
						|
						vertCols[key] = [-1]
 | 
						|
				
 | 
						|
			
 | 
						|
			# Vert Colours
 | 
						|
			file.write('\ttexture_list {\n')
 | 
						|
			file.write('\t\t%s' % (len(vertCols))) # vert count
 | 
						|
			idx=0
 | 
						|
			for col, index in vertCols.items():
 | 
						|
				
 | 
						|
				if me_materials:
 | 
						|
					material = me_materials[col[3]]
 | 
						|
					material_finish = materialNames[material.name]
 | 
						|
					
 | 
						|
					if material.transparency and material.transparency_method=='RAYTRACE':	trans = 1-material.raytrace_transparency.filter
 | 
						|
					else:																	trans = 0.0
 | 
						|
					
 | 
						|
				else:
 | 
						|
					material_finish = DEF_MAT_NAME # not working properly,
 | 
						|
					trans = 0.0
 | 
						|
				
 | 
						|
				#print material.apl
 | 
						|
				file.write(	',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
 | 
						|
							(col[0], col[1], col[2], 1-material.alpha, trans, material_finish) )
 | 
						|
				
 | 
						|
				index[0] = idx
 | 
						|
				idx+=1
 | 
						|
			
 | 
						|
			file.write( '\n  }\n' )
 | 
						|
			
 | 
						|
			# Face indicies
 | 
						|
			file.write('\tface_indices {\n')
 | 
						|
			file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
			for fi, f in enumerate(me.faces):
 | 
						|
				fv = faces_verts[fi]
 | 
						|
				material_index= f.material_index
 | 
						|
				if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
 | 
						|
				else:				indicies = ((0,1,2),)
 | 
						|
				
 | 
						|
				if vcol_layer:
 | 
						|
					col = vcol_layer[fi]
 | 
						|
					
 | 
						|
					if len(fv) == 4:
 | 
						|
						cols = col.color1, col.color2, col.color3, col.color4
 | 
						|
					else:
 | 
						|
						cols = col.color1, col.color2, col.color3
 | 
						|
				
 | 
						|
				
 | 
						|
				if not me_materials or me_materials[material_index] == None: # No materials
 | 
						|
					for i1, i2, i3 in indicies:
 | 
						|
						file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
 | 
						|
				else:
 | 
						|
					material = me_materials[material_index]
 | 
						|
					for i1, i2, i3 in indicies:
 | 
						|
						if me.vertex_colors and material.vertex_color_paint:
 | 
						|
							# Colour per vertex - vertex colour
 | 
						|
							
 | 
						|
							col1 = cols[i1]
 | 
						|
							col2 = cols[i2]
 | 
						|
							col3 = cols[i3]
 | 
						|
						
 | 
						|
							ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
 | 
						|
							ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
 | 
						|
							ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
 | 
						|
						else:
 | 
						|
							# Colour per material - flat material colour
 | 
						|
							diffuse_color= material.diffuse_color
 | 
						|
							ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
 | 
						|
						
 | 
						|
						file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
 | 
						|
					
 | 
						|
					
 | 
						|
					
 | 
						|
			file.write('\n  }\n')
 | 
						|
			
 | 
						|
			# normal_indices indicies
 | 
						|
			file.write('\tnormal_indices {\n')
 | 
						|
			file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
			for fi, fv in enumerate(faces_verts):
 | 
						|
				
 | 
						|
				if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
 | 
						|
				else:				indicies = ((0,1,2),)
 | 
						|
				
 | 
						|
				for i1, i2, i3 in indicies:
 | 
						|
					if f.smooth:
 | 
						|
						file.write(',\n\t\t<%d,%d,%d>' %\
 | 
						|
						(uniqueNormals[verts_normals[fv[i1]]][0],\
 | 
						|
						 uniqueNormals[verts_normals[fv[i2]]][0],\
 | 
						|
						 uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
 | 
						|
					else:
 | 
						|
						idx = uniqueNormals[faces_normals[fi]][0]
 | 
						|
						file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
 | 
						|
						
 | 
						|
			file.write('\n  }\n')
 | 
						|
			
 | 
						|
			if uv_layer:
 | 
						|
				file.write('\tuv_indices {\n')
 | 
						|
				file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
				for fi, fv in enumerate(faces_verts):
 | 
						|
					
 | 
						|
					if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
 | 
						|
					else:				indicies = ((0,1,2),)
 | 
						|
					
 | 
						|
					uv = uv_layer[fi]
 | 
						|
					if len(faces_verts[fi])==4:
 | 
						|
						uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
 | 
						|
					else:
 | 
						|
						uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
 | 
						|
					
 | 
						|
					for i1, i2, i3 in indicies:
 | 
						|
						file.write(',\n\t\t<%d,%d,%d>' %\
 | 
						|
						(uniqueUVs[uvs[i1]][0],\
 | 
						|
						 uniqueUVs[uvs[i2]][0],\
 | 
						|
						 uniqueUVs[uvs[i2]][0])) # vert count
 | 
						|
				file.write('\n  }\n')
 | 
						|
			
 | 
						|
			if me.materials:
 | 
						|
				material = me.materials[0] # dodgy
 | 
						|
				writeObjectMaterial(material)
 | 
						|
			
 | 
						|
			writeMatrix(matrix)
 | 
						|
			file.write('}\n')
 | 
						|
			
 | 
						|
			bpy.data.remove_mesh(me)
 | 
						|
	
 | 
						|
	def exportWorld(world):
 | 
						|
		if not world:
 | 
						|
			return
 | 
						|
		
 | 
						|
		mist = world.mist
 | 
						|
		
 | 
						|
		if mist.enabled:
 | 
						|
			file.write('fog {\n')
 | 
						|
			file.write('\tdistance %.6f\n' % mist.depth)
 | 
						|
			file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1-mist.intensity,)))
 | 
						|
			#file.write('\tfog_offset %.6f\n' % mist.start)
 | 
						|
			#file.write('\tfog_alt 5\n')
 | 
						|
			#file.write('\tturbulence 0.2\n')
 | 
						|
			#file.write('\tturb_depth 0.3\n')
 | 
						|
			file.write('\tfog_type 1\n')
 | 
						|
			file.write('}\n')
 | 
						|
	
 | 
						|
	def exportGlobalSettings(scene):
 | 
						|
		
 | 
						|
		file.write('global_settings {\n')
 | 
						|
 | 
						|
		if scene.pov_radio_enable:
 | 
						|
			file.write('\tradiosity {\n')
 | 
						|
			file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
 | 
						|
			file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
 | 
						|
			file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
 | 
						|
			file.write("\t\tcount %d\n" % scene.pov_radio_count)
 | 
						|
			file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
 | 
						|
			file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
 | 
						|
			file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
 | 
						|
			file.write("\t\tmedia %d\n" % scene.pov_radio_media)
 | 
						|
			file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
 | 
						|
			file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
 | 
						|
			file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
 | 
						|
			file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
 | 
						|
			file.write('\t}\n')
 | 
						|
		
 | 
						|
		if world:
 | 
						|
			file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
 | 
						|
		
 | 
						|
		file.write('}\n')
 | 
						|
	
 | 
						|
	
 | 
						|
	# Convert all materials to strings we can access directly per vertex.
 | 
						|
	writeMaterial(None) # default material
 | 
						|
	
 | 
						|
	for material in bpy.data.materials:
 | 
						|
		writeMaterial(material)
 | 
						|
	
 | 
						|
	exportCamera()
 | 
						|
	#exportMaterials()
 | 
						|
	sel = scene.objects
 | 
						|
	exportLamps([l for l in sel if l.type == 'LAMP'])
 | 
						|
	exportMeta([l for l in sel if l.type == 'META'])
 | 
						|
	exportMeshs(sel)
 | 
						|
	exportWorld(scene.world)
 | 
						|
	exportGlobalSettings(scene)
 | 
						|
	
 | 
						|
	file.close()
 | 
						|
 | 
						|
 | 
						|
def write_pov_ini(filename_ini, filename_pov, filename_image):
 | 
						|
	scene = bpy.data.scenes[0]
 | 
						|
	render = scene.render_data
 | 
						|
	
 | 
						|
	x= int(render.resolution_x*render.resolution_percentage*0.01)
 | 
						|
	y= int(render.resolution_y*render.resolution_percentage*0.01)
 | 
						|
	
 | 
						|
	file = open(filename_ini, 'w')
 | 
						|
	
 | 
						|
	file.write('Input_File_Name="%s"\n' % filename_pov)
 | 
						|
	file.write('Output_File_Name="%s"\n' % filename_image)
 | 
						|
	
 | 
						|
	file.write('Width=%d\n' % x)
 | 
						|
	file.write('Height=%d\n' % y)
 | 
						|
	
 | 
						|
	# Needed for border render.
 | 
						|
	'''
 | 
						|
	file.write('Start_Column=%d\n' % part.x)
 | 
						|
	file.write('End_Column=%d\n' % (part.x+part.w))
 | 
						|
	
 | 
						|
	file.write('Start_Row=%d\n' % (part.y))
 | 
						|
	file.write('End_Row=%d\n' % (part.y+part.h))
 | 
						|
	'''
 | 
						|
	
 | 
						|
	file.write('Display=0\n')
 | 
						|
	file.write('Pause_When_Done=0\n')
 | 
						|
	file.write('Output_File_Type=T\n') # TGA, best progressive loading
 | 
						|
	file.write('Output_Alpha=1\n')
 | 
						|
	
 | 
						|
	if render.antialiasing: 
 | 
						|
		aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed
 | 
						|
		file.write('Antialias=1\n')
 | 
						|
		file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
 | 
						|
	else:
 | 
						|
		file.write('Antialias=0\n')
 | 
						|
	
 | 
						|
	file.close()
 | 
						|
 | 
						|
# Radiosity panel, use in the scene for now.
 | 
						|
FloatProperty= bpy.types.Scene.FloatProperty
 | 
						|
IntProperty= bpy.types.Scene.IntProperty
 | 
						|
BoolProperty= bpy.types.Scene.BoolProperty
 | 
						|
 | 
						|
# Not a real pov option, just to know if we should write
 | 
						|
BoolProperty(	attr="pov_radio_enable",
 | 
						|
				name="Enable Radiosity",
 | 
						|
				description="Enable povrays radiosity calculation.",
 | 
						|
				default= False)
 | 
						|
BoolProperty(	attr="pov_radio_display_advanced",
 | 
						|
				name="Advanced Options",
 | 
						|
				description="Show advanced options.",
 | 
						|
				default= False)
 | 
						|
 | 
						|
# Real pov options
 | 
						|
FloatProperty(	attr="pov_radio_adc_bailout",
 | 
						|
				name="ADC Bailout",
 | 
						|
				description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results.",
 | 
						|
				min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default= 0.01)
 | 
						|
 | 
						|
BoolProperty(	attr="pov_radio_always_sample",
 | 
						|
				name="Always Sample",
 | 
						|
				description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass..",
 | 
						|
				default= True)
 | 
						|
 | 
						|
FloatProperty(	attr="pov_radio_brightness",
 | 
						|
				name="Brightness",
 | 
						|
				description="Ammount objects are brightened before being returned upwards to the rest of the system.",
 | 
						|
				min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default= 1.0)
 | 
						|
 | 
						|
IntProperty(	attr="pov_radio_count",
 | 
						|
				name="Ray Count",
 | 
						|
				description="number of rays that are sent out whenever a new radiosity value has to be calculated.",
 | 
						|
				min=1, max=1600, default= 35)
 | 
						|
 | 
						|
FloatProperty(	attr="pov_radio_error_bound",
 | 
						|
				name="Error Bound",
 | 
						|
				description="one of the two main speed/quality tuning values, lower values are more accurate.",
 | 
						|
				min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default= 1.8)
 | 
						|
 | 
						|
FloatProperty(	attr="pov_radio_gray_threshold",
 | 
						|
				name="Gray Threshold",
 | 
						|
				description="one of the two main speed/quality tuning values, lower values are more accurate.",
 | 
						|
				min=0.0, max=1.0, soft_min=0, soft_max=1, default= 0.0)
 | 
						|
								
 | 
						|
FloatProperty(	attr="pov_radio_low_error_factor",
 | 
						|
				name="Low Error Factor",
 | 
						|
				description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting.",
 | 
						|
				min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default= 0.5)
 | 
						|
 | 
						|
# max_sample - not available yet
 | 
						|
BoolProperty(	attr="pov_radio_media", 
 | 
						|
				name="Media",
 | 
						|
				description="Radiosity estimation can be affected by media.",
 | 
						|
				default= False)
 | 
						|
 | 
						|
FloatProperty(	attr="pov_radio_minimum_reuse",
 | 
						|
				name="Minimum Reuse",
 | 
						|
				description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors).",
 | 
						|
				min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default= 0.015)
 | 
						|
				
 | 
						|
IntProperty(	attr="pov_radio_nearest_count",
 | 
						|
				name="Nearest Count",
 | 
						|
				description="Number of old ambient values blended together to create a new interpolated value.",
 | 
						|
				min=1, max=20, default= 5)
 | 
						|
				
 | 
						|
BoolProperty(	attr="pov_radio_normal",
 | 
						|
				name="Normals",
 | 
						|
				description="Radiosity estimation can be affected by normals.",
 | 
						|
				default= False)
 | 
						|
 | 
						|
IntProperty(	attr="pov_radio_recursion_limit",
 | 
						|
				name="Recursion Limit",
 | 
						|
				description="how many recursion levels are used to calculate the diffuse inter-reflection.",
 | 
						|
				min=1, max=20, default= 3)
 | 
						|
	
 | 
						|
 | 
						|
class PovrayRender(bpy.types.RenderEngine):
 | 
						|
	__idname__ = 'POVRAY_RENDER'
 | 
						|
	__label__ = "Povray"
 | 
						|
	DELAY = 0.02
 | 
						|
	
 | 
						|
	def _export(self, scene):
 | 
						|
		import tempfile
 | 
						|
		
 | 
						|
		self.temp_file_in = tempfile.mktemp(suffix='.pov')
 | 
						|
		self.temp_file_out = tempfile.mktemp(suffix='.tga')
 | 
						|
		self.temp_file_ini = tempfile.mktemp(suffix='.ini')
 | 
						|
		'''
 | 
						|
		self.temp_file_in = '/test.pov'
 | 
						|
		self.temp_file_out = '/test.tga'
 | 
						|
		self.temp_file_ini = '/test.ini'
 | 
						|
		'''
 | 
						|
		
 | 
						|
		def info_callback(txt):
 | 
						|
			self.update_stats("", "POVRAY: " + txt)
 | 
						|
			
 | 
						|
		write_pov(self.temp_file_in, scene, info_callback)
 | 
						|
		
 | 
						|
	def _render(self):
 | 
						|
		
 | 
						|
		try:		os.remove(self.temp_file_out) # so as not to load the old file
 | 
						|
		except:	pass
 | 
						|
		
 | 
						|
		write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out)
 | 
						|
		
 | 
						|
		print ("***-STARTING-***")
 | 
						|
		
 | 
						|
		pov_binary = "povray"
 | 
						|
		
 | 
						|
		if sys.platform=='win32':
 | 
						|
			if bitness == 64:
 | 
						|
				pov_binary = "pvengine64"
 | 
						|
			else:
 | 
						|
				pov_binary = "pvengine"
 | 
						|
			
 | 
						|
		if 1:
 | 
						|
			self.process = subprocess.Popen([pov_binary, self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
 | 
						|
		else:
 | 
						|
			# This works too but means we have to wait until its done
 | 
						|
			os.system('%s %s' % (pov_binary, self.temp_file_ini))
 | 
						|
		
 | 
						|
		print ("***-DONE-***")
 | 
						|
	
 | 
						|
	def _cleanup(self):
 | 
						|
		for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out):
 | 
						|
			try:		os.remove(f)
 | 
						|
			except:	pass
 | 
						|
		
 | 
						|
		self.update_stats("", "")
 | 
						|
	
 | 
						|
	def render(self, scene):
 | 
						|
		
 | 
						|
		self.update_stats("", "POVRAY: Exporting data from Blender")
 | 
						|
		self._export(scene)
 | 
						|
		self.update_stats("", "POVRAY: Parsing File")
 | 
						|
		self._render()
 | 
						|
		
 | 
						|
		r = scene.render_data
 | 
						|
		
 | 
						|
		# compute resolution
 | 
						|
		x= int(r.resolution_x*r.resolution_percentage*0.01)
 | 
						|
		y= int(r.resolution_y*r.resolution_percentage*0.01)
 | 
						|
		
 | 
						|
		
 | 
						|
		
 | 
						|
		# Wait for the file to be created
 | 
						|
		while not os.path.exists(self.temp_file_out):
 | 
						|
			if self.test_break():
 | 
						|
				try:		self.process.terminate()
 | 
						|
				except:	pass
 | 
						|
				break
 | 
						|
			
 | 
						|
			if self.process.poll() != None:
 | 
						|
				self.update_stats("", "POVRAY: Failed")
 | 
						|
				break
 | 
						|
			
 | 
						|
			time.sleep(self.DELAY)
 | 
						|
		
 | 
						|
		if os.path.exists(self.temp_file_out):
 | 
						|
			
 | 
						|
			self.update_stats("", "POVRAY: Rendering")
 | 
						|
			
 | 
						|
			prev_size = -1
 | 
						|
			
 | 
						|
			def update_image():
 | 
						|
				result = self.begin_result(0, 0, x, y)
 | 
						|
				lay = result.layers[0]
 | 
						|
				# possible the image wont load early on.
 | 
						|
				try:		lay.load_from_file(self.temp_file_out)
 | 
						|
				except:	pass
 | 
						|
				self.end_result(result)
 | 
						|
			
 | 
						|
			# Update while povray renders
 | 
						|
			while True:
 | 
						|
				
 | 
						|
				# test if povray exists
 | 
						|
				if self.process.poll() != None:
 | 
						|
					update_image();
 | 
						|
					break
 | 
						|
				
 | 
						|
				# user exit
 | 
						|
				if self.test_break():
 | 
						|
					try:		self.process.terminate()
 | 
						|
					except:	pass
 | 
						|
					
 | 
						|
					break
 | 
						|
				
 | 
						|
				# Would be nice to redirect the output
 | 
						|
				# stdout_value, stderr_value = self.process.communicate() # locks
 | 
						|
				
 | 
						|
				
 | 
						|
				# check if the file updated
 | 
						|
				new_size = os.path.getsize(self.temp_file_out)
 | 
						|
				
 | 
						|
				if new_size != prev_size:
 | 
						|
					update_image()
 | 
						|
					prev_size = new_size
 | 
						|
				
 | 
						|
				time.sleep(self.DELAY)
 | 
						|
		
 | 
						|
		self._cleanup()
 | 
						|
 | 
						|
bpy.types.register(PovrayRender)
 | 
						|
 | 
						|
# Use some of the existing buttons.
 | 
						|
import buttons_scene
 | 
						|
buttons_scene.SCENE_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_scene.SCENE_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_scene.SCENE_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_scene.SCENE_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
del buttons_scene
 | 
						|
 | 
						|
# Use only a subset of the world panels
 | 
						|
import buttons_world
 | 
						|
buttons_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
buttons_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
del buttons_world
 | 
						|
 | 
						|
# Example of wrapping every class 'as is'
 | 
						|
import buttons_material
 | 
						|
for member in dir(buttons_material):
 | 
						|
	subclass = getattr(buttons_material, member)
 | 
						|
	try:		subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
	except:	pass
 | 
						|
del buttons_material
 | 
						|
 | 
						|
class RenderButtonsPanel(bpy.types.Panel):
 | 
						|
	__space_type__ = 'PROPERTIES'
 | 
						|
	__region_type__ = 'WINDOW'
 | 
						|
	__context__ = "scene"
 | 
						|
	# COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here
 | 
						|
	
 | 
						|
	def poll(self, context):
 | 
						|
		rd = context.scene.render_data
 | 
						|
		return (rd.use_game_engine==False) and (rd.engine in self.COMPAT_ENGINES)
 | 
						|
 | 
						|
class SCENE_PT_povray_radiosity(RenderButtonsPanel):
 | 
						|
	__label__ = "Radiosity"
 | 
						|
	COMPAT_ENGINES = set(['POVRAY_RENDER'])
 | 
						|
 | 
						|
	def draw_header(self, context):
 | 
						|
		layout = self.layout
 | 
						|
		scene = context.scene
 | 
						|
		layout.itemR(scene, "pov_radio_enable", text="")
 | 
						|
 | 
						|
	def draw(self, context):
 | 
						|
		layout = self.layout
 | 
						|
		scene = context.scene
 | 
						|
		rd = scene.render_data
 | 
						|
		
 | 
						|
		layout.active = scene.pov_radio_enable
 | 
						|
		
 | 
						|
		split = layout.split()
 | 
						|
		
 | 
						|
		col = split.column()
 | 
						|
		
 | 
						|
		col.itemR(scene, "pov_radio_count", text="Rays")
 | 
						|
		col.itemR(scene, "pov_radio_recursion_limit", text="Recursions")
 | 
						|
		col = split.column()
 | 
						|
		col.itemR(scene, "pov_radio_error_bound", text="Error")
 | 
						|
		
 | 
						|
		layout.itemR(scene, "pov_radio_display_advanced")
 | 
						|
		
 | 
						|
		if scene.pov_radio_display_advanced:
 | 
						|
			split = layout.split()
 | 
						|
		
 | 
						|
			col = split.column()
 | 
						|
			col.itemR(scene, "pov_radio_adc_bailout", slider=True)
 | 
						|
			col.itemR(scene, "pov_radio_gray_threshold", slider=True)
 | 
						|
			col.itemR(scene, "pov_radio_low_error_factor", slider=True)
 | 
						|
			
 | 
						|
			
 | 
						|
			
 | 
						|
			col = split.column()
 | 
						|
			col.itemR(scene, "pov_radio_brightness")
 | 
						|
			col.itemR(scene, "pov_radio_minimum_reuse", text="Min Reuse")
 | 
						|
			col.itemR(scene, "pov_radio_nearest_count")
 | 
						|
			
 | 
						|
			
 | 
						|
			split = layout.split()
 | 
						|
		
 | 
						|
			col = split.column()
 | 
						|
			col.itemL(text="Estimation Influence:")
 | 
						|
			col.itemR(scene, "pov_radio_media")
 | 
						|
			col.itemR(scene, "pov_radio_normal")
 | 
						|
			
 | 
						|
			col = split.column()
 | 
						|
			col.itemR(scene, "pov_radio_always_sample")
 | 
						|
		
 | 
						|
 | 
						|
bpy.types.register(SCENE_PT_povray_radiosity)
 |